Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Effects of Consuming Repeatedly Heated Edible Oils on Cardiovascular Diseases: A Narrative Review

In Press, (this is not the final "Version of Record"). Available online 18 October, 2023
Author(s): Prathyusha Soundararajan, Srividya Parthasarathy, Meenakumari Sakthivelu, Kanchana Mala Karuppiah, Palaniyandi Velusamy, Subash Chandra Bose Gopinath and Pachaiappan Raman*
Published on: 18 October, 2023

DOI: 10.2174/0109298673250752230921090452

Price: $95

Abstract

Edible oils are inevitable requisites in the human diet as they are enriched with essential fatty acids, vitamins, carotenoids, sterols, and other antioxidants. Due to their nutritive value and commercial significance, edible oils have been used for food preparation for many centuries. The use of global consumption of edible oils has dramatically increased throughout the world in the 21st century owing to their incredible application in all kinds of food preparation. However, a variety of pollutants, such as pesticides, toxic chemicals, heavy metals, and environmental pollution, have contributed to the contamination of edible oils. Furthermore, the benzophenanthridine alkaloids, sanguinarine, dihydrosanguinarine, butter yellow, and other several agents are added intentionally, which are known to cause a number of human diseases. Apart from this, repeated heating and reusing of oils results in trans fats, and lipid peroxidation alters the fatty acid composition, which adversely affects the health of consumers and increases the risk of cardiovascular diseases. Moreover, the prevention of edible oil contamination in human health at various levels is inevitable to ensure consumer safety. Hence, the present review provides an overview of vegetable cooking oils and the health ailments that detection techniques are focused on.

[1]
Ayu, D.F.; Aminah, S.; Diharmi, A. Photo-oxidation stability of mayonnaise from striped catfish and red palm mixture oil. IOP Conf. Ser. Earth Environ. Sci., 2021, 757(1), 012052.
[http://dx.doi.org/10.1088/1755-1315/757/1/012052]
[2]
Odabasoglu, F.; Halici, Z.; Cakir, A.; Halici, M.; Aygun, H.; Suleyman, H.; Cadirci, E.; Atalay, F. Beneficial effects of vegetable oils (corn, olive and sunflower oils) and α-tocopherol on anti-inflammatory and gastrointestinal profiles of indomethacin in rats. Eur. J. Pharmacol., 2008, 591(1-3), 300-306.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.075] [PMID: 18621042]
[3]
Pachaiappan, R.; Nagasathiya, K.; Singh, P.K.; Gopalakrishnan, A.V.; Velusamy, P.; Ramasamy, K.; Velmurugan, D.; Kandasamy, R.; Ramasamy, P.; Gopinath, S.C.B. Phytochemical profile of black cumin (Nigella sativa L.) seed oil: Identification of bioactive anti-pathogenic compounds for traditional Siddha formulation. Biomass Convers. Biorefin., 2023, 13(16), 14683-14695.
[http://dx.doi.org/10.1007/s13399-022-02951-x]
[4]
Li, X.; Kong, W.; Shi, W.; Shen, Q. A combination of chemometrics methods and GC-MS for the classification of edible vegetable oils. Chemom. Intell. Lab. Syst., 2016, 155, 145-150.
[http://dx.doi.org/10.1016/j.chemolab.2016.03.028]
[5]
Dorni, C.; Sharma, P.; Saikia, G.; Longvah, T. Fatty acid profile of edible oils and fats consumed in India. Food Chem., 2018, 238, 9-15.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.072] [PMID: 28867107]
[6]
Lim, K.; Pan, K.; Yu, Z.; Xiao, R.H. Pattern recognition based on machine learning identifies oil adulteration and edible oil mixtures. Nat. Commun., 2020, 11(1), 5353.
[http://dx.doi.org/10.1038/s41467-020-19137-6] [PMID: 33097723]
[7]
Luo, Q.; Liu, Z.; Yin, H.; Dang, Z.; Wu, P.; Zhu, N.; Lin, Z.; Liu, Y. Global review of phthalates in edible oil: An emerging and nonnegligible exposure source to human. Sci. Total Environ., 2020, 704, 135369.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135369] [PMID: 31812395]
[8]
Zhou, Y.; Zhao, W.; Lai, Y.; Zhang, B.; Zhang, D. Edible plant oil: Global status, health issues, and perspectives. Front. Plant Sci., 2020, 11, 1315.
[http://dx.doi.org/10.3389/fpls.2020.01315] [PMID: 32983204]
[9]
Purba, H.J.; Sinaga, B.M.; Novianti, T.; Kustiari, R. The impact of changes in external factors on the world vegetable oil market. Int. J. Econ. Financial Issues., 2018, 8(6), 176-186.
[10]
Ng, T.T.; So, P.K.; Zheng, B.; Yao, Z.P. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chim. Acta, 2015, 884, 70-76.
[http://dx.doi.org/10.1016/j.aca.2015.05.013] [PMID: 26073811]
[11]
Ozulku, G.; Yildirim, R.M.; Toker, O.S.; Karasu, S.; Durak, M.Z. Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric. Food Control, 2017, 82(212-216), 212-216.
[http://dx.doi.org/10.1016/j.foodcont.2017.06.034]
[12]
Durazzo, A.; Fawzy Ramadan, M.; Lucarini, M. Editorial: Cold pressed oils: A green source of specialty oils. Front. Nutr., 2022, 8, 836651.
[http://dx.doi.org/10.3389/fnut.2021.836651] [PMID: 35223938]
[13]
Yadav, S. Edible oil adulterations: Current issues, detection techniques, and health hazards. IJCS, 2018, 6(2), 1393-1397.
[14]
Azadmard-Damirchi, S.; Torbati, M. Adulterations in some edible oils and fats and their detection methods. J. Food Qual., 2015, 2(2), 38-44.
[15]
Vijayakumar, M.; Vasudevan, D.M.; Sundaram, K.R.; Krishnan, S.; Vaidyanathan, K.; Nandakumar, S.; Chandrasekhar, R.; Mathew, N. A randomized study of coconut oil versus sunflower oil on cardiovascular risk factors in patients with stable coronary heart disease. Indian Heart J., 2016, 68(4), 498-506.
[http://dx.doi.org/10.1016/j.ihj.2015.10.384] [PMID: 27543472]
[16]
Ganesan, K.; Sukalingam, K.; Xu, B. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review. Trends Food Sci. Technol., 2018, 71, 132-154.
[http://dx.doi.org/10.1016/j.tifs.2017.11.003]
[17]
Joshi, J.R.; Bhanderi, K.K.; Patel, J.V. A review on bio-lubricants from non-edible oils-recent advances, chemical modifications and applications. J. Indian Chem. Soc., 2023, 100(1), 100849.
[http://dx.doi.org/10.1016/j.jics.2022.100849]
[18]
Mani, S.; Bhatt, S.B.; Vasudevan, V.; Prabhu, D.; Rajamanikandan, S.; Velusamy, P.; Ramasamy, P.; Raman, P. The updated review on plant peptides and their applications in human health. Int. J. Pept. Res. Ther., 2022, 28(5), 135.
[http://dx.doi.org/10.1007/s10989-022-10437-7] [PMID: 35911180]
[19]
Hu, R.; He, T.; Zhang, Z.; Yang, Y.; Liu, M. Safety analysis of edible oil products via Raman spectroscopy. Talanta, 2019, 191, 324-332.
[http://dx.doi.org/10.1016/j.talanta.2018.08.074] [PMID: 30262067]
[20]
Gianazza, E.; Brioschi, M.; Martinez Fernandez, A.; Casalnuovo, F.; Altomare, A.; Aldini, G.; Banfi, C. Lipid peroxidation in atherosclerotic cardiovascular diseases. Antioxid. Redox Signal., 2021, 34(1), 49-98.
[http://dx.doi.org/10.1089/ars.2019.7955] [PMID: 32640910]
[21]
Shi, L.K.; Zhang, D-D.; Liu, Y-L. Incidence and survey of polycyclic aromatic hydrocarbons in edible vegetable oils in China. Food Control, 2016, 62(62), 165-170.
[http://dx.doi.org/10.1016/j.foodcont.2015.10.037]
[22]
Sim, B.I.; Khor, Y.P.; Lai, O.M.; Yeoh, C.B.; Wang, Y.; Liu, Y.; Nehdi, I.A.; Tan, C.P. Mitigation of 3-MCPD esters and glycidyl esters during the physical refining process of palm oil by micro and macro laboratory scale refining. Food Chem., 2020, 328, 127147.
[http://dx.doi.org/10.1016/j.foodchem.2020.127147] [PMID: 32497897]
[23]
Chen, C.H.; Jiang, S.S.; Chang, I.S.; Wen, H.J.; Sun, C.W.; Wang, S.L. Association between fetal exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth. Environ. Res., 2018, 162, 261-270.
[http://dx.doi.org/10.1016/j.envres.2018.01.009] [PMID: 29367177]
[24]
Lacoste, F. Undesirable substances in vegetable oils: Anything to declare? Ocl, 2014, 21(1), 103.
[http://dx.doi.org/10.1051/ocl/2013060]
[25]
Sherma, J.; Rabel, F. A review of thin layer chromatography methods for determination of authenticity of foods and dietary supplements. J. Liq. Chromatogr. Relat. Technol., 2018, 41(10), 645-657.
[http://dx.doi.org/10.1080/10826076.2018.1505637]
[26]
Yousefi, M.; Yousefi, M.; Hosseini, H. Evaluation of hexane content in edible vegetable oils consumed in Iran. J. Expe. Cli. Toxi., 2017, 1(1), 27-30.
[http://dx.doi.org/10.14302/issn.2641-7669.ject-17-1790]
[27]
Hassanzadazar, H.; Ghayurdoost, F.; Aminzare, M.; Mottaghianpour, E.; Taami, B. Monitoring of edible oils quality in restaurants and fast food centers using peroxide and acid values. J. Chem. Health Risks, 2018, 8(3)
[28]
Hamm, W.; Hamilton, R.J.; Calliauw, G. Eds.;Edible oil processing; Wiley-Blackwell: UK, 2013, p. 342.
[http://dx.doi.org/10.1002/9781118535202]
[29]
Vasseghian, Y.; Moradi, M.; Dragoi, E.N.; Khaneghah, A.M. A review on mycotoxins detection techniques in edible oils. J. Environ. Anal. Chem., 2022, 102(9), 2215-2219.
[http://dx.doi.org/10.1080/03067319.2020.1750607]
[30]
Javanmardi, F.; Khodaei, D.; Sheidaei, Z.; Bashiry, M.; Nayebzadeh, K.; Vasseghian, Y.; Khaneghah, M.A. Decontamination of aflatoxins in edible oils: A comprehensive review. Food Rev. Int., 2020, 66(12), 2125-2132.
[http://dx.doi.org/10.1590/S1807-59322011001200020]
[31]
MengYu, Z.; Abulaiti, G.; Jun, Y.; Ling, C. Simultaneous determination of free gossypol and its degradation product tetramethoxy gossypol in commercially available cottonseed oil by high performance liquid chromatography. Sh. Kexue. Shipin Kexue, 2019, 40(16), 261-266.
[http://dx.doi.org/10.7506/spkx1002-6630-20180926-282]
[32]
Zio, S.; Cisse, H.; Zongo, O.; Guira, F.; Tapsoba, F.; Siourime Somda, N.; Hama-Ba, F.; Toulsoumde Songre-Ouattara, L.; Zongo, C.; Traore, Y.; Savadogo, A. The oils refining process and contaminants in edible oils: A review. J. Food. Tech. Res., 2020, 7(1), 9-47.
[http://dx.doi.org/10.18488/journal.58.2020.71.9.47]
[33]
Duarte, D.J.; Rutten, J.M.M.; van den Berg, M.; Westerink, R.H.S. In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures. Neurotoxicology, 2017, 59, 222-230.
[http://dx.doi.org/10.1016/j.neuro.2016.02.001] [PMID: 26851706]
[34]
EFSA, E. Panel on Food Additives and Nutrient Sources Added to Food (ANS): Scientific opinion on the safety of allyl isothiocyanate for the proposed uses as a food additive. EFSA J., 2010, 8(12), 1943.
[http://dx.doi.org/10.2903/j.efsa.2010.1943]
[35]
Al Massati, S.B. Synthesis and characterization of molecularly imprinted polymers for the selective extraction of organophosphorus pesticides from vegetable oils. PhD diss. Université Pierre et Marie Curie-Paris VI, 2017, 1513, 59-68.
[http://dx.doi.org/10.1016/j.chroma.2017.07.067]
[36]
Nishad, J.; Dutta, A.; Saha, S.; Rudra, S.G.; Varghese, E.; Sharma, R.R.; Tomar, M.; Kumar, M.; Kaur, C. Ultrasound-assisted development of stable grapefruit peel polyphenolic nano-emulsion: Optimization and application in improving oxidative stability of mustard oil. Food Chem., 2021, 334, 127561.
[http://dx.doi.org/10.1016/j.foodchem.2020.127561] [PMID: 32711272]
[37]
Al-Jasass, F.M.; Al-Jasser, M.S. Chemical composition and fatty acid content of some spices and herbs under Saudi Arabia conditions. Sci. World. J., 2012, 2012, 1-5.
[http://dx.doi.org/10.1100/2012/859892] [PMID: 23319888]
[38]
Mhatre, S.; Rajaraman, P.; Chatterjee, N.; Bray, F.; Goel, M.; Patkar, S.; Dikshit, R. Mustard oil consumption, cooking method, diet and gallbladder cancer risk in high‐and low‐risk regions of India. Int. J. Cancer, 2020, 147(6), 1621-1628.
[http://dx.doi.org/10.1002/ijc.32952] [PMID: 32142159]
[39]
Babu, C.K.; Ansari, K.M.; Mehrotra, S.; Khanna, R.; Khanna, S.K.; Das, M. Alterations in redox potential of glutathione/glutathione disulfide and cysteine/cysteine disulfide couples in plasma of dropsy patients with argemone oil poisoning. Food Chem. Toxicol., 2008, 46(7), 2409-2414.
[http://dx.doi.org/10.1016/j.fct.2008.03.031] [PMID: 18486295]
[40]
Das, M.; Ansari, K.M.; Dhawan, A.; Shukla, Y.; Khanna, S.K. Correlation of DNA damage in epidemic dropsy patients to carcinogenic potential of argemone oil and isolated sanguinarine alkaloid in mice. Int. J. Cancer, 2005, 117(5), 709-717.
[http://dx.doi.org/10.1002/ijc.21234] [PMID: 15981203]
[41]
Sharma, B.D.; Malhotra, S.; Bhatia, V.; Rathee, M. Epidemic dropsy in India. Postgrad. Med. J., 1999, 75(889), 657-661.
[http://dx.doi.org/10.1136/pgmj.75.889.657] [PMID: 10621875]
[42]
Gupta, S.; Kori, C.; Kumar, V.; Misra, S.; Akhtar, N. Epidemiological study of gallbladder cancer patients from North Indian Gangetic Planes-a high-volume centre’s experience. J. Gastrointest. Cancer, 2016, 47(1), 27-35.
[http://dx.doi.org/10.1007/s12029-015-9781-5] [PMID: 26585944]
[43]
Dixit, R.; Srivastava, P.; Basu, S.; Srivastava, P.; Mishra, P.K.; Shukla, V.K. Association of mustard oil as cooking media with carcinoma of the gallbladder. J. Gastrointest. Cancer, 2013, 44(2), 177-181.
[http://dx.doi.org/10.1007/s12029-012-9458-2] [PMID: 23180022]
[44]
Mishra, V.; Mishra, M.; Ansari, K.M.; Chaudhari, B.P.; Khanna, R.; Das, M. Edible oil adulterants, argemone oil and butter yellow, as aetiological factors for gall bladder cancer. Eur. J. Cancer, 2012, 48(13), 2075-2085.
[http://dx.doi.org/10.1016/j.ejca.2011.09.026] [PMID: 22071130]
[45]
Motarjemi, Y.; Moy, G.; Todd, E. Eds.;Encyclopedia of food safety; Academic Press, 2013.
[46]
Poddar, K.H.; Sikand, G.; Kalra, D.; Wong, N.; Duell, P.B. Mustard oil and cardiovascular health: Why the controversy? J. Clin. Lipidol., 2022, 16(1), 13-22.
[http://dx.doi.org/10.1016/j.jacl.2021.11.002] [PMID: 34924350]
[47]
McDowell, D.; Elliott, C.T.; Koidis, A. Characterization and comparison of UK, Irish, and French cold pressed rapeseed oils with refined rapeseed oils and extra virgin olive oils. Eur. J. Lipid Sci. Technol., 2017, 119(8), 1600327.
[http://dx.doi.org/10.1002/ejlt.201600327]
[48]
Siger, A.; Gawrysiak-Witulska, M.; Bartkowiak-Broda, I. Antioxidant (tocopherol and canolol) content in rapeseed oil obtained from roasted yellow-seeded brassica napus. J. Am. Oil Chem. Soc., 2017, 94(1), 37-46.
[http://dx.doi.org/10.1007/s11746-016-2921-7] [PMID: 28163323]
[49]
Ansari, K.M.; Das, M. Potentiation of tumour promotion by topical application of argemone oil/isolated sanguinarine alkaloid in a model of mouse skin carcinogenesis. Chem. Biol. Interact., 2010, 188(3), 591-597.
[http://dx.doi.org/10.1016/j.cbi.2010.07.023] [PMID: 20691676]
[50]
Messeguer, A. Potential implication of aniline derivatives in the toxic oil syndrome (TOS). Chem. Biol. Interact., 2011, 192(1-2), 136-141.
[http://dx.doi.org/10.1016/j.cbi.2010.10.006] [PMID: 20970410]
[51]
Bujons, J.; Ladona, M.G.; Messeguer, A.; Morató, A.; Ampurdanés, C. Metabolism of (R)- and (S)-3-(phenylamino)propane-1,2-diol in C57BL/6- and A/J-strain mice. Identification of new metabolites with potential toxicological significance to the toxic oil syndrome. Chem. Res. Toxicol., 2001, 14(8), 1097-1106.
[http://dx.doi.org/10.1021/tx010001k] [PMID: 11511184]
[52]
Gallardo, S.; Cárdaba, B.; Posada, M.; del Pozo, V.; Messeguer, A.; David, C.S.; Lahoz, C. Toxic oil syndrome: Genetic restriction and immunomodulatory effects due to adulterated oils in a model of HLA transgenic mice. Toxicol. Lett., 2005, 159(2), 173-181.
[http://dx.doi.org/10.1016/j.toxlet.2005.05.009] [PMID: 15979827]
[53]
de la Paz, M.P.; Philen, R.M.; Borda, I.A. Toxic oil syndrome: the perspective after 20 years. Epidemiol. Rev., 2001, 23(2), 231-247.
[http://dx.doi.org/10.1093/oxfordjournals.epirev.a000804] [PMID: 12192735]
[54]
DebMandal, M.; Mandal, S. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention. Asian Pac. J. Trop. Med., 2011, 4(3), 241-247.
[http://dx.doi.org/10.1016/S1995-7645(11)60078-3] [PMID: 21771462]
[55]
Boateng, L.; Ansong, R.; Owusu, W.; Steiner-Asiedu, M. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Med. J., 2016, 50(3), 189-196.
[http://dx.doi.org/10.4314/gmj.v50i3.11] [PMID: 27752194]
[56]
Bhatnagar, A.S.; Prasanth Kumar, P.K.; Hemavathy, J.; Gopala Krishna, A.G. Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. J. Am. Oil Chem. Soc., 2009, 86(10), 991-999.
[http://dx.doi.org/10.1007/s11746-009-1435-y]
[57]
Rohman, A.; Che Man, Y.B.; Ali, M.E. The authentication of virgin coconut oil from grape seed oil and soybean oil using ftir spectroscopy and chemometrics. Int. J. Appl. Pharm., 2019, 11, 259-263.
[http://dx.doi.org/10.22159/ijap.2019v11i2.31758]
[58]
Parthasarathy, S.; Soundararajan, P.; Krishnan, N.; Karuppiah, K.; Devadasan, V.; Prabhu, D.; Rajamanikandan, S.; Velusamy, P.; Gopinath, S.C.B.; Raman, P. Detection of adulterants from common edible oils by GC-MS; Biomass Conv. Bioref, 2022, pp. 1-21.
[http://dx.doi.org/10.1007/s13399-022-02913-3]
[59]
Pandiselvam, R.; Manikantan, M.R.; Ramesh, S.V.; Beegum, S.; Mathew, A.C. Adulteration in coconut and virgin coconut oil. Impl. Det. Methods, 2019, 62(7), 19-22.
[60]
Shukla, A.K.; Dixit, A.K.; Singh, R.P. Detection of adulteration in edible oils. J. Oleo Sci., 2005, 54(6), 317-324.
[http://dx.doi.org/10.5650/jos.54.317]
[61]
Rema Shree, A.B.; Balachandran, I.; Deepak, M.; Kumar, P.U.; Nitha, B. Quality parameters, fatty acid profiling and estimation of umbelliferone in grahaṇimihira tailam: An ayurvedic oil preparation. Anc. Sci. Life, 2013, 33(1), 10-14.
[http://dx.doi.org/10.4103/0257-7941.134557] [PMID: 25161324]
[62]
Chandravanshi, S. L. Epidemic dropsy glaucoma. Gems of Ophthalmology: Glaucoma, 2018, 213
[63]
Krishnamurthy, N.M.N.; Pashupathy, K.S.; Nagaraja, K.V.; Kapur, O.P. Evaluation of the turbidity and thin layer chromatographic tests for detection of castor oil. J. Am. Oil Chem. Soc., 1982, 59(8), 337-339.
[http://dx.doi.org/10.1007/BF02541015]
[64]
Krishnamurthy, M. N.; Nagaraja, K. V. Methods for detection of rice‐bran, mustard, karanja oils and rice‐bran deoiled cake., Lipid/Fett, 1992, 94(12), 457-458.
[http://dx.doi.org/10.1002/lipi.19920941205]
[65]
Nayak, B.S.; Patel, K.N. Physicochemical characterization of seed and seed oil of Jatropha curcas L. collected from Bardoli (South Gujarat). Sains Malays., 2010, 39(6), 951-955.
[66]
Chetti, S.O.; Akuskar, S.K.; Malve, M.K.; Krishnamurthy, R. Identification of tricresyl phosphate (TCP) an adulterant in edible oils by HPTLC-densitometer. Int. J. Med., 2012, 14, 121-124.
[67]
Setiowaty, G.; Che Man, Y.B. Multivariate determination of cloud point in palm oil using partial least squares and principal component regression based on FTIR spectroscopy. J. Am. Oil Chem. Soc., 2004, 81(1), 7-11.
[http://dx.doi.org/10.1007/s11746-004-0852-4]
[68]
Deepam, L.S.A.; Arumughan, C. Effect of saponification on composition of unsaponifiable matter in rice bran oil. J. Oleo Sci., 2012, 61(5), 241-247.
[http://dx.doi.org/10.5650/jos.61.241] [PMID: 22531051]
[69]
Ochando-Pulido, J.M.; Hodaifa, G.; Victor-Ortega, M.D.; Rodriguez-Vives, S.; Martinez-Ferez, A. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment. J. Hazard. Mater., 2013, 263(Pt 1), 158-167.
[http://dx.doi.org/10.1016/j.jhazmat.2013.07.015] [PMID: 23910394]
[70]
Aalto-Korte, K.; Pesonen, M.; Kuuliala, O.; Suuronen, K. Occupational allergic contact dermatitis caused by coconut fatty acids diethanolamide. Contact Dermat., 2014, 70(3), 169-174.
[http://dx.doi.org/10.1111/cod.12151] [PMID: 24588369]
[71]
Myint, D.; Gilani, S.A.; Kawase, M.; Watanabe, K.N. Sustainable sesame (Sesamum indicum L.) production through improved technology: An overview of production, challenges, and opportunities in Myanmar. Sustainability, 2020, 12(9), 3515.
[http://dx.doi.org/10.3390/su12093515]
[72]
Bhat, K.V.; Kumari, R.; Pathak, N.; Rai, A.K. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev., 2014, 8(16), 147-155.
[http://dx.doi.org/10.4103/0973-7847.134249] [PMID: 25125886]
[73]
Dhayal, G.L.; Agarwal, H.; Mathur, A.; Mathur, S.; Kishoria, N.; Jain, S.; Choudhary, R.; Sharma, R.; Bishnoi, S.; Mathur, S. Case report of a small outbreak of epidemic dropsy. J. Indian Med. Assoc., 2013, 111(3), 200-201.
[PMID: 24592766]
[74]
Boening, D.W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 2000, 40(12), 1335-1351.
[http://dx.doi.org/10.1016/S0045-6535(99)00283-0] [PMID: 10789973]
[75]
Wexler, P.; Anderson, B.D.; Gad, S.C.; Hakkinen, P.B.; Kamrin, M.; De Peyster, A.; Shugart, L.R. Eds.;Encyclopedia of toxicology; Academic Press, 2005, p. 1.
[76]
Zhu, F.; Fan, W.; Wang, X.; Qu, L.; Yao, S. Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China. Food Chem. Toxicol., 2011, 49(12), 3081-3085.
[http://dx.doi.org/10.1016/j.fct.2011.09.019] [PMID: 21964195]
[77]
Karthik, D.; Vijayarekha, K. Chemometric identification of a few heavy metals, pesticides and plasticides in edible sunflower oil for health risk assessment. Int. J. Food Prop., 2018, 21(1), 1442-1448.
[http://dx.doi.org/10.1080/10942912.2018.1494192]
[78]
Cold pressed oils In: Ramadan, M.F., Ed.;Green technology, bioactive compounds, functionality, and applications; Academic Press, 2020, pp. 1-5.
[79]
Carter, C.; Finley, W.; Fry, J.; Jackson, D.; Willis, L. Palm oil markets and future supply. Eur. J. Lipid Sci. Technol., 2007, 109(4), 307-314.
[http://dx.doi.org/10.1002/ejlt.200600256]
[80]
Montoya, C.; Cochard, B.; Flori, A.; Cros, D.; Lopes, R.; Cuellar, T.; Espeout, S.; Syaputra, I.; Villeneuve, P.; Pina, M.; Ritter, E.; Leroy, T.; Billotte, N. Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortés. PLoS One, 2014, 9(5), e95412.
[http://dx.doi.org/10.1371/journal.pone.0095412] [PMID: 24816555]
[81]
Rosqvist, F.; Iggman, D.; Kullberg, J.; Cedernaes, J.; Johansson, H.E.; Larsson, A.; Johansson, L.; Ahlström, H.; Arner, P.; Dahlman, I.; Risérus, U. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes, 2014, 63(7), 2356-2368.
[http://dx.doi.org/10.2337/db13-1622] [PMID: 24550191]
[82]
MacArthur, R.L.; Teye, E.; Darkwa, S. Predicting adulteration of Palm oil with Sudan IV dye using shortwave handheld spectroscopy and comparative analysis of models. Vib. Spectrosc., 2020, 110, 103129.
[http://dx.doi.org/10.1016/j.vibspec.2020.103129]
[83]
Idrissi, Z.L.E.; El Moudden, H.; Mghazli, N.; Bouyahya, A.; Guezzane, C.E.; Alshahrani, M.M.; Al Awadh, A.A.; Goh, K.W.; Ming, L.C.; Harhar, H.; Tabyaoui, M. Effects of extraction methods on the bioactivities and nutritional value of virginia and valencia-type peanut oil. Molecules, 2022, 27(22), 7709.
[http://dx.doi.org/10.3390/molecules27227709] [PMID: 36431807]
[84]
Gahukar, R.T. Food adulteration and contamination in India: Occurrence, implication and safety measures. Int. J. Basic Appl. Sci., 2014, 3(1), 47.
[http://dx.doi.org/10.14419/ijbas.v3i1.1727]
[85]
Palladino, C.; Breiteneder, H. Peanut allergens. Mol. Immunol., 2018, 100, 58-70.
[http://dx.doi.org/10.1016/j.molimm.2018.04.005] [PMID: 29680589]
[86]
Ghobadi, S.; Akhlaghi, M.; Shams, S.; Mazloomi, S.M. Acid and peroxide values and total polar compounds of frying oils in fast food restaurants of Shiraz, Southern Iran. Int. J. Food Sci. Nutr., 2018, 3(1), 25-30.
[87]
Guillaume, C.; De Alzaa, F.; Ravetti, L. Evaluation of chemical and physical changes in different commercial oils during heating. Act. Sci. Nutr., 2018, 9(1), 43-48.
[88]
Reitznerová, A.; Šuleková, M.; Nagy, J.; Marcinčák, S.; Semjon, B.; Čertík, M.; Klempová, T. Lipid peroxidation process in meat and meat products: A comparison study of malondialdehyde determination between modified 2-Thiobarbituric acid spectrophotometric method and reverse-phase high-performance liquid chromatography. Molecules, 2017, 22(11), 1988.
[http://dx.doi.org/10.3390/molecules22111988] [PMID: 29144423]
[89]
Baum, S.J.; Kris-Etherton, P.M.; Willett, W.C.; Lichtenstein, A.H.; Rudel, L.L.; Maki, K.C.; Whelan, J.; Ramsden, C.E.; Block, R.C. Fatty acids in cardiovascular health and disease: A comprehensive update. J. Clin. Lipidol., 2012, 6(3), 216-234.
[http://dx.doi.org/10.1016/j.jacl.2012.04.077] [PMID: 22658146]
[90]
Mohiuddin, A. The mysterious domination of food contaminants and adulterants in Bangladesh. Int. J. Environ. Sci. Nat. Resour., 2019, 16(4), 34-56.
[http://dx.doi.org/10.19080/IJESNR.2019.16.555941]
[91]
Seo, W.D.; Kang, J.E.; Choi, S.W.; Lee, K.S.; Lee, M.J.; Park, K.D.; Lee, J.H. Comparison of nutritional components (isoflavone, protein, oil, and fatty acid) and antioxidant properties at the growth stage of different parts of soybean [Glycine max (L.) Merrill]. Food Sci. Biotechnol., 2017, 26(2), 339-347.
[http://dx.doi.org/10.1007/s10068-017-0046-x] [PMID: 30263548]
[92]
Papazzo, A.; Conlan, X.A.; Lexis, L.; Lewandowski, P.A. Differential effects of dietary canola and soybean oil intake on oxidative stress in stroke-prone spontaneously hypertensive rats. Lipids Health Dis., 2011, 10(1), 98.
[http://dx.doi.org/10.1186/1476-511X-10-98] [PMID: 21669000]
[93]
Ananth, D.A.; Deviram, G.; Mahalakshmi, V.; Sivasudha, T.; Tietel, Z. Phytochemical composition and antioxidant characteristics of traditional cold pressed seed oils in South India. Biocatal. Agric. Biotechnol., 2019, 17, 416-421.
[http://dx.doi.org/10.1016/j.bcab.2018.12.018]
[94]
Adu, O.B.; Fajana, O.O.; Ogunrinola, O.O.; Okonkwo, U.V.; Evuarherhe, P.; Elemo, B.O. Effect of continuous usage on the natural antioxidants of vegetable oils during deep-fat frying. Sci. Am., 2019, 5, e00144.
[http://dx.doi.org/10.1016/j.sciaf.2019.e00144]
[95]
Leong, X.F.; Aishah, A.; Nor Aini, U.; Das, S.; Jaarin, K. Heated palm oil causes rise in blood pressure and cardiac changes in heart muscle in experimental rats. Arch. Med. Res., 2008, 39(6), 567-572.
[http://dx.doi.org/10.1016/j.arcmed.2008.04.009] [PMID: 18662587]
[96]
Jaarin, K.; Mustafa, M.R.; Leong, X.F. The effects of heated vegetable oils on blood pressure in rats. Clinics, 2011, 66(12), 2125-2132.
[http://dx.doi.org/10.1590/S1807-59322011001200020] [PMID: 22189740]
[97]
Leong, X.F.; Mustafa, M.R.; Das, S.; Jaarin, K. Association of elevated blood pressure and impaired vasorelaxation in experimental Sprague-Dawley rats fed with heated vegetable oil. Lipids Health Dis., 2010, 9(1), 66.
[http://dx.doi.org/10.1186/1476-511X-9-66] [PMID: 20573259]
[98]
Clemente, T.E.; Cahoon, E.B. Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol., 2009, 151(3), 1030-1040.
[http://dx.doi.org/10.1104/pp.109.146282] [PMID: 19783644]
[99]
Rakhshandehroo, M.; Knoch, B.; Müller, M.; Kersten, S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res., 2010, 2010, 1-20.
[http://dx.doi.org/10.1155/2010/612089] [PMID: 20936127]
[100]
Xian, T.K.; Omar, N.A.; Ying, L.W.; Hamzah, A.; Raj, S.; Jaarin, K.; Hussan, F. Reheated palm oil consumption and risk of atherosclerosis: Evidence at ultrastructural level. Evid. Based Complement. Alternat. Med., 2012, 2012, 828170.
[http://dx.doi.org/10.1155/2012/828170]
[101]
Adam, S.K.; Das, S.; Soelaiman, I.N.; Umar, N.A.; Jaarin, K. Consumption of repeatedly heated soy oil increases the serum parameters related to atherosclerosis in ovariectomized rats. Tohoku J. Exp. Med., 2008, 215(3), 219-226.
[http://dx.doi.org/10.1620/tjem.215.219] [PMID: 18648182]
[102]
Chistiakov, D.A.; Bobryshev, Y.V.; Orekhov, A.N. Macrophage‐mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med., 2016, 20(1), 17-28.
[http://dx.doi.org/10.1111/jcmm.12689] [PMID: 26493158]
[103]
Salah, W.A.; Nofal, M. Review of some adulteration detection techniques of edible oils. J. Sci. Food Agric., 2021, 101(3), 811-819.
[http://dx.doi.org/10.1002/jsfa.10750] [PMID: 32833235]
[104]
Ng, T.T.; Li, S.; Ng, C.C.A.; So, P.K.; Wong, T.F.; Li, Z.Y.; Chan, S.T.; Yao, Z.P. Establishment of a spectral database for classification of edible oils using matrix-assisted laser desorption/ionization mass spectrometry. Food Chem., 2018, 252, 335-342.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.125] [PMID: 29478551]
[105]
Jergović, A.M.; Peršurić, Ž.; Saftić, L.; Kraljević Pavelić, S. Evaluation of MALDI‐TOF/MS technology in olive oil adulteration. J. Am. Oil Chem. Soc., 2017, 94(6), 749-757.
[http://dx.doi.org/10.1007/s11746-017-2994-y]
[106]
Biedermann, M.; Munoz, C.; Grob, K. Epoxidation for the analysis of the mineral oil aromatic hydrocarbons in food. An update. J. Chromatogr. A, 2020, 1624, 461236.
[http://dx.doi.org/10.1016/j.chroma.2020.461236] [PMID: 32540076]
[107]
Srbinovska, A.; Conchione, C.; Menegoz Ursol, L.; Lucci, P.; Moret, S. Occurrence of n-Alkanes in vegetable oils and their analytical determination. Foods, 2020, 9(11), 1546.
[http://dx.doi.org/10.3390/foods9111546] [PMID: 33114601]
[108]
Nestola, M.; Schmidt, T.C. Determination of mineral oil aromatic hydrocarbons in edible oils and fats by online liquid chromatography-gas chromatography-flame ionization detection - Evaluation of automated removal strategies for biogenic olefins. J. Chromatogr. A, 2017, 1505, 69-76.
[http://dx.doi.org/10.1016/j.chroma.2017.05.035] [PMID: 28533029]
[109]
Criado-Navarro, I.; Mena-Bravo, A.; Calderón-Santiago, M.; Priego-Capote, F. Determination of glycerophospholipids in vegetable edible oils: Proof of concept to discriminate olive oil categories. Food Chem., 2019, 299, 125136.
[http://dx.doi.org/10.1016/j.foodchem.2019.125136] [PMID: 31302429]
[110]
Rohman, A. The use of infrared spectroscopy in combination with chemometrics for quality control and authentication of edible fats and oils: A review. Appl. Spectrosc. Rev., 2017, 52(7), 589-604.
[http://dx.doi.org/10.1080/05704928.2016.1266493]
[111]
Pereira, C.G.; Leite, A.I.N.; Andrade, J.; Bell, M.J.V.; Anjos, V. Evaluation of butter oil adulteration with soybean oil by FT-MIR and FT-NIR spectroscopies and multivariate analyses. Lebensm. Wiss. Technol., 2019, 107, 1-8.
[http://dx.doi.org/10.1016/j.lwt.2019.02.072]
[112]
Sota-Uba, I.; Bamidele, M.; Moulton, J.; Booksh, K.; Lavine, B.K. Authentication of edible oils using Fourier transform infrared spectroscopy and pattern recognition methods. Chemom. Intell. Lab. Syst., 2021, 210, 104251.
[http://dx.doi.org/10.1016/j.chemolab.2021.104251]
[113]
Wang, X.; Wang, G.; Hou, X.; Nie, S. A rapid screening approach for authentication of olive oil and classification of binary blends of olive oils using low-field nuclear magnetic resonance spectra and support vector machine. Food Anal. Methods, 2020, 13(10), 1894-1905.
[http://dx.doi.org/10.1007/s12161-020-01799-z]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy