Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Role of Statistical Physics Formalism in Pharmaceutical Science

Author(s): Saad Salman*, Fahad Hassan Shah and Song Ja Kim*

Volume 21, Issue 14, 2024

Published on: 05 October, 2023

Page: [2891 - 2902] Pages: 12

DOI: 10.2174/0115701808265088230922110240

Price: $65

Abstract

Statistical physics (SP) formalism in medicine involves applying concepts and methods to study biological systems and medical problems. It is an interdisciplinary field that combines physics, mathematics, and biology to analyze complex biological processes at molecular, cellular, and tissue levels. The goal of SP in medicine is to gain insights into biological systems' mechanisms and develop new strategies for diagnosing and treating diseases. SP is used in drug discovery, disease modeling, medical imaging, and the study of pharmaceutical systems in pharmacy. SP is applied to understand the anticoagulant properties of substances by modeling interactions between blood components and studying blood properties affecting coagulation. For antiviral drugs, SP models simulate interactions between antiviral molecules, virus particles, and other biological components to optimize drug efficacy. SP models are also used in studying antifungals, antibiotics, and anticancer drugs to understand drug behavior in complex systems and improve treatments. In PS, mathematical models are used for drug absorption, dosage regimens, target-mediated drug disposition, population pharmacokinetics, and physiological-based pharmacokinetic modeling and simulation (PBPK). In rheology, SP is applied to study the flow and deformation of materials like liquids and semi-solids. In understanding physicochemical principles/processes, SP helps predict and explain the behavior of systems with many particles, such as solutions, solubilization, and adsorption. For drug delivery systems, SP is used to study drug transport and distribution in the body, improving drug efficacy and safety. Metal nanocomposites are studied using SP to understand their behavior as antibacterial agents and anticoagulants. SP models predict the mechanical, electrical, and thermal properties of metal nanocomposites for various applications.

[1]
Hernández-Lemus, E. Random fields in physics, biology and data science. Front. Phys. (Lausanne), 2021, 9, 641859.
[http://dx.doi.org/10.3389/fphy.2021.641859]
[2]
Wada, T.; Scarfone, A.M. On the Kaniadakis Distributions Applied in Statistical Physics and Natural Sciences. Entropy (Basel), 2023, 25(2), 292.
[http://dx.doi.org/10.3390/e25020292] [PMID: 36832658]
[3]
Teschendorff, A.E.; Feinberg, A.P. Statistical mechanics meets single-cell biology. Nat. Rev. Genet., 2021, 22(7), 459-476.
[http://dx.doi.org/10.1038/s41576-021-00341-z] [PMID: 33875884]
[4]
Cocco, S.; Feinauer, C.; Figliuzzi, M.; Monasson, R.; Weigt, M. Inverse statistical physics of protein sequences: A key issues review. Rep. Prog. Phys., 2018, 81(3), 032601.
[http://dx.doi.org/10.1088/1361-6633/aa9965] [PMID: 29120346]
[5]
Ramezanpour, A.; Beam, A.L.; Chen, J.H.; Mashaghi, A. Statistical Physics for Medical Diagnostics: Learning, Inference, and Optimization Algorithms. Diagnostics (Basel), 2020, 10(11), 972.
[http://dx.doi.org/10.3390/diagnostics10110972] [PMID: 33228143]
[6]
Davies, AL Galla, T Network meta-analysis: A statistical physics perspective. J Stat Mech Theory Exp, 2022, 2022(11), 11R001.
[7]
Kiyota, Y.; Yoshida, N.; Hirata, F. A new approach for investigating the molecular recognition of protein: Toward structure-based drug design based on the 3D-RISM theory. J. Chem. Theory Comput., 2011, 7(11), 3803-3815.
[http://dx.doi.org/10.1021/ct200358h] [PMID: 26598271]
[8]
Bizzarri, M.; Giuliani, A. Soft statistical mechanics for biology. Methods Mol. Biol., 2022, 2449, 263-280.
[9]
Nakbi, A.; Bouzid, M.; Ayachi, F.; Bouaziz, N.; Ben Lamine, A. Quantitative characterization of sucrose taste by statistical physics modeling parameters using an analogy between an experimental physicochemical isotherm of sucrose adsorption on β-cyclodextrin and a putative biological sucrose adsorption from sucrose dose-taste response curve (psychophysics and electrophysiology). J. Mol. Liq., 2020, 298, 111950.
[http://dx.doi.org/10.1016/j.molliq.2019.111950]
[10]
Li, Z.; Yahyaoui, S.; Bouzid, M.; Erto, A.; Dotto, G.L. Interpretation of diclofenac adsorption onto ZnFe2O4/chitosan magnetic composite via BET modified model by using statistical physics formalism. J. Mol. Liq., 2021, 327, 114858.
[http://dx.doi.org/10.1016/j.molliq.2020.114858]
[11]
Sellaoui, L.; Guedidi, H.; Knani, S.; Reinert, L.; Duclaux, L.; Ben Lamine, A. Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon. Fluid Phase Equilib., 2015, 387, 103-110.
[http://dx.doi.org/10.1016/j.fluid.2014.12.018]
[12]
Yazidi, A.; Sellaoui, L.; Dotto, G.L.; Bonilla-Petriciolet, A.; Fröhlich, A.C.; Lamine, A.B. Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: Application of advanced statistical physics models. J. Mol. Liq., 2019, 283, 276-286.
[http://dx.doi.org/10.1016/j.molliq.2019.03.101]
[13]
Idrees, F.; Sibtain, F.; Dar, M.J.; Shah, F.H.; Alam, M.; Hussain, I.; Kim, S.J.; Idrees, J.; Khan, S.A.; Salman, S. Copper biosorption over green silver nanocomposite using artificial intelligence and statistical physics formalism. J. Clean. Prod., 2022, 374, 133991.
[http://dx.doi.org/10.1016/j.jclepro.2022.133991]
[14]
Sella, G.; Hirsh, A.E. The application of statistical physics to evolutionary biology. Proc. Natl. Acad. Sci. USA, 2005, 102(27), 9541-9546.
[http://dx.doi.org/10.1073/pnas.0501865102] [PMID: 15980155]
[15]
Lei, J; Huang, K. Protein folding: A perspective from statistical physics. ArXiv10025013, 2010.
[16]
Pande, V.S.; Grosberg, A.Y.; Tanaka, T. Statistical mechanics of simple models of protein folding and design. Biophys. J., 1997, 73(6), 3192-3210.
[http://dx.doi.org/10.1016/S0006-3495(97)78345-0] [PMID: 9414231]
[17]
Durang, X.; Henkel, M.; Park, H. The statistical mechanics of the coagulation–diffusion process with a stochastic reset. J. Phys. A Math. Theor., 2014, 47(4), 045002.
[http://dx.doi.org/10.1088/1751-8113/47/4/045002]
[18]
Hussan, J.R.; Trew, M.L.; Hunter, P.J. Simplifying the Process of Going From Cells to Tissues Using Statistical Mechanics. Front. Physiol., 2022, 13, 837027.
[http://dx.doi.org/10.3389/fphys.2022.837027] [PMID: 35399281]
[19]
Wang, H.; Yang, H. Statistical Analysis of Inter-attribute Relationships in Unfractionated Heparin Injection Problems In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Montreal, QC, Canada, 2020.
[20]
Despres, C.; Di, J.; Cantrelle, F.X.; Li, Z.; Huvent, I.; Chambraud, B.; Zhao, J.; Chen, J.; Chen, S.; Lippens, G.; Zhang, F.; Linhardt, R.; Wang, C.; Klärner, F.G.; Schrader, T.; Landrieu, I.; Bitan, G.; Smet-Nocca, C. Major differences between the self-assembly and seeding behavior of heparin-induced and in vitro phosphorylated tau and their modulation by potential inhibitors. ACS Chem. Biol., 2019, 14(6), 1363-1379.
[http://dx.doi.org/10.1021/acschembio.9b00325] [PMID: 31046227]
[21]
Fadhilah, F.; Rahmawati, I.; Anggraeni, N. Temperature effects on plasma Li-heparin and Transaminase activity in children blood with tetralogy of Fallot. J. Phys. Conf. Ser., 2021, 1764(1), 012001.
[22]
Jones, B.A.; Lessler, J.; Bianco, S.; Kaufman, J.H. Statistical Mechanics and Thermodynamics of Viral Evolution. PLoS One, 2015, 10(9), e0137482.
[http://dx.doi.org/10.1371/journal.pone.0137482] [PMID: 26422205]
[23]
Wade, R.C.; McCammon, J.A. Binding of an antiviral agent to a sensitive and a resistant human rhinovirus. Computer simulation studies with sampling of amino acid side-chain conformations. J. Mol. Biol., 1992, 225(3), 697-712.
[http://dx.doi.org/10.1016/0022-2836(92)90395-Z] [PMID: 1318384]
[24]
Wu, J.; Yan, P.; Archibald, C. Modelling the evolution of drug resistance in the presence of antiviral drugs. BMC Public Health, 2007, 7(1), 300.
[http://dx.doi.org/10.1186/1471-2458-7-300] [PMID: 17953775]
[25]
Ghavasieh, A.; Bontorin, S.; Artime, O.; Verstraete, N.; De Domenico, M. Multiscale statistical physics of the pan-viral interactome unravels the systemic nature of SARS-CoV-2 infections. Commun. Phys., 2021, 4(1), 83.
[http://dx.doi.org/10.1038/s42005-021-00582-8]
[26]
Decherchi, S.; Cavalli, A. Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation. Chem. Rev., 2020, 120(23), 12788-12833.
[http://dx.doi.org/10.1021/acs.chemrev.0c00534] [PMID: 33006893]
[27]
Xie, J.; Yang, Q.; Han, X.; Dong, Y.; Zhang, T.; Li, Y.; Ji, M.; Liu, C.; Cai, Y.; Wang, Y. Pharmacokinetic/Pharmacodynamic Target Attainment of Different Antifungal Agents in De-escalation Treatment in Critically Ill Patients: A Step toward Dose Optimization Using Monte Carlo Simulation. Antimicrob. Agents Chemother., 2022, 66(6), e00099-e22.
[http://dx.doi.org/10.1128/aac.00099-22] [PMID: 35604209]
[28]
Singh, V.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S. Accelerating the discovery of antifungal peptides using deep temporal convolutional networks. Brief. Bioinform., 2022, 23(2), bbac008.
[http://dx.doi.org/10.1093/bib/bbac008] [PMID: 35152278]
[29]
Allen, R.J.; Waclaw, B. Bacterial growth: A statistical physicist’s guide. Rep. Prog. Phys., 2019, 82(1), 016601.
[http://dx.doi.org/10.1088/1361-6633/aae546] [PMID: 30270850]
[30]
Allen, R.; Waclaw, B. Antibiotic resistance: A physicist’s view. Phys. Biol., 2016, 13(4), 045001.
[http://dx.doi.org/10.1088/1478-3975/13/4/045001] [PMID: 27510596]
[31]
Khordad, R.; Rastegar Sedehi, H.R. Modeling cancer growth and its treatment by means of statistical mechanics entropy. Eur. Phys. J. Plus, 2016, 131(8), 291.
[http://dx.doi.org/10.1140/epjp/i2016-16291-3]
[32]
González, JA; Acanda, M; Akhtar, Z New combinational therapies for cancer using modern statistical mechanics. ArXiv190200728, 2019.
[33]
Dror, R.O.; Pan, A.C.; Arlow, D.H.; Borhani, D.W.; Maragakis, P.; Shan, Y.; Xu, H.; Shaw, D.E. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc. Natl. Acad. Sci. USA, 2011, 108(32), 13118-13123.
[http://dx.doi.org/10.1073/pnas.1104614108] [PMID: 21778406]
[34]
Singh, D.; Chaudhury, S. Statistical properties of fluctuating enzymes with dynamic cooperativity using a first passage time distribution formalism. J. Chem. Phys., 2017, 146(14), 145103.
[http://dx.doi.org/10.1063/1.4979945] [PMID: 28411619]
[35]
Stolzenberg, S.; Michino, M.; LeVine, M.V.; Weinstein, H.; Shi, L. Computational approaches to detect allosteric pathways in transmembrane molecular machines. Biochim. Biophys. Acta Biomembr., 2016, 1858(7, Part B), 1652-1662.
[http://dx.doi.org/10.1016/j.bbamem.2016.01.010] [PMID: 26806157]
[36]
Laínez, J.M.; Mockus, L.; Blau, G. A Variational Bayesian Approach for Dosage Regimen Individualization In: Comp Aided ChemEng; , 2011; 29, pp. 1563-1567.
[http://dx.doi.org/10.1016/B978-0-444-54298-4.50091-X]
[37]
Mager, D.E.; Jusko, W.J. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J. Pharmacokinet. Pharmacodyn., 2001, 28(6), 507-532.
[http://dx.doi.org/10.1023/A:1014414520282] [PMID: 11999290]
[38]
Karalis, V.D. On the Interplay between Machine Learning, Population Pharmacokinetics, and Bioequivalence to Introduce Average Slope as a New Measure for Absorption Rate. Appl. Sci. (Basel), 2023, 13(4), 2257.
[http://dx.doi.org/10.3390/app13042257]
[39]
Krstevska, A.; Đuriš, J.; Ibrić, S.; Cvijić, S. In-Depth Analysis of Physiologically Based Pharmacokinetic (PBPK) Modeling Utilization in Different Application Fields Using Text Mining Tools. Pharmaceutics, 2022, 15(1), 107.
[http://dx.doi.org/10.3390/pharmaceutics15010107] [PMID: 36678737]
[40]
Potter, C.B.; Davis, M.T.; Albadarin, A.B.; Walker, G.M. Investigation of the Dependence of the Flory–Huggins Interaction Parameter on Temperature and Composition in a Drug–Polymer System. Mol. Pharm., 2018, 15(11), 5327-5335.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00797] [PMID: 30259745]
[41]
Babu, M.A.; Nithya, R. Sankar, V Molecular Dynamic Approach to Predict the Miscibility of Excipients for Lipid-based Formulations. Research Square, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1287799/v1]
[42]
Ferrar, J.A.; Sellers, B.D.; Chan, C.; Leung, D.H. Towards an improved understanding of drug excipient interactions to enable rapid optimization of nanosuspension formulations. Int. J. Pharm., 2020, 578, 119094.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119094] [PMID: 32006625]
[43]
Mendyk, A.; Güres, S.; Jachowicz, R. From heuristic to mathematical modeling of drugs dissolution profiles: Application of artificial neural networks and genetic programming. Comput. Math. Methods Med., 2015, 2015, 863874.
[http://dx.doi.org/10.1155/2015/863874]
[44]
Del Gado, E.; Morris, J.F. Preface: Physics of dense suspensions. J. Rheol. (N.Y.N.Y.), 2020, 64(2), 223-225.
[http://dx.doi.org/10.1122/8.0000016]
[45]
Dotto, G.L.; Sellaoui, L.; Lima, E.C.; Lamine, A.B. Physicochemical and thermodynamic investigation of Ni(II) biosorption on various materials using the statistical physics modeling. J. Mol. Liq., 2016, 220, 129-135.
[http://dx.doi.org/10.1016/j.molliq.2016.04.075]
[46]
Sugimoto, I.; Suda, Y.; Takahashi, K. Physicochemical and statistical characterization of gas-sensing behaviors of resonator sensors with carbonaceous films prepared by rf-sputtering of aromatic and hydrophilic biomolecules. Results in Chemistry, 2022, 4, 100426.
[http://dx.doi.org/10.1016/j.rechem.2022.100426]
[47]
Wjihi, S.; Aouaini, F.; Almuqrin, A.H.; Lamine, A.B. Physicochemical assessment of prednisone adsorption on two molecular composites using statistical physics formalism in cosmetics. Arab. J. Chem., 2020, 13(8), 6876-6886.
[http://dx.doi.org/10.1016/j.arabjc.2020.06.040]
[48]
Chen, Q.; Ji, Y.; Ge, K. Influence of excipients on thermodynamic phase behavior of pharmaceutical/solvent systems: Molecular thermodynamic model prediction. Chem. Eng. Sci., 2021, 244, 116798.
[http://dx.doi.org/10.1016/j.ces.2021.116798]
[49]
Ben Khemis, I.; Sagaama, A.; Issaoui, N.; Ben Lamine, A. Steric and energetic characterizations of mouse and human musk receptors activated by nitro musk smelling compounds at molecular level: Statistical physics treatment and molecular docking analysis. Int. J. Biol. Macromol., 2021, 188, 333-342.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.042] [PMID: 34389381]
[50]
Knopp, M.M.; Olesen, N.E.; Huang, Y.; Holm, R.; Rades, T. Statistical Analysis of a Method to Predict Drug–Polymer Miscibility. J. Pharm. Sci., 2016, 105(1), 362-367.
[http://dx.doi.org/10.1002/jps.24704] [PMID: 26539792]
[51]
Lopes, L.M.; de Moraes, M.A.; Beppu, M.M. Phase diagram and estimation of flory-huggins parameter of interaction of silk fibroin/sodium alginate blends. Front. Bioeng. Biotechnol., 2020, 8, 973.
[http://dx.doi.org/10.3389/fbioe.2020.00973] [PMID: 33014999]
[52]
Bansal, K.; Baghel, U.S.; Thakral, S. Construction and Validation of Binary Phase Diagram for Amorphous Solid Dispersion Using Flory–Huggins Theory. AAPS PharmSciTech, 2016, 17(2), 318-327.
[http://dx.doi.org/10.1208/s12249-015-0343-8] [PMID: 26092302]
[53]
Sharma, P. Applications of statistical tools for optimization and development of smart drug delivery system; Intechopen: London, 2022, p. 183.
[http://dx.doi.org/10.5772/intechopen.99632]
[54]
Gomes-Filho, MS; Barbosa, MAA; Oliveira, FA A statistical mechanical model for drug release: Relations between release parameters and porosity. Phys A Stat Mech Its Appl., 2020, 540, 123165.
[55]
Siepmann, J.; Siepmann, F. Modeling of diffusion controlled drug delivery. J. Control. Release, 2012, 161(2), 351-362.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.006] [PMID: 22019555]
[56]
Gomes-Filho, M.S.; Oliveira, F.A.; Barbosa, M.A.A. Modeling the diffusion-erosion crossover dynamics in drug release. Phys. Rev. E, 2022, 105(4), 044110.
[http://dx.doi.org/10.1103/PhysRevE.105.044110] [PMID: 35590597]
[57]
Urbina-Villalba, G. An algorithm for emulsion stability simulations: Account of flocculation, coalescence, surfactant adsorption and the process of Ostwald ripening. Int. J. Mol. Sci., 2009, 10(3), 761-804.
[http://dx.doi.org/10.3390/ijms10030761] [PMID: 19399220]
[58]
Jiang, L.; Rahnama, M.; Zhang, B.; Zhu, X.; Sui, P-C.; Ye, D-D.; Djilali, N. Predicting the interaction between nanoparticles in shear flow using lattice Boltzmann method and Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. Phys. Fluids, 2020, 32(4), 043302.
[http://dx.doi.org/10.1063/1.5142669]
[59]
Kayes, J.B. Pharmaceutical suspensions: Relation between zeta potential, sedimentation volume and suspension stability. J. Pharm. Pharmacol., 1977, 29(4), 199-204.
[PMID: 17667]
[60]
Mobarak, M.; Mohamed, E.A.; Selim, A.Q.; Mohamed, F.M.; Sellaoui, L.; Bonilla-Petriciolet, A.; Seliem, M.K. Statistical physics modeling and interpretation of methyl orange adsorption on high–order mesoporous composite of MCM–48 silica with treated rice husk. J. Mol. Liq., 2019, 285, 678-687.
[http://dx.doi.org/10.1016/j.molliq.2019.04.116]
[61]
Pal, R. Modeling of sedimentation and creaming in suspensions and pickering emulsions. Fluids, 2019, 4(4), 186.
[http://dx.doi.org/10.3390/fluids4040186]
[62]
Ghazzy, A.; Naik, R.R.; Shakya, A.K. Metal–Polymer Nanocomposites: A Promising Approach to Antibacterial Materials. Polymers (Basel), 2023, 15(9), 2167.
[http://dx.doi.org/10.3390/polym15092167] [PMID: 37177313]
[63]
Palza, H. Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci., 2015, 16(1), 2099-2116.
[http://dx.doi.org/10.3390/ijms16012099] [PMID: 25607734]
[64]
Raza, S.; Ansari, A.; Siddiqui, N.N.; Ibrahim, F.; Abro, M.I.; Aman, A. Biosynthesis of silver nanoparticles for the fabrication of non cytotoxic and antibacterial metallic polymer based nanocomposite system. Sci. Rep., 2021, 11(1), 10500.
[http://dx.doi.org/10.1038/s41598-021-90016-w] [PMID: 34006995]
[65]
Khdary, N.H.; Ghanem, M.A. Metal–organic–silica nanocomposites: Copper, silver nanoparticles–ethylenediamine–silica gel and their CO2 adsorption behaviour. J. Mater. Chem., 2012, 22(24), 12032-12038.
[http://dx.doi.org/10.1039/c2jm31104f]
[66]
Pinto, R.J.B.; Daina, S.; Sadocco, P. Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res. Int., 2013, 2013, 280512.
[http://dx.doi.org/10.1155/2013/280512]
[67]
Abebe, B.; Zereffa, E.A.; Tadesse, A.; Murthy, H.C.A. A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation. Nanoscale Res. Lett., 2020, 15(1), 190.
[http://dx.doi.org/10.1186/s11671-020-03418-6] [PMID: 33001404]
[68]
Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine, 2020, 15, 2555-2562.
[http://dx.doi.org/10.2147/IJN.S246764] [PMID: 32368040]
[69]
Ma, X.; Zhou, S.; Xu, X.; Du, Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front. Surg., 2022, 9, 905892.
[http://dx.doi.org/10.3389/fsurg.2022.905892] [PMID: 35990090]
[70]
Mendes, C.R.; Dilarri, G.; Forsan, C.F.; Sapata, V.M.R.; Lopes, P.R.M.; de Moraes, P.B.; Montagnolli, R.N.; Ferreira, H.; Bidoia, E.D. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci. Rep., 2022, 12(1), 2658.
[http://dx.doi.org/10.1038/s41598-022-06657-y] [PMID: 35173244]
[71]
Zare, Y.; Shabani, I. Polymer/metal nanocomposites for biomedical applications. Mater. Sci. Eng. C, 2016, 60, 195-203.
[http://dx.doi.org/10.1016/j.msec.2015.11.023] [PMID: 26706522]
[72]
Garcia, C.V.; Shin, G.H.; Kim, J.T. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends Food Sci. Technol., 2018, 82, 21-31.
[http://dx.doi.org/10.1016/j.tifs.2018.09.021]
[73]
Wong, W.K.; Lai, C.H.N.; Cheng, W.Y.; Tung, L-H.; Chang, R.C-C.; Leung, F.K-C. Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. Journal of Composites Science, 2022, 6(8), 218.
[http://dx.doi.org/10.3390/jcs6080218]
[74]
Asghar, M.A.; Yousuf, R.I.; Shoaib, M.H.; Asghar, M.A. Antibacterial, anticoagulant and cytotoxic evaluation of biocompatible nanocomposite of chitosan loaded green synthesized bioinspired silver nanoparticles. Int. J. Biol. Macromol., 2020, 160, 934-943.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.197] [PMID: 32470586]
[75]
Sellaoui, L.; Ali, J.; Badawi, M.; Bonilla-Petriciolet, A.; Chen, Z. Understanding the adsorption mechanism of Ag+ and Hg2+ on functionalized layered double hydroxide via statistical physics modeling. Appl. Clay Sci., 2020, 198, 105828.
[http://dx.doi.org/10.1016/j.clay.2020.105828]
[76]
Sellaoui, L.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E.; Bonilla-Petriciolet, A.; Ben Lamine, A.; Erto, A. A new statistical physics model for the ternary adsorption of Cu2+, Cd2+ and Zn2+ ions on bone char: Experimental investigation and simulations. Chem. Eng. J., 2018, 343, 544-553.
[http://dx.doi.org/10.1016/j.cej.2018.03.033]
[77]
Vasileiadis, T.; Noual, A.; Wang, Y.; Graczykowski, B.; Djafari-Rouhani, B.; Yang, S.; Fytas, G. Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites. ACS Nano, 2022, 16(12), 20419-20429.
[http://dx.doi.org/10.1021/acsnano.2c06673] [PMID: 36475620]
[78]
Aryanfar, A.; Medlej, S.; Tarhini, A.; Damadi, S.R.; Tehrani, B. A.R.; Goddard, W.A., III 3D percolation modeling for predicting the thermal conductivity of graphene-polymer composites. Comput. Mater. Sci., 2021, 197, 110650.
[http://dx.doi.org/10.1016/j.commatsci.2021.110650]
[79]
Li, X.; Park, W.; Chen, Y.P.; Ruan, X. Effect of particle size and aggregation on thermal conductivity of metal–polymer nanocomposite. J. Heat Transfer, 2017, 139(2), 022401.
[http://dx.doi.org/10.1115/1.4034757]
[80]
Reig, D.S.; Hummel, P.; Wang, Z.; Rosenfeldt, S.; Graczykowski, B.; Retsch, M.; Fytas, G. Well-defined metal-polymer nanocomposites: The interplay of structure, thermoplasmonics, and elastic mechanical properties. Phys. Rev. Mater., 2018, 2(12), 123605.
[http://dx.doi.org/10.1103/PhysRevMaterials.2.123605]
[81]
Farha, A.H.; Al Naim, A.F.; Mansour, S.A. Thermal Degradation of Polystyrene (PS) Nanocomposites Loaded with Sol Gel-Synthesized ZnO Nanorods. Polymers (Basel), 2020, 12(9), 1935.
[http://dx.doi.org/10.3390/polym12091935] [PMID: 32867070]

© 2025 Bentham Science Publishers | Privacy Policy