Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Advances in Natural Products with Anti-Leukemia and Anti- Lymphoma Activities

Author(s): Zhi-Gang Sun*, Cheng-Jie Yao, Inam Ullah and Hai-Liang Zhu*

Volume 24, Issue 6, 2024

Published on: 06 October, 2023

Page: [664 - 671] Pages: 8

DOI: 10.2174/0113895575258798230927061557

Price: $65

Abstract

Leukemia and lymphoma are the most common blood cancers, which pose a critical threat to the health of adults and children. The total incidence and mortality rates of both are approximately 6% globally. Compared with the expensive cost of CAR T cell therapy, natural products from animals, plants and microorganisms have the characteristics of wide-range sources and costeffectiveness in the treatment of cancer. Moreover, the drug resistance that emerged in leukemia and lymphoma treatments shows an urgent need for new drugs. However, in addition to the natural products that have been marketed in the treatment of leukemia and lymphoma, there have been a large number of studies on natural products that fight blood cancer in recent years. This review summarized the recent studies on natural compounds with anti-lymphoma and anti-leukemia activities, hoping to provide novel weapons into the drug development arsenal.

« Previous
Graphical Abstract

[1]
Wang, Y.; Gao, P.; Liang, G.; Zhang, N.; Wang, C.; Wang, Y.; Nie, L.; Lv, X.; Li, W.; Guo, Q.; Jiang, X.; Lu, J. Maternal prenatal exposure to environmental factors and risk of childhood acute lymphocytic leukemia: A hospital-based case-control study in China. Cancer Epidemiol., 2019, 58, 146-152.
[http://dx.doi.org/10.1016/j.canep.2018.11.005] [PMID: 30579239]
[2]
Frederiksen, L.E.; Erdmann, F.; Wesseling, C.; Winther, J.F.; Mora, A.M. Parental tobacco smoking and risk of childhood leukemia in Costa Rica: A population-based case-control study. Environ. Res., 2020, 180, 108827.
[http://dx.doi.org/10.1016/j.envres.2019.108827] [PMID: 31655332]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Siegal, T.; Benouaich-Amiel, A.; Bairey, O. Neurologic complications of acute myeloid leukemia. Diagnostic approach and therapeutic modalities. Blood Rev., 2022, 53, 100910.
[http://dx.doi.org/10.1016/j.blre.2021.100910] [PMID: 34836656]
[5]
Vaid, T.; Aggarwal, M.; Kumar, P.; Dhawan, R.; Dass, J.; Viswanathan, G.; Seth, T.; Tyagi, S.; Mahapatra, M. Clinical profile, complica-tions and outcomes of patients with acute promyelocytic leukemia: Indian perspective. Blood, 2021, 138(Suppl. 1), 4385.
[http://dx.doi.org/10.1182/blood-2021-152874]
[6]
Hodgkin lymphoma. Nat. Rev. Dis. Primers, 2020, 6(1), 62.
[http://dx.doi.org/10.1038/s41572-020-0203-z] [PMID: 32703949]
[7]
Espín-Pérez, A.; Brennan, K.; Ediriwickrema, A.S.; Gevaert, O.; Lossos, I.S.; Gentles, A.J. Peripheral blood DNA methylation profiles predict future development of B-cell Non-Hodgkin Lymphoma. NPJ Precis. Oncol., 2022, 6(1), 53.
[8]
Jigjidkhorloo, N.; Kanekura, K.; Matsubayashi, J.; Akahane, D.; Fujita, K.; Oikawa, K.; Kurata, A.; Takanashi, M.; Endou, H.; Nagao, T.; Gotoh, A.; Norov, O.; Kuroda, M. Expression of L-type amino acid transporter 1 is a poor prognostic factor for Non-Hodgkin’s lympho-ma. Sci. Rep., 2021, 11(1), 21638.
[http://dx.doi.org/10.1038/s41598-021-00811-8] [PMID: 34737339]
[9]
Yu, M.; Li, C.; Hu, C.; Jin, J.; Qian, S.; Jin, J. The relationship between consumption of nitrite or nitrate and risk of non-Hodgkin lymphoma. Sci. Rep., 2020, 10(1), 551.
[http://dx.doi.org/10.1038/s41598-020-57453-5] [PMID: 31953513]
[10]
Valero, J.G.; Matas-Céspedes, A.; Arenas, F.; Rodriguez, V.; Carreras, J.; Serrat, N.; Guerrero-Hernández, M.; Yahiaoui, A.; Balagué, O.; Martin, S.; Capdevila, C.; Hernández, L.; Magnano, L.; Rivas-Delgado, A.; Tannheimer, S.; Cid, M.C.; Campo, E.; López-Guillermo, A.; Colomer, D.; Pérez-Galán, P. The receptor of the colony-stimulating factor-1 (CSF-1R) is a novel prognostic factor and therapeutic target in follicular lymphoma. Leukemia, 2021, 35(9), 2635-2649.
[http://dx.doi.org/10.1038/s41375-021-01201-9] [PMID: 33731849]
[11]
Tracy, S.I.; Maurer, M.J.; Witzig, T.E.; Drake, M.T.; Ansell, S.M.; Nowakowski, G.S.; Thompson, C.A.; Inwards, D.J.; Johnston, P.B.; Micallef, I.N.; Allmer, C.; Macon, W.R.; Weiner, G.J.; Slager, S.L.; Habermann, T.M.; Link, B.K.; Cerhan, J.R. Vitamin D insufficiency is associated with an increased risk of early clinical failure in follicular lymphoma. Blood Cancer J., 2017, 7(8), e595-e595.
[http://dx.doi.org/10.1038/bcj.2017.70] [PMID: 28841207]
[12]
Zhang, J.; Gu, Y.; Chen, B. Mechanisms of drug resistance in acute myeloid leukemia. OncoTargets Ther., 2019, 12, 1937-1945.
[http://dx.doi.org/10.2147/OTT.S191621] [PMID: 30881045]
[13]
Wang, L.; Li, L.R. R-CHOP resistance in diffuse large B-cell lymphoma: Biological and molecular mechanisms. Chin. Med. J., 2021, 134(3), 253-260.
[http://dx.doi.org/10.1097/CM9.0000000000001294] [PMID: 33323828]
[14]
Auberger, P.; Tamburini-Bonnefoy, J.; Puissant, A. Drug resistance in hematological malignancies. Int. J. Mol. Sci., 2020, 21(17), 6091.
[http://dx.doi.org/10.3390/ijms21176091] [PMID: 32847013]
[15]
Grey, W.; Rio-Machin, A.; Casado, P.; Grönroos, E.; Ali, S.; Miettinen, J.J.; Bewicke-Copley, F.; Parsons, A.; Heckman, C.A.; Swanton, C.; Cutillas, P.R.; Gribben, J.; Fitzgibbon, J.; Bonnet, D. CKS1 inhibition depletes leukemic stem cells and protects healthy hematopoietic stem cells in acute myeloid leukemia. Sci. Transl. Med., 2022, 14(650), eabn3248.
[http://dx.doi.org/10.1126/scitranslmed.abn3248] [PMID: 35731890]
[16]
Berrien-Elliott, M.M.; Foltz, J.A.; Russler-Germain, D.A.; Neal, C.C.; Tran, J.; Gang, M.; Wong, P.; Fisk, B.; Cubitt, C.C.; Marin, N.D.; Zhou, A.Y.; Jacobs, M.T.; Foster, M.; Schappe, T.; McClain, E.; Kersting-Schadek, S.; Desai, S.; Pence, P.; Becker-Hapak, M.; Eisele, J.; Mosior, M.; Marsala, L.; Griffith, O.L.; Griffith, M.; Khan, S.M.; Spencer, D.H.; DiPersio, J.F.; Romee, R.; Uy, G.L.; Abboud, C.N.; Gho-badi, A.; Westervelt, P.; Stockerl-Goldstein, K.; Schroeder, M.A.; Wan, F.; Lie, W.R.; Soon-Shiong, P.; Petti, A.A.; Cashen, A.F.; Fehniger, T.A. Hematopoietic cell transplantation donor-derived memory-like NK cells functionally persist after transfer into patients with leukemia. Sci. Transl. Med., 2022, 14(633), eabm1375.
[http://dx.doi.org/10.1126/scitranslmed.abm1375] [PMID: 35196021]
[17]
Au, K.M.; Wang, A.Z.; Park, S.I. Pretargeted delivery of PI3K/mTOR small-molecule inhibitor–loaded nanoparticles for treatment of non-Hodgkin’s lymphoma. Sci. Adv., 2020, 6(14), eaaz9798.
[http://dx.doi.org/10.1126/sciadv.aaz9798] [PMID: 32270047]
[18]
Robak, P.; Robak, T. Novel synthetic drugs currently in clinical development for chronic lymphocytic leukemia. Expert Opin. Investig. Drugs, 2017, 26(11), 1249-1265.
[http://dx.doi.org/10.1080/13543784.2017.1384814] [PMID: 28942659]
[19]
Manji, F.; Puckrin, R.; Stewart, D.A. Novel synthetic drugs for the treatment of non-Hodgkin lymphoma. Expert Opin. Pharmacother., 2021, 22(11), 1417-1427.
[http://dx.doi.org/10.1080/14656566.2021.1902988] [PMID: 33711241]
[20]
Sun, Z.G.; Li, Z.N.; Miao, X.W.; Li, S.; Zhu, H.L. Recent advances in natural products with antiviral activities. Mini Rev. Med. Chem., 2021, 21(14), 1888-1908.
[http://dx.doi.org/10.2174/1389557521666210304110824] [PMID: 33663367]
[21]
Sun, Z.G.; Zhao, T.T.; Lu, N.; Yang, Y.A.; Zhu, H.L. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev. Med. Chem., 2019, 19(10), 826-832.
[http://dx.doi.org/10.2174/1389557519666190119111125] [PMID: 30659537]
[22]
Yao, X.; Ling, Y.; Guo, S.; Wu, W.; He, S.; Zhang, Q.; Zou, M.; Nandakumar, K.S.; Chen, X.; Liu, S. Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine, 2018, 42, 258-267.
[http://dx.doi.org/10.1016/j.phymed.2018.03.018] [PMID: 29655694]
[23]
Bayrak, S.; Öztürk, C.; Demir, Y.; Alım, Z.; Küfrevioglu, Ö.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. Lett., 2020, 27(3), 187-192.
[http://dx.doi.org/10.2174/0929866526666191002142301] [PMID: 31577197]
[24]
Demir, Y.; Ceylan, H.; Türkeş, C.; Beydemir, Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021.
[http://dx.doi.org/10.1080/07391102.2021.1967195] [PMID: 34424822]
[25]
Demir, Y.; Durmaz, L.; Taslimi, P.; Gulçin, İ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α‐amylase, aldose reductase, and α‐glycosidase. Biotechnol. Appl. Biochem., 2019, 66(5), 781-786.
[http://dx.doi.org/10.1002/bab.1781] [PMID: 31135076]
[26]
Dai, J.; Han, R.; Xu, Y.; Li, N.; Wang, J.; Dan, W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg. Chem., 2020, 101, 103922.
[http://dx.doi.org/10.1016/j.bioorg.2020.103922] [PMID: 32559577]
[27]
Keerthana, S.; Abilasha, R.; Saraswathi, K.; Arumugam, P. Antioxidant and antibacterial natural products evaluation from terrestrial strep-tomyces species strain KAV 2 isolated from rhizosphere regions of piper betle. J. Drug Deliv. Ther., 2019, 9(4-A), 26-37.
[http://dx.doi.org/10.22270/jddt.v9i4-A.3390]
[28]
Li, D.D.; Yu, P.; Xiao, W.; Wang, Z.Z.; Zhao, L.G. Berberine: A promising natural isoquinoline alkaloid for the development of hypolipi-demic drugs. Curr. Top. Med. Chem., 2020, 20(28), 2634-2647.
[http://dx.doi.org/10.2174/1568026620666200908165913] [PMID: 32901585]
[29]
Sun, Z.G.; Zhao, L.H.; Yeh, S.M.; Li, Z.N.; Ming, X. Research development, optimization and modifications of anti-cancer peptides. Mini Rev. Med. Chem., 2021, 21(1), 58-68.
[http://dx.doi.org/10.2174/1389557520666200729163146] [PMID: 32767954]
[30]
Cheng, J.; Song, J.; Wang, Y.; Wei, H.; He, L.; Liu, Y.; Ding, H.; Huang, Q.; Hu, C.; Huang, X.; Jiang, Y.; Wu, Y. Conformation and anti-cancer activity of a novel mannogalactan from the fruiting bodies of Sanghuangporus sanghuang on HepG2 cells. Food Res. Int., 2022, 156, 111336.
[http://dx.doi.org/10.1016/j.foodres.2022.111336] [PMID: 35651086]
[31]
Sarker, S.D.; Nahar, L.; Miron, A.; Guo, M. Anticancer natural products. In: Annual reports in medicinal chemistry; Elsevier, 2020; Vol. 55, pp. 45-75.
[32]
Çağlayan, C.; Taslimi, P.; Demir, Y.; Küçükler, S.; Kandemir, F.M.; Gulçin, İ. The effects of zingerone against vancomycin‐induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. J. Biochem. Mol. Toxicol., 2019, 33(10), e22381.
[http://dx.doi.org/10.1002/jbt.22381] [PMID: 31454121]
[33]
Daoui, O.; Elkhattabi, S.; Bakhouch, M.; Belaidi, S.; Bhandare, R.R.; Shaik, A.B.; Mali, S.N.; Chtita, S. Cyclohexane-1,3-dione derivatives as future therapeutic agents for NSCLC: QSAR modeling, in silico ADME-tox properties, and structure-based drug designing approach. ACS Omega, 2023, 8(4), 4294-4319.
[http://dx.doi.org/10.1021/acsomega.2c07585] [PMID: 36743017]
[34]
Lin, S.R.; Chang, C.H.; Hsu, C.F.; Tsai, M.J.; Cheng, H.; Leong, M.K.; Sung, P.J.; Chen, J.C.; Weng, C.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br. J. Pharmacol., 2020, 177(6), 1409-1423.
[http://dx.doi.org/10.1111/bph.14816] [PMID: 31368509]
[35]
Liang, X.; Cao, Y.; Li, C.; Yu, H.; Yang, C.; Liu, H. MALT1 as a promising target to treat lymphoma and other diseases related to MALT1 anomalies. Med. Res. Rev., 2021, 41(4), 2388-2422.
[http://dx.doi.org/10.1002/med.21799] [PMID: 33763890]
[36]
Mutlu Altundağ, E.; Yılmaz, A.M.; Koçtürk, S.; Taga, Y.; Yalçın, A.S. Synergistic induction of apoptosis by quercetin and curcumin in chronic myeloid leukemia (K562) cells. Nutr. Cancer, 2018, 70(1), 97-108.
[http://dx.doi.org/10.1080/01635581.2018.1380208] [PMID: 29161179]
[37]
Tseng, Y.H.; Chiou, S.S.; Weng, J.P.; Lin, P.C. Curcumin and tetrahydrocurcumin induce cell death in Ara‐C‐resistant acute myeloid leu-kemia. Phytother. Res., 2019, 33(4), 1199-1207.
[http://dx.doi.org/10.1002/ptr.6316] [PMID: 30834607]
[38]
Kuttikrishnan, S.; Siveen, K.S.; Prabhu, K.S.; Khan, A.Q.; Ahmed, E.I.; Akhtar, S.; Ali, T.A.; Merhi, M.; Dermime, S.; Steinhoff, M.; Ud-din, S. Curcumin induces apoptotic cell death via inhibition of PI3-kinase/AKT pathway in B-precursor acute lymphoblastic leukemia. Front. Oncol., 2019, 9, 484.
[http://dx.doi.org/10.3389/fonc.2019.00484] [PMID: 31275848]
[39]
Zhou, H.; Ning, Y.; Zeng, G.; Zhou, C.; Ding, X. Curcumin promotes cell cycle arrest and apoptosis of acute myeloid leukemia cells by inactivating AKT. Oncol. Rep., 2021, 45(4), 11.
[http://dx.doi.org/10.3892/or.2021.7962] [PMID: 33649826]
[40]
Deng, L.; Jiang, L.; Lin, X.; Tseng, K.F.; Lu, Z.; Wang, X. Luteolin, a novel p90 ribosomal S6 kinase inhibitor, suppresses proliferation and migration in leukemia cells. Oncol. Lett., 2017, 13(3), 1370-1378.
[http://dx.doi.org/10.3892/ol.2017.5597] [PMID: 28454264]
[41]
Calgarotto, A.K.; Maso, V.; Junior, G.C.F.; Nowill, A.E.; Filho, P.L.; Vassallo, J.; Saad, S.T.O. Antitumor activities of quercetin and green tea in xenografts of human leukemia HL60 cells. Sci. Rep., 2018, 8(1), 3459.
[http://dx.doi.org/10.1038/s41598-018-21516-5] [PMID: 29472583]
[42]
Shi, Y.; Su, X.; Cui, H.; Yu, L.; Du, H.; Han, Y. Combination of quercetin and Adriamycin effectively suppresses the growth of refractory acute leukemia. Oncol. Lett., 2019, 18(1), 153-160.
[http://dx.doi.org/10.3892/ol.2019.10299] [PMID: 31289484]
[43]
Gu, R.; Zhang, M.; Meng, H.; Xu, D.; Xie, Y. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respira-tion inhibition. Biomed. Pharmacother., 2018, 105, 491-497.
[http://dx.doi.org/10.1016/j.biopha.2018.05.158] [PMID: 29883944]
[44]
Aye, K.; Wattanapongpitak, S.; Supawat, B.; Kothan, S.; Udomtanakunchai, C.; Tima, S.; Pan, J.; Tungjai, M. Gallic acid enhances piraru-bicin induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P glycoprotein inhibition. Oncol. Rep., 2021, 46(4), 227.
[http://dx.doi.org/10.3892/or.2021.8178] [PMID: 34476509]
[45]
Chen, Y.; Gan, D.; Huang, Q.; Luo, X.; Lin, D.; Hu, J. Emodin and its combination with cytarabine induce apoptosis in resistant acute myeloid leukemia cells in vitro and in vivo. Cell. Physiol. Biochem., 2018, 48(5), 2061-2073.
[http://dx.doi.org/10.1159/000492544] [PMID: 30099447]
[46]
Min, H.; Niu, M.; Zhang, W.; Yan, J.; Li, J.; Tan, X.; Li, B.; Su, M.; Di, B.; Yan, F. Emodin reverses leukemia multidrug resistance by competitive inhibition and downregulation of P-glycoprotein. PLoS One, 2017, 12(11), e0187971.
[http://dx.doi.org/10.1371/journal.pone.0187971] [PMID: 29121121]
[47]
Wang, X.Y.; Sun, G.B.; Wang, Y.J.; Yan, F. Emodin inhibits resistance to imatinib by downregulation of Bcr-Abl and STAT5 and allosteric inhibition in chronic myeloid leukemia cells. Biol. Pharm. Bull., 2020, 43(10), 1526-1533.
[http://dx.doi.org/10.1248/bpb.b20-00325] [PMID: 32999163]
[48]
Borutinskaitė, V.; Virkšaitė, A.; Gudelytė, G.; Navakauskienė, R. Green tea polyphenol EGCG causes anti-cancerous epigenetic modula-tions in acute promyelocytic leukemia cells. Leuk. Lymphoma, 2018, 59(2), 469-478.
[http://dx.doi.org/10.1080/10428194.2017.1339881] [PMID: 28641467]
[49]
Xiao, X.; Jiang, K.; Xu, Y.; Peng, H.; Wang, Z.; Liu, S.; Zhang, G. (−)-Epigallocatechin-3-gallate induces cell apoptosis in chronic myeloid leukaemia by regulating Bcr/Abl-mediated p38-MAPK/JNK and JAK2/STAT3/AKT signalling pathways. Clin. Exp. Pharmacol. Physiol., 2019, 46(2), 126-136.
[http://dx.doi.org/10.1111/1440-1681.13037] [PMID: 30251267]
[50]
Ghasemi-Pirbaluti, M.; Pourgheysari, B.; Shirzad, H.; Sourani, Z.; Beshkar, P. The inhibitory effect of Epigallocatechin gallate on the viabi-lity of T lymphoblastic leukemia cells is associated with increase of caspase-3 level and Fas expression. Indian J. Hematol. Blood Transfus., 2018, 34(2), 253-260.
[http://dx.doi.org/10.1007/s12288-017-0854-4] [PMID: 29622866]
[51]
Della Via, F.I.; Shiraishi, R.N.; Santos, I.; Ferro, K.P.; Salazar-Terreros, M.J.; Franchi Junior, G.C.; Rego, E.M.; Saad, S.T.O.; Torello, C.O. (–)-Epigallocatechin-3-gallate induces apoptosis and differentiation in leukaemia by targeting reactive oxygen species and PIN1. Sci. Rep., 2021, 11(1), 9103.
[http://dx.doi.org/10.1038/s41598-021-88478-z] [PMID: 33907248]
[52]
Feriotto, G.; Tagliati, F.; Giriolo, R.; Casciano, F.; Tabolacci, C.; Beninati, S.; Khan, M.T.H.; Mischiati, C. Caffeic acid enhances the anti-leukemic effect of imatinib on chronic myeloid leukemia cells and triggers apoptosis in cells sensitive and resistant to imatinib. Int. J. Mol. Sci., 2021, 22(4), 1644.
[http://dx.doi.org/10.3390/ijms22041644] [PMID: 33562019]
[53]
Najafi Dorcheh, S.; Rahgozar, S.; Talei, D. 6‐Shogaol induces apoptosis in acute lymphoblastic leukaemia cells by targeting p53 signalling pathway and generation of reactive oxygen species. J. Cell. Mol. Med., 2021, 25(13), 6148-6160.
[http://dx.doi.org/10.1111/jcmm.16528] [PMID: 33939282]
[54]
Ozkan, T.; Hekmatshoar, Y.; Pamuk, H.; Ozcan, M.; Yaman, G.; Yagiz, G.C.; Akdemir, C.; Sunguroglu, A. Cytotoxic effect of 6-shogaol in imatinib sensitive and resistant K562 cells. Mol. Biol. Rep., 2021, 48(2), 1625-1631.
[http://dx.doi.org/10.1007/s11033-021-06141-2] [PMID: 33515349]
[55]
Najafi Dorcheh, S.; Rahgozar, S. Evaluation of the effect of 6-shogaol on the expression of FASN and Insig1 genes in the acute lympho-blastic leukemia cell line Nalm-6. Cell. Mol. Res., 2023, 36(2), 143-158.
[56]
Yi, J.; Wang, L.; Wang, X.Y.; Sun, J.; Yin, X.Y.; Hou, J.X.; Chen, J.; Xie, B.; Wei, H.L. Suppression of aberrant activation of NF-κB pathway in drug-resistant leukemia stem cells contributes to parthenolide-potentiated reversal of drug resistance in leukemia. J. Cancer, 2021, 12(18), 5519-5529.
[http://dx.doi.org/10.7150/jca.52641] [PMID: 34405014]
[57]
Kawakami, S.; Tsuma-Kaneko, M.; Sawanobori, M.; Uno, T.; Nakamura, Y.; Matsuzawa, H.; Suzuki, R.; Onizuka, M.; Yahata, T.; Naka, K.; Ando, K.; Kawada, H. Pterostilbene downregulates BCR/ABL and induces apoptosis of T315I-mutated BCR/ABL-positive leukemic cells. Sci. Rep., 2022, 12(1), 704.
[http://dx.doi.org/10.1038/s41598-021-04654-1] [PMID: 35027628]
[58]
Chang, G.; Xiao, W.; Xu, Z.; Yu, D.; Li, B.; Zhang, Y.; Sun, X.; Xie, Y.; Chang, S.; Gao, L.; Chen, G.; Hu, L.; Xie, B.; Dai, B.; Zhu, W.; Shi, J. Pterostilbene induces cell apoptosis and cell cycle arrest in T-cell leukemia/lymphoma by suppressing the ERK1/2 pathway. BioMed Res. Int., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/9872073] [PMID: 28785594]
[59]
Pang, J.; Shen, N.; Yan, F.; Zhao, N.; Dou, L.; Wu, L.C.; Seiler, C.L.; Yu, L.; Yang, K.; Bachanova, V.; Weaver, E.; Tretyakova, N.Y.; Liu, S. Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells. Oncotarget, 2017, 8(21), 34453-34467.
[http://dx.doi.org/10.18632/oncotarget.16431] [PMID: 28415607]
[60]
Al-Rawashde, F.; Wan Taib, W.R.; Ismail, I.; Johan, M.F.; Al-Wajeeh, A.; Al-Jamal, H. Thymoquinone induces downregulation of BCR-ABL/JAK/STAT pathway and apoptosis in K562 leukemia cells. Asian Pac. J. Cancer Prev., 2021, 22(12), 3959-3965.
[http://dx.doi.org/10.31557/APJCP.2021.22.12.3959] [PMID: 34967577]
[61]
Al-Rawashde, F.A.; Johan, M.F.; Taib, W.R.W.; Ismail, I.; Johari, S.A.T.T.; Almajali, B.; Al-wajeeh, A.S.; Nazari Vishkaei, M.; Al-Jamal, H.A.N. Thymoquinone inhibits growth of acute myeloid leukemia cells through reversal SHP-1 and SOCS-3 hypermethylation: In vitro and in silico evaluation. Pharmaceuticals, 2021, 14(12), 1287.
[http://dx.doi.org/10.3390/ph14121287] [PMID: 34959687]
[62]
Fang, Y.; Yang, C.; Teng, D.; Su, S.; Luo, X.; Liu, Z.; Liao, G. Discovery of higenamine as a potent, selective and cellular active natural LSD1 inhibitor for MLL-rearranged leukemia therapy. Bioorg. Chem., 2021, 109, 104723.
[http://dx.doi.org/10.1016/j.bioorg.2021.104723] [PMID: 33618250]
[63]
Çi̇ftçi̇, H. Effects of glycyrrhetic acid on human chronic myelogenous leukemia cells. Turk. J. Pharm. Sci, 2020, 17(1), 49-55.
[http://dx.doi.org/10.4274/tjps.galenos.2018.49389] [PMID: 32454760]
[64]
Yousef, B.A.; Hassan, H.M.; Zhang, L.Y.; Jiang, Z.Z. Pristimerin exhibits in vitro and in vivo anticancer activities through inhibition of nuclear factor-кB signaling pathway in colorectal cancer cells. Phytomedicine, 2018, 40, 140-147.
[http://dx.doi.org/10.1016/j.phymed.2018.01.008] [PMID: 29496166]
[65]
Yousef, B.A.; Hassan, H.M.; Elhafiz, M.; Zhang, L.; Jiang, Z. Synergistic anti-cancer effect of pristimerin and docetaxel on human colo-rectal HCT-116 cells. Synergy, 2020, 11, 100068.
[http://dx.doi.org/10.1016/j.synres.2020.100068]
[66]
Liu, Y.; Ren, Z.; Li, X.; Zhong, J.; Bi, Y.; Li, R.; Zhao, Q.; Yu, X. Pristimerin induces autophagy‐mediated cell death in K562 cells through the ROS/JNK signaling pathway. Chem. Biodivers., 2019, 16(8), e1900325.
[http://dx.doi.org/10.1002/cbdv.201900325] [PMID: 31290253]
[67]
Yu, Z.; Li, L.; Wang, C.; He, H.; Liu, G.; Ma, H.; Pang, L.; Jiang, M.; Lu, Q.; Li, P.; Qi, H. Cantharidin Induces apoptosis and promotes differentiation of AML cells through nuclear receptor Nur77-mediated signaling pathway. Front. Pharmacol., 2020, 11, 1321.
[http://dx.doi.org/10.3389/fphar.2020.01321] [PMID: 32982739]
[68]
Safa, M.; Jafari, L.; Alikarami, F.; Manafi Shabestari, R.; Kazemi, A. Indole-3-carbinol induces apoptosis of chronic myelogenous leu-kemia cells through suppression of STAT5 and Akt signaling pathways. Tumour Biol., 2017, 39(6)
[http://dx.doi.org/10.1177/1010428317705768] [PMID: 28631564]
[69]
Song, X.; Rao, H.; Guo, C.; Yang, B.; Ren, Y.; Wang, M.; Li, Y.; Cao, Z.; Pei, J. Myricetin exhibit selective anti-lymphoma activity by tar-geting BTK and is effective via oral administration in vivo. Phytomedicine, 2021, 93, 153802.
[http://dx.doi.org/10.1016/j.phymed.2021.153802] [PMID: 34710755]
[70]
Meng, J.; Liu, G.J.; Song, J.Y.; Chen, L.; Wang, A.H.; Gao, X.X.; Wang, Z.J. Preliminary results indicate resveratrol affects proliferation and apoptosis of leukemia cells by regulating PTEN/PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(10), 4285-4292.
[PMID: 31173300]
[71]
Guorgui, J.; Wang, R.; Mattheolabakis, G.; Mackenzie, G.G. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Arch. Biochem. Biophys., 2018, 648, 12-19.
[http://dx.doi.org/10.1016/j.abb.2018.04.012] [PMID: 29679536]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy