Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Diabetic Pneumopathy- A Novel Diabetes-associated Complication: Pathophysiology, the Underlying Mechanism and Combination Medication

Author(s): Jyotsana Dwivedi*, Pranay Wal, Biswajit Dash, Mohammad Ovais, Pranjal Sachan and Vaibhav Verma

Volume 24, Issue 9, 2024

Published on: 04 October, 2023

Page: [1027 - 1052] Pages: 26

DOI: 10.2174/0118715303265960230926113201

Price: $65

Abstract

Background: The "diabetic lung" has been identified as a possible target organ in diabetes, with abnormalities in ventilation control, bronchomotor tone, lung volume, pulmonary diffusing capacity, and neuroadrenergic bronchial innervation.

Objective: This review summarizes studies related to diabetic pneumopathy, pathophysiology and a number of pulmonary disorders including type 1 and type 2 diabetes.

Methods: Electronic searches were conducted on databases such as Pub Med, Wiley Online Library (WOL), Scopus, Elsevier, ScienceDirect, and Google Scholar using standard keywords “diabetes,” “diabetes Pneumopathy,” “Pathophysiology,” “Lung diseases,” “lung infection” for review articles published between 1978 to 2023 very few previous review articles based their focus on diabetic pneumopathy and its pathophysiology.

Results: Globally, the incidence of diabetes mellitus has been rising. It is a chronic, progressive metabolic disease. The "diabetic lung" may serve as a model of accelerated ageing since diabetics' rate of respiratory function deterioration is two to three-times higher than that of normal, non-smoking people.

Conclusion: Diabetes-induced pulmonary dysfunction has not gained the attention it deserves due to a lack of proven causality and changes in cellular properties. The mechanism underlying a particular lung illness can still only be partially activated by diabetes but there is evidence that hyperglycemia is linked to pulmonary fibrosis in diabetic people.

Graphical Abstract

[1]
Demir, S.; Nawroth, P.P.; Herzig, S.; Ekim Üstünel, B. Emerging targets in type 2 diabetes and diabetic complications. Adv. Sci., 2021, 8(18), 2100275.
[http://dx.doi.org/10.1002/advs.202100275] [PMID: 34319011]
[2]
da Silva Almeida, R.; de Melo, R.C.; Chaves, M.S.; Baptista, G.M.; Margotto, S.S. de Oliveira Andrade, LJ Diabetic pneumopathy. Brazil. J. Med. Human. Health, 2016, 4(1)
[http://dx.doi.org/10.17267/2317-3386bjmhh.v4i1.791]
[3]
Hsia, C.C.; Hyde, D.M.; Weibel, E.R. Lung structure and the intrinsic challenges of gas exchange. Compr. Physiol., 2016, 6(2), 827-895.
[http://dx.doi.org/10.1002/cphy.c150028] [PMID: 27065169]
[4]
Kuo, L.C.; Polson, A.M.; Kang, T. Associations between periodontal diseases and systemic diseases: A review of the inter-relationships and interactions with diabetes, respiratory diseases, cardiovascular diseases and osteoporosis. Public Health, 2008, 122(4), 417-433.
[http://dx.doi.org/10.1016/j.puhe.2007.07.004] [PMID: 18028967]
[5]
Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers, 2019, 5(1), 18.
[http://dx.doi.org/10.1038/s41572-019-0069-0] [PMID: 30872586]
[6]
Wheatley, C.M.; Baldi, J.C.; Cassuto, N.A.; Foxx-Lupo, W.T.; Snyder, E.M. Glycemic control influences lung membrane diffusion and oxygen saturation in exercise-trained subjects with type 1 diabetes. Eur. J. Appl. Physiol., 2011, 111(3), 567-578.
[http://dx.doi.org/10.1007/s00421-010-1663-8] [PMID: 20936482]
[7]
Zavorsky, G.S.; Hsia, C.C.W.; Hughes, J.M.B.; Borland, C.D.R.; Guénard, H.; van der Lee, I.; Steenbruggen, I.; Naeije, R.; Cao, J.; Dinh-Xuan, A.T. Standardisation and application of the single-breath determination of nitric oxide uptake in the lung. Eur. Respir. J., 2017, 49(2), 1600962.
[http://dx.doi.org/10.1183/13993003.00962-2016] [PMID: 28179436]
[8]
Gasser, T.C.; Gallinetti, S.; Xing, X.; Forsell, C.; Swedenborg, J.; Roy, J. Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics. Acta Biomater., 2012, 8(8), 3091-3103.
[http://dx.doi.org/10.1016/j.actbio.2012.04.044] [PMID: 22579983]
[9]
Thorpe, C.T.; Birch, H.L.; Clegg, P.D.; Screen, H.R.C. The role of the non-collagenous matrix in tendon function. Int. J. Exp. Pathol., 2013, 94(4), 248-259.
[http://dx.doi.org/10.1111/iep.12027] [PMID: 23718692]
[10]
Suresh, K.; Shimoda, L.A. Lung circulation. Compr. Physiol., 2016, 6(2), 897-943.
[http://dx.doi.org/10.1002/cphy.c140049] [PMID: 27065170]
[11]
Khateeb, J.; Fuchs, E.; Khamaisi, M. Diabetes and lung disease: An underestimated relationship. Rev. Diabet. Stud., 2019, 15(1), 1-15.
[http://dx.doi.org/10.1900/RDS.2019.15.1] [PMID: 30489598]
[12]
Muller, L.M.A.J.; Gorter, K.J.; Hak, E.; Goudzwaard, W.L.; Schellevis, F.G.; Hoepelman, A.I.M.; Rutten, G.E.H.M. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin. Infect. Dis., 2005, 41(3), 281-288.
[http://dx.doi.org/10.1086/431587] [PMID: 16007521]
[13]
Böschen, S. Dioxins: The total poison. In: Hazardous Chemicals: Agents of Risk and Change; Homburg, E.; Vaupel, E., Eds.; Berghahn Books: Brooklyn NY, 2019; 235, pp. 1800-2000.
[14]
Klein, O.L.; Krishnan, J.A.; Glick, S.; Smith, L.J. Systematic review of the association between lung function and Type 2 diabetes mellitus. Diabet. Med., 2010, 27(9), 977-987.
[http://dx.doi.org/10.1111/j.1464-5491.2010.03073.x] [PMID: 20722670]
[15]
Winkler, E.S.; Bailey, A.L.; Kafai, N.M.; Nair, S. McCune, B.T.; Yu, J.; Fox, J.M.; Chen, R.E.; Earnest, J.T.; Keeler, S.P.; Ritter, J.H.; Kang, L.I.; Dort, S.; Robichaud, A.; Head, R.; Holtzman, M.J.; Diamond, M.S. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol., 2020, 21(11), 1327-1335.
[http://dx.doi.org/10.1038/s41590-020-0778-2] [PMID: 32839612]
[16]
Incalzi, R.; Fuso, L.; Pitocco, D.; Basso, S.; Trové, A.; Longobardi, A.; Calcagni, M.L.; Giordano, A.; Ghirlanda, G. Decline of neuroadrenergic bronchial innervation and respiratory function in type 1 diabetes mellitus: A longitudinal study. Diabetes Metab. Res. Rev., 2007, 23(4), 311-316.
[http://dx.doi.org/10.1002/dmrr.688] [PMID: 17013948]
[17]
Mohammed, S.A.; Albiero, M.; Ambrosini, S.; Gorica, E.; Karsai, G.; Caravaggi, C.M.; Masi, S.; Camici, G.G.; Wenzl, F.A.; Calderone, V.; Madeddu, P.; Sciarretta, S.; Matter, C.M.; Spinetti, G.; Lüscher, T.F.; Ruschitzka, F.; Costantino, S.; Fadini, G.P.; Paneni, F. The BET protein inhibitor apabetalone rescues diabetes-induced impairment of angiogenic response by epigenetic regulation of thrombospondin-1. Antioxid. Redox Signal., 2022, 36(10-12), 667-684.
[http://dx.doi.org/10.1089/ars.2021.0127] [PMID: 34913726]
[18]
Lecube, A.; Simó, R.; Pallayova, M.; Punjabi, N.M.; López-Cano, C.; Turino, C.; Hernández, C.; Barbé, F. Pulmonary function and sleep breathing: Two new targets for type 2 diabetes care. Endocr. Rev., 2017, 38(6), 550-573.
[http://dx.doi.org/10.1210/er.2017-00173] [PMID: 28938479]
[19]
Chinnasamy, A. Screening for Type 2 Diabetes Mellitus initiated through the dental setting: a cost-effectiveness analysis (Doctoral dissertation; The University of Melbourne, 2019.
[20]
Karrasch, S.; Holz, O.; Jörres, R.A. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir. Med., 2008, 102(9), 1215-1230.
[http://dx.doi.org/10.1016/j.rmed.2008.04.013] [PMID: 18617381]
[21]
Green, L.C.; Slone, S.; Anthony, S.R.; Guarnieri, A.R.; Parkins, S.; Shearer, S.M.; Nieman, M.L.; Roy, S.; Aube, J.; Wu, X.; Xu, L.; Kanisicak, O.; Tranter, M. HuR-dependent expression of Wisp1 is necessary for TGFβ-induced cardiac myofibroblast activity. J. Mol. Cell. Cardiol., 2023, 174, 38-46.
[http://dx.doi.org/10.1016/j.yjmcc.2022.10.007] [PMID: 36372279]
[22]
Gueders, M.M.; Foidart, J.M.; Noel, A.; Cataldo, D.D. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: Potential implications in asthma and other lung diseases. Eur. J. Pharmacol., 2006, 533(1-3), 133-144.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.082] [PMID: 16487964]
[23]
Hong, J.; Li, G.; Zhang, Q.; Ritter, J.; Li, W.; Li, P.L. D-ribose induces podocyte NLRP3 inflammasome activation and glomerular injury via AGEs/RAGE pathway. Front. Cell Dev. Biol., 2019, 7, 259.
[http://dx.doi.org/10.3389/fcell.2019.00259] [PMID: 31737627]
[24]
Nass, N.; Bartling, B.; Santos, A.; Scheubel, R.J.; Börgermann, J.; Silber, R.E.; Simm, A. Advanced glycation end products, diabetes and ageing. Z. Gerontol. Geriatr., 2007, 40(5), 349-356.
[http://dx.doi.org/10.1007/s00391-007-0484-9] [PMID: 17943238]
[25]
Serreli, G.; Deiana, M. Role of dietary polyphenols in the activity and expression of nitric oxide synthases: A review. Antioxidants, 2023, 12(1), 147.
[http://dx.doi.org/10.3390/antiox12010147] [PMID: 36671009]
[26]
Bukh, P.N.; Malmi, T. Re-examining the cause-and-effect principle of the balanced scorecard. In: Jönsson, S.; Mouritsen, J.; (Eds.), Accounting in Scandinavia - The Northern Lights; Malmö; Copenhagen: Liber; Copenhagen Business School Press, 2005; p. 87-113.
[27]
Chan, S.M.H.; Selemidis, S.; Bozinovski, S.; Vlahos, R. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): Clinical significance and therapeutic strategies. Pharmacol. Ther., 2019, 198, 160-188.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.013] [PMID: 30822464]
[28]
Katulanda, P.; Dissanayake, H.A.; Ranathunga, I.; Ratnasamy, V.; Wijewickrama, P.S.A.; Yogendranathan, N.; Gamage, K.K.K.; de Silva, N.L.; Sumanatilleke, M.; Somasundaram, N.P.; Matthews, D.R. Prevention and management of COVID-19 among patients with diabetes: An appraisal of the literature. Diabetologia, 2020, 63(8), 1440-1452.
[http://dx.doi.org/10.1007/s00125-020-05164-x] [PMID: 32405783]
[29]
Schiza, S.; Siafakas, N.M. Clinical presentation and management of empyema, lung abscess and pleural effusion. Curr. Opinion. Internal. Med., 2006, 5(4), 365-371.
[http://dx.doi.org/10.1097/01.mcp.0000219270.73180.8b] [PMID: 16582676]
[30]
Röhling, M.; Pesta, D.; Markgraf, D.; Strassburger, K.; Knebel, B.; Burkart, V.; Szendroedi, J.; Müssig, K.; Roden, M. Metabolic determinants of impaired pulmonary function in patients with newly diagnosed type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes, 2018, 126(9), 584-589.
[http://dx.doi.org/10.1055/a-0653-7135] [PMID: 30142673]
[31]
Locatelli, F.; Bommer, J.; London, G.M.; Martín-Malo, A.; Wanner, C.; Yaqoob, M.; Zoccali, C. Cardiovascular disease determinants in chronic renal failure: Clinical approach and treatment. Nephrol. Dial. Transplant., 2001, 16(3), 459-468.
[http://dx.doi.org/10.1093/ndt/16.3.459] [PMID: 11239016]
[32]
Wilson, T.; Temple, N.J. Eds. Beverage impacts on health and nutrition. Humana Press: New York, NY, USA, 2016.
[http://dx.doi.org/10.1007/978-3-319-23672-8]
[33]
Kopf, S.; Kumar, V.; Kender, Z.; Han, Z.; Fleming, T.; Herzig, S.; Nawroth, P.P. Diabetic pneumopathy–a new diabetes-associated complication: Mechanisms, consequences and treatment considerations. Front. Endocrinol., 2021, 12, 765201.
[http://dx.doi.org/10.3389/fendo.2021.765201] [PMID: 34899603]
[34]
Soto, M.; Bang, S.I.; McCombs, J.; Rodgers, K.E. Renin Angiotensin system-modifying therapies are associated with improved pulmonary health. Clin. Diabetes Endocrinol., 2017, 3(1), 6.
[http://dx.doi.org/10.1186/s40842-017-0044-1] [PMID: 28702260]
[35]
Pendlebury, G.A.; Oro, P.; Ludlow, K.; Merideth, D.; Haynes, W.; Shrivastava, V. Relevant dermatoses among u.s. military service members: An operational review of management strategies and telemedicine utilization. Cureus, 2023, 15(1), e33274.
[http://dx.doi.org/10.7759/cureus.33274] [PMID: 36741595]
[36]
Visca, D.; Pignatti, P.; Spanevello, A.; Lucini, E.; La Rocca, E. Relationship between diabetes and respiratory diseases-Clinical and therapeutic aspects. Pharmacol. Res., 2018, 137, 230-235.
[http://dx.doi.org/10.1016/j.phrs.2018.10.008] [PMID: 30312663]
[37]
Prasanna, X.A. Evaluation of antihyperglycemic effect of aqueous extract of leaves of annona squamosa in streptozotocin induced diabetic rats; Doctoral dissertation, Madurai medical college, Madurai, 2019.
[38]
Flume, P.A.; O’Sullivan, B.P.; Robinson, K.A.; Goss, C.H.; Mogayzel, P.J., Jr; Willey-Courand, D.B.; Bujan, J.; Finder, J.; Lester, M.; Quittell, L.; Rosenblatt, R.; Vender, R.L.; Hazle, L.; Sabadosa, K.; Marshall, B. Cystic fibrosis pulmonary guidelines: Chronic medications for maintenance of lung health. Am. J. Respir. Crit. Care Med., 2007, 176(10), 957-969.
[http://dx.doi.org/10.1164/rccm.200705-664OC] [PMID: 17761616]
[39]
Akagi, T.; Matsumoto, T.; Harada, T.; Tanaka, M.; Kuraki, T.; Fujita, M.; Watanabe, K. Coexistent emphysema delays the decrease of vital capacity in idiopathic pulmonary fibrosis. Respir. Med., 2009, 103(8), 1209-1215.
[http://dx.doi.org/10.1016/j.rmed.2009.02.001] [PMID: 19251407]
[40]
Hebebrand, J.; Bulik, C.M. Critical appraisal of the provisional DSM-5 criteria for anorexia nervosa and an alternative proposal. Int. J. Eat. Disord., 2011, 44(8), 665-678.
[http://dx.doi.org/10.1002/eat.20875] [PMID: 22072403]
[41]
Deng, J.Z.; Lancaster, C.; Winters, M.A.; Phillips, K.M.; Zhuang, P.; Ha, S. Multi-attribute characterization of pneumococcal conjugate vaccine by Size-exclusion chromatography coupled with UV-MALS-RI detections. Vaccine, 2022, 40(10), 1464-1471.
[http://dx.doi.org/10.1016/j.vaccine.2022.01.042] [PMID: 35140014]
[42]
Gharaee-Kermani, M.; Gyetko, M.R.; Hu, B.; Phan, S.H. New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis: A potential role for stem cells in the lung parenchyma and implications for therapy. Pharm. Res., 2007, 24(5), 819-841.
[http://dx.doi.org/10.1007/s11095-006-9216-x] [PMID: 17333393]
[43]
Hill, C.; Li, J.; Liu, D.; Conforti, F.; Brereton, C.J.; Yao, L.; Zhou, Y.; Alzetani, A.; Chee, S.J.; Marshall, B.G.; Fletcher, S.V.; Hancock, D.; Ottensmeier, C.H.; Steele, A.J.; Downward, J.; Richeldi, L.; Lu, X.; Davies, D.E.; Jones, M.G.; Wang, Y. Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis., 2019, 10(8), 591.
[http://dx.doi.org/10.1038/s41419-019-1820-x] [PMID: 31391462]
[44]
Jeny, F.; Brillet, P.Y.; Kim, Y.W.; Freynet, O.; Nunes, H.; Valeyre, D. The place of high-resolution computed tomography imaging in the investigation of interstitial lung disease. Expert Rev. Respir. Med., 2019, 13(1), 79-94.
[http://dx.doi.org/10.1080/17476348.2019.1556639] [PMID: 30517828]
[45]
Hoang-Thi, T.N.; Chassagnon, G.; Tran, H.D.; Le-Dong, N.N.; Dinh-Xuan, A.T.; Revel, M.P. How artificial intelligence in imaging can better serve patients with bronchial and parenchymal lung diseases? J. Pers. Med., 2022, 12(9), 1429.
[http://dx.doi.org/10.3390/jpm12091429] [PMID: 36143214]
[46]
Wuyts, W.A.; Cavazza, A.; Rossi, G.; Bonella, F.; Sverzellati, N.; Spagnolo, P. Differential diagnosis of usual interstitial pneumonia: When is it truly idiopathic? Eur. Respir. Rev., 2014, 23(133), 308-319.
[http://dx.doi.org/10.1183/09059180.00004914] [PMID: 25176967]
[47]
Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; Frith, P.; Halpin, D.M.G.; López Varela, M.V.; Nishimura, M.; Roche, N.; Rodriguez-Roisin, R.; Sin, D.D.; Singh, D.; Stockley, R.; Vestbo, J.; Wedzicha, J.A.; Agustí, A. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am. J. Respir. Crit. Care Med., 2017, 195(5), 557-582.
[http://dx.doi.org/10.1164/rccm.201701-0218PP] [PMID: 28128970]
[48]
Guth, S.; Wiedenroth, C.B.; Kramm, T.; Mayer, E. Pulmonary endarterectomy for the treatment of chronic thromboembolic pulmonary hypertension. Expert Rev. Respir. Med., 2016, 10(6), 673-684.
[http://dx.doi.org/10.1080/17476348.2016.1176915] [PMID: 27070482]
[49]
Diamantopoulos, A.; Wright, E.; Vlahopoulou, K.; Cornic, L.; Schoof, N.; Maher, T.M. The burden of illness of idiopathic pulmonary fibrosis: A comprehensive evidence review. PharmacoEconomics, 2018, 36(7), 779-807.
[http://dx.doi.org/10.1007/s40273-018-0631-8] [PMID: 29492843]
[50]
Wolters, P.J.; Collard, H.R.; Jones, K.D. Pathogenesis of idiopathic pulmonary fibrosis. Annu. Rev. Pathol., 2014, 9(1), 157-179.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104706] [PMID: 24050627]
[51]
Pitocco, D.; Fuso, L.; Conte, E.G.; Zaccardi, F.; Condoluci, C.; Scavone, G.; Incalzi, R.A.; Ghirlanda, G. The diabetic lung: A new target organ? Rev. Diabet. Stud., 2012, 9(1), 23-35.
[http://dx.doi.org/10.1900/RDS.2012.9.23] [PMID: 22972442]
[52]
Jimenez, S.A.; Piera-Velazquez, S. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of systemic sclerosis-associated pulmonary fibrosis and pulmonary arterial hypertension. Myth or reality? Matrix Biol., 2016, 51, 26-36.
[http://dx.doi.org/10.1016/j.matbio.2016.01.012] [PMID: 26807760]
[53]
Khan, A.N.; Khan, R.A.; Ahmad, M.; Mushtaq, N. Role of antioxidant in oxidative stress and diabetes mellitus. J. Pharmacogn. Phytochem., 2015, 3(6), 217-220.
[54]
Benditt, J.O.; Boitano, L.J. Pulmonary issues in patients with chronic neuromuscular disease. Am. J. Respir. Crit. Care Med., 2013, 187(10), 1046-1055.
[http://dx.doi.org/10.1164/rccm.201210-1804CI] [PMID: 23590262]
[55]
Evgenov, O.V.; Liang, Y.A.; Jiang, Y.A. BLAIR JL. Pulmonary pharmacology and inhaled anesthetics. Miller’s Anesthesia; Elsevier: Philadelphia, 2019, pp. 638-679.
[56]
Jagadapillai, R.; Rane, M.; Lin, X.; Roberts, A.; Hoyle, G.; Cai, L.; Gozal, E. Diabetic microvascular disease and pulmonary fibrosis: The contribution of platelets and systemic inflammation. Int. J. Mol. Sci., 2016, 17(11), 1853.
[http://dx.doi.org/10.3390/ijms17111853] [PMID: 27834824]
[57]
Kaddah, S.; Ahmed, S. Lifestyle associated diseases and risk of pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Egypt. J. Chest Dis. Tuberc., 2016, 65(1), 127-133.
[http://dx.doi.org/10.1016/j.ejcdt.2015.06.006]
[58]
Luppi, F.; Kalluri, M.; Faverio, P.; Kreuter, M.; Ferrara, G. Idiopathic pulmonary fibrosis beyond the lung: Understanding disease mechanisms to improve diagnosis and management. Respir. Res., 2021, 22(1), 109.
[http://dx.doi.org/10.1186/s12931-021-01711-1] [PMID: 33865386]
[59]
Gurudatta Pawar, S. K, A.; Santhanam, J.; Nellaiappa Ganesan, S.K.; Vidya, T.A.; Kumarasamy, S.; Meenakshi Sundari, S.N.; Ramya, S.G. Dynamic diffusion lung capacity of carbon monoxide (DLCO) as a predictor of pulmonary microangiopathy and its association with extra pulmonary microangiopathy in patients with type II diabetes mellitus. Diabetes Metab. Syndr., 2022, 16(1), 102360.
[http://dx.doi.org/10.1016/j.dsx.2021.102360] [PMID: 34920193]
[60]
Lacasse, M.; Maltais, F.; Poirier, P.; Lacasse, Y.; Marquis, K.; Jobin, J.; LeBlanc, P. Post-exercise heart rate recovery and mortality in chronic obstructive pulmonary disease. Respir. Med., 2005, 99(7), 877-886.
[http://dx.doi.org/10.1016/j.rmed.2004.11.012] [PMID: 15939250]
[61]
Freire, A.P.C.F.; Ramos, D.; Leite, M.R.; Silva, B.S.A.; David, R.M.; Uzeloto, J.S.; Pacagnelli, F.L.; Vanderlei, L.C.M.; Ramos, E.M.C. Influence of time and frequency of passive smoking exposure on mucociliary clearance and the autonomic nervous system. Respir. Care, 2016, 61(4), 453-461.
[http://dx.doi.org/10.4187/respcare.04398] [PMID: 26534999]
[62]
Pace, N., Ed.; General and Advanced Duties in Anaesthesia: Prepare for the FRCA: Key Articles from the Anaesthesia and Intensive Care Medicine Journal; Elsevier Health Sciences, 2015.
[63]
Hsia, C.C.W.; Raskin, P. Lung function changes related to diabetes mellitus. Diabetes Technol. Ther., 2007, 9(s1)(Suppl. 1), S-73-S-82.
[http://dx.doi.org/10.1089/dia.2007.0227] [PMID: 17563307]
[64]
Fernandez, I.E.; Eickelberg, O. The impact of TGF-β on lung fibrosis: From targeting to biomarkers. Proc. Am. Thorac. Soc., 2012, 9(3), 111-116.
[http://dx.doi.org/10.1513/pats.201203-023AW] [PMID: 22802283]
[65]
Balakumar, P.; Maung-U, K.; Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res., 2016, 113(Pt A), 600-609.
[http://dx.doi.org/10.1016/j.phrs.2016.09.040] [PMID: 27697647]
[66]
Dash, R.R.; Panda, B.; Panigrahi, M.; Nayak, B. A step toward the exploration of better spirometric parameters for early diagnosis of pulmonary dysfunction in persons with type 2 diabetes mellitus. Cureus, 2022, 14(7), e26622.
[http://dx.doi.org/10.7759/cureus.26622] [PMID: 35949805]
[67]
Thangadhurai, A. Assessment of pulmonary function tests in type 2 diabetes mellitus (Spirometry Based); Doctoral dissertation, Madurai Medical College: Madurai, 2012.
[68]
Yamaguchi, K.; Mori, M.; Kawai, A.; Takasugi, T.; Oyamada, Y.; Koda, E. Inhomogeneities of ventilation and the diffusing capacity to perfusion in various chronic lung diseases. Am. J. Respir. Crit. Care Med., 1997, 156(1), 86-93.
[http://dx.doi.org/10.1164/ajrccm.156.1.9607090] [PMID: 9230730]
[69]
Negrini, T.D.; Carlos, I.Z.; Duque, C.; Caiaffa, K.S.; Arthur, R.A. Interplay among the oral microbiome, oral cavity conditions, the host immune response, diabetes mellitus, and its associated-risk factors-an overview. Front Oral Health., 2021, 2, 697428.
[http://dx.doi.org/10.3389/froh.2021.697428]
[70]
Bakkar, N.M.Z.; Dwaib, H.S.; Fares, S.; Eid, A.H.; Al-Dhaheri, Y.; El-Yazbi, A.F. Cardiac autonomic neuropathy: A progressive consequence of chronic low-grade inflammation in type 2 diabetes and related metabolic disorders. Int. J. Mol. Sci., 2020, 21(23), 9005.
[http://dx.doi.org/10.3390/ijms21239005] [PMID: 33260799]
[71]
Zheng, H.; Wu, J.; Jin, Z.; Yan, L.J. Potential biochemical mechanisms of lung injury in diabetes. Aging Dis., 2017, 8(1), 7-16.
[http://dx.doi.org/10.14336/AD.2016.0627] [PMID: 28203478]
[72]
Bharucha, A.E.; Kudva, Y.; Basu, A.; Camilleri, M.; Low, P.A.; Vella, A.; Zinsmeister, A.R. Relationship between glycemic control and gastric emptying in poorly controlled type 2 diabetes. Clin. Gastroenterol. Hepatol., 2015, 13(3), 466-476.e1.
[http://dx.doi.org/10.1016/j.cgh.2014.06.034] [PMID: 25041866]
[73]
McFadden, E.R., Jr; Linden, D.A. A reduction in maximum mid-expiratory flow rate. Am. J. Med., 1972, 52(6), 725-737.
[http://dx.doi.org/10.1016/0002-9343(72)90078-2] [PMID: 5030170]
[74]
Benbassat, C.A.; Stern, E.; Blum, I.; Kramer, M.; Lebzelter, J.; Fink, G. Pulmonary function in patients with diabetes mellitus. Am. J. Med. Sci., 2001, 322(3), 127-132.
[http://dx.doi.org/10.1097/00000441-200109000-00003] [PMID: 11570776]
[75]
Anand, N.; Nayyer, P.S.; Rana, V.; Verma, S. Changes in pulmonary functions in type 2 diabetes mellitus. India. J. Med. specialities., 2017, 8(1), 3-6.
[http://dx.doi.org/10.1016/j.injms.2016.09.007]
[76]
Schubert, L.; Laroche, S.; Hartemann, A.; Bourron, O.; Phan, F. Impaired hypoxic ventilatory drive induced by diabetic autonomic neuropathy, a cause of misdiagnosed severe cardiac events: Brief report of two cases. BMC Cardiovasc. Disord., 2021, 21(1), 140.
[http://dx.doi.org/10.1186/s12872-021-01944-4] [PMID: 33731006]
[77]
De Virgiliis, F.; Di Giovanni, S. Lung innervation in the eye of a cytokine storm: Neuroimmune interactions and COVID-19. Nat. Rev. Neurol., 2020, 16(11), 645-652.
[http://dx.doi.org/10.1038/s41582-020-0402-y] [PMID: 32843733]
[78]
Pan, L.; Wu, S.; Li, H.; Xu, J.; Dong, W.; Shan, J.; Yang, X.; Chen, Y.; Shima, M.; Deng, F.; Guo, X. The short-term effects of indoor size-fractioned particulate matter and black carbon on cardiac autonomic function in COPD patients. Environ. Int., 2018, 112, 261-268.
[http://dx.doi.org/10.1016/j.envint.2017.12.037] [PMID: 29306794]
[79]
Kaparianos, A.; Argyropoulou, E.; Sampsonas, F.; Karkoulias, K.; Tsiamita, M.; Spiropoulos, K. Pulmonary complications in diabetes mellitus. Chron. Respir. Dis., 2008, 5(2), 101-108.
[http://dx.doi.org/10.1177/1479972307086313] [PMID: 18539724]
[80]
Pedersen, B.K.; Saltin, B. Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports, 2006, 16(S1)(Suppl. 1), 3-63.
[http://dx.doi.org/10.1111/j.1600-0838.2006.00520.x] [PMID: 16451303]
[81]
Maan, H.B.; Meo, S.A.; Al Rouq, F.; Meo, I.M.U.; Gacuan, M.E.; Alkhalifah, J.M. Effect of glycated hemoglobin (HbA1c) and duration of disease on lung functions in type 2 diabetic patients. Int. J. Environ. Res. Public Health, 2021, 18(13), 6970.
[http://dx.doi.org/10.3390/ijerph18136970] [PMID: 34209922]
[82]
Scano, G.; Seghieri, G.; Mancini, M.; Filippelli, M.; Duranti, R.; Fabbri, A.; Innocenti, F.; Iandelli, I.; Misuri, G. Dyspnoea, peripheral airway involvement and respiratory muscle effort in patients with Type I diabetes mellitus under good metabolic control. Clin. Sci. (Lond.), 1999, 96(5), 499-506.
[http://dx.doi.org/10.1042/cs0960499]
[83]
Smith, F. Organ systems. innaturopathic medicine: A comprehensive guide; Cham: Springer International Publishing, 2022, pp. 225-413.
[http://dx.doi.org/10.1007/978-3-031-13388-6_8]
[84]
Dayton, J.D.; Ford, K.; Carroll, S.J.; Flynn, P.A.; Kourtidou, S.; Holzer, R.J. The deconditioning effect of the COVID-19 pandemic on unaffected healthy children. Pediatr. Cardiol., 2021, 42(3), 554-559.
[http://dx.doi.org/10.1007/s00246-020-02513-w] [PMID: 33394120]
[85]
Cribbs, S.K.; Crothers, K.; Morris, A. Pathogenesis of HIV-related lung disease: Immunity, infection, and inflammation. Physiol. Rev., 2020, 100(2), 603-632.
[http://dx.doi.org/10.1152/physrev.00039.2018] [PMID: 31600121]
[86]
Ersoy, C. Diabetes mellitus and the lungs. Turkish J. Internal Med., 2020, 2(3), 59-65.
[http://dx.doi.org/10.46310/tjim.768962]
[87]
Mirrakhimov, A.E. Chronic obstructive pulmonary disease and glucose metabolism: A bitter sweet symphony. Cardiovasc. Diabetol., 2012, 11(1), 132.
[http://dx.doi.org/10.1186/1475-2840-11-132] [PMID: 23101436]
[88]
Chapman, K.R.; Mannino, D.M.; Soriano, J.B.; Vermeire, P.A.; Buist, A.S.; Thun, M.J.; Connell, C.; Jemal, A.; Lee, T.A.; Miravitlles, M.; Aldington, S.; Beasley, R. Epidemiology and costs of chronic obstructive pulmonary disease. Eur. Respir. J., 2006, 27(1), 188-207.
[http://dx.doi.org/10.1183/09031936.06.00024505] [PMID: 16387952]
[89]
Selman, M.; Pardo, A. Role of epithelial cells in idiopathic pulmonary fibrosis: From innocent targets to serial killers. Proc. Am. Thorac. Soc., 2006, 3(4), 364-372.
[http://dx.doi.org/10.1513/pats.200601-003TK] [PMID: 16738202]
[90]
Salazar-Puerta, A.I.; Rincon-Benavides, M.A.; Cuellar-Gaviria, T.Z.; Aldana, J.; Vasquez Martinez, G.; Ortega-Pineda, L.; Das, D.; Dodd, D.; Spencer, C.A.; Deng, B.; McComb, D.W.; Englert, J.A.; Ghadiali, S.; Zepeda-Orozco, D.; Wold, L.E.; Gallego-Perez, D.; Higuita-Castro, N. Engineered extracellular vesicles derived from dermal fibroblasts attenuate inflammation in a murine model of acute lung injury. Adv. Mater., 2023, 35(28), 2210579.
[http://dx.doi.org/10.1002/adma.202210579] [PMID: 37119468]
[91]
Cho, S.J.; Stout-Delgado, H.W. Aging and lung disease. Annu. Rev. Physiol., 2020, 82(1), 433-459.
[http://dx.doi.org/10.1146/annurev-physiol-021119-034610] [PMID: 31730381]
[92]
Burns, A.R.; Smith, C.W.; Walker, D.C. Unique structural features that influence neutrophil emigration into the lung. Physiol. Rev., 2003, 83(2), 309-336.
[http://dx.doi.org/10.1152/physrev.00023.2002] [PMID: 12663861]
[93]
McCarthy, C.G.; Goulopoulou, S.; Wenceslau, C.F.; Spitler, K.; Matsumoto, T.; Webb, R.C. Toll-like receptors and damage-associated molecular patterns: Novel links between inflammation and hypertension. Am. J. Physiol. Heart Circ. Physiol., 2014, 306(2), H184-H196.
[http://dx.doi.org/10.1152/ajpheart.00328.2013] [PMID: 24163075]
[94]
Meftahi, G.H.; Jangravi, Z.; Sahraei, H.; Bahari, Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: The contribution of “inflame-aging”. Inflamm. Res., 2020, 69(9), 825-839.
[http://dx.doi.org/10.1007/s00011-020-01372-8] [PMID: 32529477]
[95]
Horsley, A. Genetics and pathophysiology. InCystic Fibrosis; Oxford University Press New York: USA, 2010, pp. 1-16.
[96]
Liu, Q.; Tian, J.; Xu, Y.; Li, C.; Meng, X.; Fu, F. Protective effect of RA on myocardial infarction-induced cardiac fibrosis via AT1R/p38 MAPK pathway signaling and modulation of the ACE2/ACE ratio. J. Agric. Food Chem., 2016, 64(35), 6716-6722.
[http://dx.doi.org/10.1021/acs.jafc.6b03001] [PMID: 27538767]
[97]
Mone, P.; Varzideh, F.; Jankauskas, S.S.; Pansini, A.; Lombardi, A.; Frullone, S.; Santulli, G. SGLT2 inhibition via empagliflozin improves endothelial function and reduces mitochondrial oxidative stress: Insights from frail hypertensive and diabetic patients. Hypertension, 2022, 79(8), 1633-1643.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.122.19586] [PMID: 35703100]
[98]
Krofchick, D. A Study of Electrogenic Transient and Steady-State Cotransporter Kinetics: Investigations with the Sodium (I)/Glucose Transporter SGLT1; University of Toronto: Canada, 2012.
[99]
Pezzulo, A.A.; Tang, X.X.; Hoegger, M.J.; Abou Alaiwa, M.H.; Ramachandran, S.; Moninger, T.O.; Karp, P.H.; Wohlford-Lenane, C.L.; Haagsman, H.P.; van Eijk, M.; Bánfi, B.; Horswill, A.R.; Stoltz, D.A.; McCray, P.B., Jr; Welsh, M.J.; Zabner, J. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature, 2012, 487(7405), 109-113.
[http://dx.doi.org/10.1038/nature11130] [PMID: 22763554]
[100]
Gibson, R.L.; Burns, J.L.; Ramsey, B.W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med., 2003, 168(8), 918-951.
[http://dx.doi.org/10.1164/rccm.200304-505SO] [PMID: 14555458]
[101]
Logette, E.; Lorin, C.; Favreau, C.; Oshurko, E.; Coggan, J.S.; Casalegno, F.; Sy, M.F.; Monney, C.; Bertschy, M.; Delattre, E.; Fonta, P.A. Elevated blood glucose levels as a primary risk factor for the severity of COVID-19. medRxiv, 2021.
[http://dx.doi.org/10.1101/2021.04.29.21256294]
[102]
Akers, J. Royal Perth Hospital. Dr Akers is a staff anaesthetist and pain specialist at RPH. His interests include acute and chronic pain. Australasian Anaesthesia, 2019, 2019(6), 202.
[103]
Garzon-Siatoya, W.T.; Carrillo-Martin, I.; Chiarella, S.E.; Gonzalez-Estrada, A. State-of-the-art beta-adrenoreceptor agonists for the treatment of asthma. Expert Opin. Pharmacother., 2022, 23(2), 243-254.
[http://dx.doi.org/10.1080/14656566.2021.1988074] [PMID: 34753370]
[104]
Berkey, D.B.; Scannapieco, F.A. Medical considerations relating to the oral health of older adults. Spec. Care Dentist., 2013, 33(4), 164-176.
[http://dx.doi.org/10.1111/scd.12027] [PMID: 23795637]
[105]
Tiwari, A.K.; Rao, J.M. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present status and future prospects. Curr. Sci., 2002, 30-38. https://www.jstor.org/stable/24106071
[106]
Mameli, C.; Ghezzi, M.; Mari, A.; Cammi, G.; Macedoni, M.; Redaelli, F.C.; Calcaterra, V.; Zuccotti, G.; D’Auria, E. The diabetic lung: Insights into pulmonary changes in children and adolescents with type 1 diabetes. Metabolites, 2021, 11(2), 69.
[http://dx.doi.org/10.3390/metabo11020069] [PMID: 33530418]
[107]
Becker, J.; Delayre-Orthez, C.; Frossard, N.; Pons, F. Regulation of inflammation by PPARs: A future approach to treat lung inflammatory diseases? Fundam. Clin. Pharmacol., 2006, 20(5), 429-447.
[http://dx.doi.org/10.1111/j.1472-8206.2006.00425.x] [PMID: 16968414]
[108]
Oldani, S.; Ravaglia, C.; Bensai, S.; Bertolovic, L.; Ghirotti, C.; Puglisi, S.; Martinello, S.; Sultani, F.; Colinelli, C.; Piciucchi, S.; Simoncelli, S.; Poletti, V. Pathophysiology of light phenotype SARS-CoV-2 interstitial pneumonia: From histopathological features to clinical presentations. Pulmonology, 2022, 28(5), 333-344.
[http://dx.doi.org/10.1016/j.pulmoe.2021.03.003] [PMID: 33832850]
[109]
Shi, G.J.; Shi, G.R.; Zhou, J.; Zhang, W.; Gao, C.; Jiang, Y.; Zi, Z.G.; Zhao, H.; Yang, Y.; Yu, J.Q. Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomed. Pharmacother., 2018, 101, 510-527.
[http://dx.doi.org/10.1016/j.biopha.2018.02.105] [PMID: 29505922]
[110]
Pacher, P.; Szabó, C. Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: Endothelial dysfunction, as a common underlying theme. Antioxid. Redox Signal., 2005, 7(11-12), 1568-1580.
[http://dx.doi.org/10.1089/ars.2005.7.1568] [PMID: 16356120]
[111]
Wu, J.; Jin, Z.; Yan, L.J. Redox imbalance and mitochondrial abnormalities in the diabetic lung. Redox Biol., 2017, 11, 51-59.
[http://dx.doi.org/10.1016/j.redox.2016.11.003] [PMID: 27888691]
[112]
Cheresh, P.; Kim, S.J.; Tulasiram, S.; Kamp, D.W. Oxidative stress and pulmonary fibrosis. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(7), 1028-1040.
[http://dx.doi.org/10.1016/j.bbadis.2012.11.021] [PMID: 23219955]
[113]
Rosenkranz, S.; Howard, L.S.; Gomberg-Maitland, M.; Hoeper, M.M. Systemic consequences of pulmonary hypertension and right-sided heart failure. Circulation, 2020, 141(8), 678-693.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022362] [PMID: 32091921]
[114]
Haavik, H.; Niazi, I.K.; Kumari, N.; Amjad, I.; Duehr, J.; Holt, K. The potential mechanisms of high-velocity, low-amplitude, controlled vertebral thrusts on neuroimmune function: A narrative review. Medicina, 2021, 57(6), 536.
[http://dx.doi.org/10.3390/medicina57060536] [PMID: 34071880]
[115]
Ikemura, M.; Nishikawa, M.; Kusamori, K.; Fukuoka, M.; Yamashita, F.; Hashida, M. Pivotal role of oxidative stress in tumor metastasis under diabetic conditions in mice. J. Control. Release, 2013, 170(2), 191-197.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.028] [PMID: 23735571]
[116]
Bahrami, A.; Majeed, M.; Sahebkar, A. Curcumin: A potent agent to reverse epithelial-to-mesenchymal transition. Cell. Oncol., 2019, 42(4), 405-421.
[http://dx.doi.org/10.1007/s13402-019-00442-2] [PMID: 30980365]
[117]
Morss, A.S.; Edelman, E.R. Glucose modulates basement membrane fibroblast growth factor-2 via alterations in endothelial cell permeability. J. Biol. Chem., 2007, 282(19), 14635-14644.
[http://dx.doi.org/10.1074/jbc.M608565200] [PMID: 17327226]
[118]
Callaghan, M.J.; Ceradini, D.J.; Gurtner, G.C. Hyperglycemia-induced reactive oxygen species and impaired endothelial progenitor cell function. Antioxid. Redox Signal., 2005, 7(11-12), 1476-1482.
[http://dx.doi.org/10.1089/ars.2005.7.1476] [PMID: 16356110]
[119]
Zhao, H.; Ming, T.; Tang, S.; Ren, S.; Yang, H.; Liu, M.; Tao, Q.; Xu, H. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol. Cancer, 2022, 21(1), 144.
[http://dx.doi.org/10.1186/s12943-022-01616-7] [PMID: 35836256]
[120]
Rajagopalan, S.; Brook, R.D. Air pollution and type 2 diabetes: Mechanistic insights. Diabetes, 2012, 61(12), 3037-3045.
[http://dx.doi.org/10.2337/db12-0190] [PMID: 23172950]
[121]
Trüeb, RM; Trüeb, RM The difficult dermatologic condition. The difficult hair loss patient: Guide to successful management of alopecia and related conditions; , 2015, p. 49-137.
[http://dx.doi.org/10.1007/978-3-319-19701-2_4]
[122]
Clark, B.J.; Roeder, N.; Akgün, K.M. Pulmonary health and healthy aging. In: Coll, P. (Eds) Healthy Aging; Springer,: Cham., 2019; pp. 81-92.
[http://dx.doi.org/10.1007/978-3-030-06200-2_8]
[123]
Schneeweiss, S.; Patorno, E. Conducting real-world evidence studies on the clinical outcomes of diabetes treatments. Endocr. Rev., 2021, 42(5), 658-690.
[http://dx.doi.org/10.1210/endrev/bnab007] [PMID: 33710268]
[124]
Südy, R.; Schranc, Á.; Fodor, G.H.; Tolnai, J.; Babik, B.; Peták, F. Lung volume dependence of respiratory function in rodent models of diabetes mellitus. Respir. Res., 2020, 21(1), 82.
[http://dx.doi.org/10.1186/s12931-020-01334-y] [PMID: 32272932]
[125]
Kerkhof, M.H.; Hendriks, L.; Brölmann, H.A.M. Changes in connective tissue in patients with pelvic organ prolapse-a review of the current literature. Int. Urogynecol. J. Pelvic Floor Dysfunct., 2009, 20(4), 461-474.
[http://dx.doi.org/10.1007/s00192-008-0737-1] [PMID: 18854909]
[126]
Chukwuemeka, O.F. Effect of aqueous and ethanol leaf extracts of eriosema psoraleoides on some oxidative stress parameters in alloxan-induced diabetic rats. unpublished thesis, 2011.
[127]
Gehr, P.; Bachofen, M.; Weibel, E.R. The normal human lung: Ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol., 1978, 32(2), 121-140.
[http://dx.doi.org/10.1016/0034-5687(78)90104-4] [PMID: 644146]
[128]
Wang, D.; Ma, Y.; Tong, X.; Zhang, Y.; Fan, H. Diabetes mellitus contributes to idiopathic pulmonary fibrosis: A review from clinical appearance to possible pathogenesis. Front. Public Health, 2020, 8, 196.
[http://dx.doi.org/10.3389/fpubh.2020.00196] [PMID: 32582606]
[129]
Fatehi-Hassanabad, Z.; Chan, C.B.; Furman, B.L. Reactive oxygen species and endothelial function in diabetes. Eur. J. Pharmacol., 2010, 636(1-3), 8-17.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.048] [PMID: 20371238]
[130]
Papinska, A.M.; Soto, M.; Meeks, C.J.; Rodgers, K.E. Long-term administration of angiotensin (17) prevents heart and lung dysfunction in a mouse model of type 2 diabetes (db/db) by reducing oxidative stress, inflammation and pathological remodeling. Pharmacol. Res., 2016, 107, 372-380.
[http://dx.doi.org/10.1016/j.phrs.2016.02.026] [PMID: 26956523]
[131]
Kato, H.; Ishida, J.; Imagawa, S. Current world literature. Curr. Opin. Endocrinol. Diabetes Obes., 2005, 13(2), 212-236.
[http://dx.doi.org/10.1097/01.med.0000216972.61160.8c]
[132]
Hosseinzadeh, A.; Javad-Moosavi, S.A.; Reiter, R.J.; Hemati, K.; Ghaznavi, H.; Mehrzadi, S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci., 2018, 201, 17-29.
[http://dx.doi.org/10.1016/j.lfs.2018.03.032] [PMID: 29567077]
[133]
Burns, W.C.; Twigg, S.M.; Forbes, J.M.; Pete, J.; Tikellis, C.; Thallas-Bonke, V.; Thomas, M.C.; Cooper, M.E.; Kantharidis, P. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: Implications for diabetic renal disease. J. Am. Soc. Nephrol., 2006, 17(9), 2484-2494.
[http://dx.doi.org/10.1681/ASN.2006050525] [PMID: 16914537]
[134]
Mahdi, A. The red blood cell as a mediator of vascular dysfunction in Type 2 Diabetes and COVID-19; Karolinska Institutet: Sweden, 2021.
[135]
Yarnold, J.; Vozenin Brotons, M-C. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol., 2010, 97(1), 149-161.
[http://dx.doi.org/10.1016/j.radonc.2010.09.002] [PMID: 20888056]
[136]
Rogliani, P.; Calzetta, L.; Capuani, B.; Facciolo, F.; Cazzola, M.; Lauro, D.; Matera, M.G. Glucagon-like peptide 1 receptor: A novel pharmacological target for treating human bronchial hyperresponsiveness. Am. J. Respir. Cell Mol. Biol., 2016, 55(6), 804-814.
[http://dx.doi.org/10.1165/rcmb.2015-0311OC] [PMID: 27447052]
[137]
Tahergorabi, Z.; Khazaei, M.; Moodi, M.; Chamani, E. From obesity to cancer: A review on proposed mechanisms. Cell Biochem. Funct., 2016, 34(8), 533-545.
[http://dx.doi.org/10.1002/cbf.3229] [PMID: 27859423]
[138]
Hill, M.F. Diabetic cardiomyopathy: Cardiac changes, pathophysiological mechanisms, biologic markers, and the available therapeutic armamentarium. In. cardiomyopathies-from basic research to clinical management; IntechOpen, 2012.
[139]
Kumar, N.; Yin, C. The anti-inflammatory peptide Ac-SDKP: Synthesis, role in ACE inhibition, and its therapeutic potential in hypertension and cardiovascular diseases. Pharmacol. Res., 2018, 134, 268-279.
[http://dx.doi.org/10.1016/j.phrs.2018.07.006] [PMID: 29990624]
[140]
Chang, L.L. Investigation into the role of insulin-degrading enzyme in limiting the intestinal absorption of insulin; University of Minnesota, 1996.
[141]
Yang, J.; Xue, Q.; Miao, L.; Cai, L. Pulmonary fibrosis: A possible diabetic complication. Diabetes Metab. Res. Rev., 2011, 27(4), 311-317.
[http://dx.doi.org/10.1002/dmrr.1175] [PMID: 21309056]
[142]
Andle, J.C. An experimental and theoretical analysis of acoustic plate mode devices for biosensor applications; The University of Maine, 1993.
[143]
Khorraminejad-Shirazi, M.; Dorvash, M.; Estedlal, A.; Hoveidaei, A.H.; Mazloomrezaei, M.; Mosaddeghi, P. Aging: A cell source limiting factor in tissue engineering. World J. Stem Cells, 2019, 11(10), 787-802.
[http://dx.doi.org/10.4252/wjsc.v11.i10.787] [PMID: 31692986]
[144]
Zhou, Y.; Chi, J.; Lv, W.; Wang, Y. Obesity and diabetes as high‐risk factors for severe coronavirus disease 2019 (COVID-19). Diabetes Metab. Res. Rev., 2021, 37(2), e3377.
[http://dx.doi.org/10.1002/dmrr.3377] [PMID: 32588943]
[145]
Niranjan, V.; McBrayer, D.G.; Ramirez, L.C.; Raskin, P.; Hsia, C.C.W. Glycemic control and cardiopulmonary function in patients with insulin-dependent diabetes mellitus. Am. J. Med., 1997, 103(6), 504-513.
[http://dx.doi.org/10.1016/S0002-9343(97)00251-9] [PMID: 9428834]
[146]
Asanuma, Y.; Fujiya, S.; Ide, H.; Agishi, Y. Characteristics of pulmonary function in patients with diabetes mellitus. Diabetes Res. Clin. Pract., 1985, 1(2), 95-101.
[http://dx.doi.org/10.1016/S0168-8227(85)80034-6] [PMID: 3836101]
[147]
Frans, A.; Jonckheere, A.; Minette, P.H.; Buyschaert, M.; Lambert, A.; Rahier, J. Normal function of the pulmonary bed with thickened basal membrane in diabetes mellitus. Am. Rev. Respir. Dis., 1988, 137(4), 272.
[148]
Montserrat, J.M.; Cochrane, G.M.; Wolf, C.; Picado, C.; Roca, J.; Agusti Vidal, A. Ventilatory control in diabetes mellitus. Eur. J. Respir. Dis., 1985, 67(2), 112-117.
[PMID: 4054261]
[149]
Nishimura, M.; Miyamoto, K.; Suzuki, A.; Yamamoto, H.; Tsuji, M.; Kishi, F.; Kawakami, Y. Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax, 1989, 44(4), 251-257.
[http://dx.doi.org/10.1136/thx.44.4.251] [PMID: 2763226]
[150]
Tantucci, C.; Bottini, P.; Fiorani, C.; Dottorini, M.L.; Santeusanio, F.; Provinciali, L.; Sorbini, C.A.; Casucci, G. Cerebrovascular reactivity and hypercapnic respiratory drive in diabetic autonomic neuropathy. J. Appl. Physiol., 2001, 90(3), 889-896.
[http://dx.doi.org/10.1152/jappl.2001.90.3.889]
[151]
Pitocco, D.; Santangeli, P.; Fuso, L.; Zaccardi, F.; Infusino, F.; Antonelli Incalzi, R.; Lanza, G.A.; Crea, F.; Ghirlanda, G.; Ghirlanda, G. Association between reduced pulmonary diffusing capacity and cardiac autonomic dysfunction in Type 1 diabetes. Diabet. Med., 2008, 25(11), 1366-1369.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02571.x] [PMID: 19046231]
[152]
Parameswaran, K.; Todd, D.C.; Soth, M. Altered respiratory physiology in obesity. Can. Respir. J., 2006, 13(4), 203-210.
[http://dx.doi.org/10.1155/2006/834786] [PMID: 16779465]
[153]
Mauricio, D.; Alonso, N.; Gratacòs, M. Chronic diabetes complications: The need to move beyond classical concepts. Trends Endocrinol. Metab., 2020, 31(4), 287-295.
[http://dx.doi.org/10.1016/j.tem.2020.01.007] [PMID: 32033865]
[154]
Fouty, B. Diabetes and the pulmonary circulation. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 295(5), L725-L726.
[http://dx.doi.org/10.1152/ajplung.90482.2008] [PMID: 18790989]
[155]
Guazzi, M. Alveolar-capillary membrane dysfunction in heart failure: Evidence of a pathophysiologic role. Chest, 2003, 124(3), 1090-1102.
[http://dx.doi.org/10.1378/chest.124.3.1090] [PMID: 12970042]
[156]
Saha, B.K.; Chong, W.H.; Saha, S.; Aiman, A.; Bonnier, A. Proposed pathogenesis of diffuse alveolar hemorrhage in idiopathic pulmonary hemosiderosis. Lung, 2022, 200(2), 205-215.
[http://dx.doi.org/10.1007/s00408-022-00523-4] [PMID: 35267072]
[157]
Zhang, S.; Bai, W.; Yue, J.; Qin, L.; Zhang, C.; Xu, S.; Liu, X.; Ni, W.; Xie, M. Eight months follow-up study on pulmonary function, lung radiographic, and related physiological characteristics in COVID-19 survivors. Sci. Rep., 2021, 11(1), 13854.
[http://dx.doi.org/10.1038/s41598-021-93191-y] [PMID: 34226597]
[158]
Gibson, G. Obesity, respiratory function and breathlessness. Thorax, 2000, 55(90001)(Suppl. 1), 41S-44.
[http://dx.doi.org/10.1136/thorax.55.suppl_1.S41] [PMID: 10943638]
[159]
Tiengo, A.; Fadini, G.P.; Avogaro, A. The metabolic syndrome, diabetes and lung dysfunction. Diabetes Metab., 2008, 34(5), 447-454.
[http://dx.doi.org/10.1016/j.diabet.2008.08.001] [PMID: 18829364]
[160]
Wan, E.S.; Balte, P.; Schwartz, J.E.; Bhatt, S.P.; Cassano, P.A.; Couper, D.; Daviglus, M.L.; Dransfield, M.T.; Gharib, S.A.; Jacobs, D.R., Jr; Kalhan, R.; London, S.J.; Navas-Acien, A.; O’Connor, G.T.; Sanders, J.L.; Smith, B.M.; White, W.; Yende, S.; Oelsner, E.C. Association between preserved ratio impaired spirometry and clinical outcomes in US adults. JAMA, 2021, 326(22), 2287-2298.
[http://dx.doi.org/10.1001/jama.2021.20939] [PMID: 34905031]
[161]
Payton, A. Investigation of the genetic basic of cognitive ability in healthy older adults; The University of Manchester: United Kingdom, 2004.
[162]
van Eeden, S.F.; Sin, D.D. Chronic obstructive pulmonary disease: A chronic systemic inflammatory disease. Respiration, 2008, 75(2), 224-238.
[http://dx.doi.org/10.1159/000111820] [PMID: 18042978]
[163]
Heyman, E.; Daussin, F.; Wieczorek, V.; Caiazzo, R.; Matran, R.; Berthon, P.; Aucouturier, J.; Berthoin, S.; Descatoire, A.; Leclair, E.; Marais, G.; Combes, A.; Fontaine, P.; Tagougui, S. Muscle oxygen supply and use in type 1 diabetes, from ambient air to the mitochondrial respiratory chain: Is there a limiting step? Diabetes Care, 2020, 43(1), 209-218.
[http://dx.doi.org/10.2337/dc19-1125] [PMID: 31636081]
[164]
Guazzi, M.; Fuso, L. Nonrespiratory determinants of respiratory impairment in elderly patients: Heart failure and diabetes. In. Bellia R.V.; Incalzi, A. Respiratory Diseases in the Elderly: European Respiratory Monograph., 2009, Vol 43, 217-239.
[http://dx.doi.org/10.1183/1025448x.00043015]
[165]
Johnson, R.L.; Wilson, C.G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res., 2018, 11, 203-213.
[http://dx.doi.org/10.2147/JIR.S163248] [PMID: 29844694]
[166]
Dimario, jr fj. Other nonepileptic childhood paroxysmal disorders. Pediatr Neurol: Clini Assessm Managem, 2021, 97.
[167]
Way, K.; Keating, S.; Baker, M.; Chuter, V.; Johnson, N. The effect of exercise on vascular function and stiffness in type 2 diabetes: A systematic review and meta-analysis. Curr. Diabetes Rev., 2016, 12(4), 369-383.
[http://dx.doi.org/10.2174/1573399811666150817124601] [PMID: 26279493]
[168]
Moser, O.; Eckstein, M.L.; McCarthy, O.; Deere, R.; Bain, S.C.; Haahr, H.L.; Zijlstra, E.; Bracken, R.M. Poor glycaemic control is associated with reduced exercise performance and oxygen economy during cardio-pulmonary exercise testing in people with type 1 diabetes. Diabetol. Metab. Syndr., 2017, 9(1), 93.
[http://dx.doi.org/10.1186/s13098-017-0294-1] [PMID: 29201153]
[169]
Liu, J.; Pang, Z.; Wang, G.; Guan, X.; Fang, K.; Wang, Z.; Wang, F. Advanced role of neutrophils in common respiratory diseases. J. Immunol. Res., 2017, 2017(Oct), 1-21.
[http://dx.doi.org/10.1155/2017/6710278] [PMID: 28589151]
[170]
Virumbrales-Muñoz, M.; Ayuso, J.M.; Gong, M.M.; Humayun, M.; Livingston, M.K.; Lugo-Cintrón, K.M.; McMinn, P.; Álvarez-García, Y.R.; Beebe, D.J. Microfluidic lumen-based systems for advancing tubular organ modeling. Chem. Soc. Rev., 2020, 49(17), 6402-6442.
[http://dx.doi.org/10.1039/D0CS00705F] [PMID: 32760967]
[171]
Li, H.L.; Tse, Y.K.; Chandramouli, C.; Hon, N.W.L.; Cheung, C.L.; Lam, L.Y.; Wu, M.; Huang, J.Y.; Yu, S.Y.; Leung, K.L.; Fei, Y.; Feng, Q.; Ren, Q.; Cheung, B.M.Y.; Tse, H.F.; Verma, S.; Lam, C.S.P.; Yiu, K.H. Sodium-glucose cotransporter 2 inhibitors and the risk of pneumonia and septic shock. J. Clin. Endocrinol. Metab., 2022, 107(12), 3442-3451.
[http://dx.doi.org/10.1210/clinem/dgac558] [PMID: 36181458]
[172]
Thin, P.P. Analysis of the association between covid 19 infection and related factors (doctoral dissertation, meral portal).
[173]
Cachofeiro, V.; Goicochea, M.; de Vinuesa, S.G.; Oubiña, P.; Lahera, V.; Luño, J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int., 2008, 74(111), S4-S9.
[http://dx.doi.org/10.1038/ki.2008.516] [PMID: 19034325]
[174]
Battancs, E. Research on the synergism of smoking and periodontal disease in patients with rheumatoid arthritis and diabetes; Doctoral dissertation, szte, 2021.
[175]
Alqahtani, J.S.; Oyelade, T.; Aldhahir, A.M.; Alghamdi, S.M.; Almehmadi, M.; Alqahtani, A.S.; Quaderi, S.; Mandal, S.; Hurst, J.R. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: A rapid systematic review and meta-analysis. PLoS One, 2020, 15(5), e0233147.
[http://dx.doi.org/10.1371/journal.pone.0233147] [PMID: 32392262]
[176]
de Lucas-Ramos, P.; Izquierdo-Alonso, J.L.; Rodriguez-Gonzalez Moro, J.M.; Frances, J.F.; Lozano, P.V.; Bellón-Cano, J.M. Chronic obstructive pulmonary disease as a cardiovascular risk factor. Results of a case-control study (CONSISTE study). Int. J. Chron. Obstruct. Pulmon. Dis., 2012, 7, 679-686.
[PMID: 23055717]
[177]
Chung, K.F.; Caramori, G.; Adcock, I.M. Inhaled corticosteroids as combination therapy with β-adrenergic agonists in airways disease: Present and future. Eur. J. Clin. Pharmacol., 2009, 65(9), 853-871.
[http://dx.doi.org/10.1007/s00228-009-0682-z] [PMID: 19557399]
[178]
Babu, K.S.; Kastelik, J.A.; Morjaria, J.B. Inhaled corticosteroids in chronic obstructive pulmonary disease: A pro-con perspective. Br. J. Clin. Pharmacol., 2014, 78(2), 282-300.
[http://dx.doi.org/10.1111/bcp.12334] [PMID: 25099256]
[179]
Erener, S. Diabetes, infection risk and COVID-19. Mol. Metab., 2020, 39, 101044.
[http://dx.doi.org/10.1016/j.molmet.2020.101044] [PMID: 32585364]
[180]
Jensen, A.V.; Egelund, G.B.; Andersen, S.B.; Trier Petersen, P.; Benfield, T.; Faurholt-Jepsen, D.; Rohde, G.; Ravn, P. The impact of blood glucose on community-acquired pneumonia: A retrospective cohort study. ERJ Open Res., 2017, 3(2), 00114-02016.
[http://dx.doi.org/10.1183/23120541.00114-2016] [PMID: 28656133]
[181]
O’Grady, K.A.; Hall, K.; Bell, A.; Chang, A.; Potter, C. Review of respiratory diseases among aboriginal and torres strait islander children. Aust. Indigen. Health Bull., 2018, 18(2), 1-32.
[182]
Unnikrishnan, A.G.; Kalra, S.; Purandare, V.; Vasnawala, H. Genital infections with sodium glucose cotransporter-2 inhibitors: Occurrence and management in patients with type 2 diabetes mellitus. Indian J. Endocrinol. Metab., 2018, 22(6), 837-842.
[http://dx.doi.org/10.4103/ijem.IJEM_159_17] [PMID: 30766827]
[183]
Peng, J.; Narasimhan, S.; Marchesi, J.R.; Benson, A.; Wong, F.S.; Wen, L. Long term effect of gut microbiota transfer on diabetes development. J. Autoimmun., 2014, 53, 85-94.
[http://dx.doi.org/10.1016/j.jaut.2014.03.005] [PMID: 24767831]
[184]
Brennan, A.L.; Beynon, J. Clinical updates in cystic fibrosis–related diabetes. In: In Seminars in Respiratory and Critical Care Medicine; Thieme Medical Publishers, 2015; 36, pp. (2)236-250.
[http://dx.doi.org/10.1055/s-0035-1547319]
[185]
Henry, R.R.; Mudaliar, S.R.D.; Howland, W.C., III; Chu, N.; Kim, D.; An, B.; Reinhardt, R.R. Inhaled insulin using the AERx insulin diabetes management system in healthy and asthmatic subjects. Diabetes Care, 2003, 26(3), 764-769.
[http://dx.doi.org/10.2337/diacare.26.3.764] [PMID: 12610035]
[186]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol., 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[187]
Allanore, Y.; Simms, R.; Distler, O.; Trojanowska, M.; Pope, J.; Denton, C.P.; Varga, J. Systemic sclerosis. Nat. Rev. Dis. Primers, 2015, 1(1), 15002.
[http://dx.doi.org/10.1038/nrdp.2015.2] [PMID: 27189141]
[188]
Greger, M.; Stone, G. How not to die: Discover the foods scientifically proven to prevent and reverse disease; Pan Macmillan, Flatiron Books: NY, 2016.
[189]
Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; Guyatt, G.H. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol., 2011, 64(4), 401-406.
[http://dx.doi.org/10.1016/j.jclinepi.2010.07.015] [PMID: 21208779]
[190]
Thébaud, B.; Goss, K.N.; Laughon, M.; Whitsett, J.A.; Abman, S.H.; Steinhorn, R.H.; Aschner, J.L.; Davis, P.G.; McGrath-Morrow, S.A.; Soll, R.F.; Jobe, A.H. Bronchopulmonary dysplasia. Nat. Rev. Dis. Primers, 2019, 5(1), 78.
[http://dx.doi.org/10.1038/s41572-019-0127-7] [PMID: 31727986]
[191]
Buendía-Roldán, I.; Mejía, M.; Navarro, C.; Selman, M. Idiopathic pulmonary fibrosis: Clinical behavior and aging associated comorbidities. Respir. Med., 2017, 129, 46-52.
[http://dx.doi.org/10.1016/j.rmed.2017.06.001] [PMID: 28732835]
[192]
Serveaux-Dancer, M.; Jabaudon, M.; Creveaux, I.; Belville, C.; Blondonnet, R.; Gross, C.; Constantin, J.M.; Blanchon, L.; Sapin, V. Pathological implications of receptor for advanced glycation end-product (AGER) gene polymorphism. Dis. Markers, 2019, 2019(Oct), 1-17.
[http://dx.doi.org/10.1155/2019/2067353] [PMID: 30863465]
[193]
Ding, Q.; Luckhardt, T.; Hecker, L.; Zhou, Y.; Liu, G.; Antony, V.B.; deAndrade, J.; Thannickal, V.J. New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis. Drugs, 2011, 71(8), 981-1001.
[http://dx.doi.org/10.2165/11591490-000000000-00000] [PMID: 21668038]
[194]
Raguraman, R.; Srivastava, A.; Munshi, A.; Ramesh, R. Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv. Drug Deliv. Rev., 2021, 178, 113918.
[http://dx.doi.org/10.1016/j.addr.2021.113918] [PMID: 34375681]
[195]
Mohajan, D.; Mohajan, H.K. Basic concepts of diabetics mellitus for the welfare of general patients. Studies Social Sci. Humanit., 2023, 2(6), 23-31.
[http://dx.doi.org/10.56397/SSSH.2023.06.03]
[196]
Li, H.; Li, M.; Dong, S.; Dong, A.; Wang, J.; Zhu, Y.; Deng, Y.; Chen, S.; Zhang, M. Preliminary study of the interactive effects of coronary heart disease and lacunar infarction on renal function in patients with type 2 diabetes mellitus by gender. J. Diabetes Compl., 2023, 37(6), 108477.
[http://dx.doi.org/10.1016/j.jdiacomp.2023.108477] [PMID: 37121118]
[197]
Marcu, D.T.M.; Adam, C.A.; Mitu, F.; Cumpat, C.; Aursulesei Onofrei, V.; Zabara, M.L.; Burlacu, A.; Crisan Dabija, R. Cardiovascular involvement in tuberculosis: From pathophysiology to diagnosis and complications-A narrative review. Diagnostics, 2023, 13(3), 432.
[http://dx.doi.org/10.3390/diagnostics13030432] [PMID: 36766543]
[198]
van Crevel, R.; Critchley, J.A. The interaction of diabetes and tuberculosis: Translating research to policy and practice. Trop. Med. Infect. Dis., 2021, 6(1), 8.
[http://dx.doi.org/10.3390/tropicalmed6010008] [PMID: 33435609]
[199]
Driskell, O.J.; Holland, D.; Waldron, J.L.; Ford, C.; Scargill, J.J.; Heald, A.; Tran, M.; Hanna, F.W.; Jones, P.W.; Pemberton, R.J.; Fryer, A.A. Reduced testing frequency for glycated hemoglobin, HbA1c, is associated with deteriorating diabetes control. Diabetes Care, 2014, 37(10), 2731-2737.
[http://dx.doi.org/10.2337/dc14-0297] [PMID: 25249670]
[200]
Jiang, Y.; Fu, X.; Lu, S.; Niu, Y.; Wang, Q.; Xie, T.; Dong, W.; Jia, C.; Yang, R.; Lu, Y.; Zhu, J. Tissue repair and regeneration disorders: Repair and regeneration of chronic refractory wounds; Regenerative Medicine in China, 2021, pp. 139-178.
[http://dx.doi.org/10.1007/978-981-16-1182-7_5]
[201]
Dwibedi, C.; Mellergård, E.; Gyllensten, A.C.; Nilsson, K.; Axelsson, A.S.; Bäckman, M.; Sahlgren, M.; Friend, S.H.; Persson, S.; Franzén, S.; Abrahamsson, B.; Carlsson, K.S.; Rosengren, A.H. Effect of self-managed lifestyle treatment on glycemic control in patients with type 2 diabetes. NPJ Digit. Med., 2022, 5(1), 60.
[http://dx.doi.org/10.1038/s41746-022-00606-9] [PMID: 35545657]
[202]
Forget, E.J.; Menzies, D. Adverse reactions to first-line antituberculosis drugs. Expert Opin. Drug Saf., 2006, 5(2), 231-249.
[http://dx.doi.org/10.1517/14740338.5.2.231] [PMID: 16503745]
[203]
Dolan, C.; McHugh, J.; Lawlor, B. Diabetes and brain health: Implications for practice. Ir. J. Psychol. Med., 2016, 33(3), 179-191.
[http://dx.doi.org/10.1017/ipm.2015.55] [PMID: 30115190]
[204]
Singh, M.; Bhardwaj, A.K.; Kumar, D. Feasibility assessment of facility based blood glucose monitoring among patients with tuberculosis in North India. J. Compr. Health., 2018, 6(2), 103-111.
[http://dx.doi.org/10.53553/JCH.v06i02.009]
[205]
Waugh, N.; Cummins, E.; Royle, P.; Clar, C.; Marien, M.; Richter, B.; Philip, S. Newer agents for blood glucose control in type 2 diabetes: Systematic review and economic evaluation. Health Technol. Assess., 2010, 14(36), 1-248.
[http://dx.doi.org/10.3310/hta14360] [PMID: 20646668]
[206]
The Diabetes Control and Complications Trial Research Group. Hypoglycemia in the diabetes control and complications trial. Diabetes, 1997, 46(2), 271-286.
[http://dx.doi.org/10.2337/diab.46.2.271] [PMID: 9000705]
[207]
Lorent, N.; Kong, C.; Kim, T.; Sam, S.; Thai, S.; Colebunders, R.; Rigouts, L.; Lynen, L. Systematic screening for drug-resistant tuberculosis with Xpert® MTB/RIF in a referral hospital in Cambodia. Int. J. Tuberc. Lung Dis., 2015, 19(12), 1528-1535.
[http://dx.doi.org/10.5588/ijtld.14.0956] [PMID: 26614197]
[208]
Harrigan, R.A.; Nathan, M.S.; Beattie, P. Oral agents for the treatment of type 2 diabetes mellitus: Pharmacology, toxicity, and treatment. Ann. Emerg. Med., 2001, 38(1), 68-78.
[http://dx.doi.org/10.1067/mem.2001.114314] [PMID: 11423816]
[209]
Mahmood, R.; Maccourtney, D.; Vashi, M.; Mohamed, A. A case of metformin-associated lactic acidosis. Cureus, 2023, 15(4), e38222.
[http://dx.doi.org/10.7759/cureus.38222] [PMID: 37252492]
[210]
Hayat, M.; Ahmad, N.; Khan, S.L.A.; Mohkumuddin, S.; Siddique, W.; Khan, A.; Atif, M. Pattern, frequency and factors associated with inappropriate high dosing in chronic kidney disease patients at a tertiary care hospital in Pakistan. BMC Nephrol., 2023, 24(1), 118.
[http://dx.doi.org/10.1186/s12882-023-03167-5] [PMID: 37127612]
[211]
Khadanga, S.; Barrett, K.; Sheahan, K.H.; Savage, P.D. Novel therapeutics for type 2 diabetes, obesity, and heart failure. J. Cardiopulm. Rehabil. Prev., 2023, 43(1), 1-7.
[http://dx.doi.org/10.1097/HCR.0000000000000761] [PMID: 36576423]
[212]
Alyami, S.M.; Alrasheed, S.K.; Albogami, B.A.; Albugami, B.A. Metformin-induced eosinophilic interstitial lung disease. Cureus, 2023, 15(4), e38339.
[http://dx.doi.org/10.7759/cureus.38339] [PMID: 37261145]
[213]
Xie, C.; Ya, Likun. M.M.; Luo, Q.; Dong, J. Role of cellular senescence in inflammatory lung diseases. Cytokine Growth Factor Rev., 2023, 70, 26-40.
[http://dx.doi.org/10.1016/j.cytogfr.2023.02.001] [PMID: 36797117]
[214]
Tseng, D.Y.; Wang, S.T.; Ballantyne, R.; Liu, C.H. Adenosine 5′-monophosphate-activated protein kinase (AMPK) negatively regulates the immunity and resistance to Vibrio alginolyticus of white shrimp, Penaeus vannamei. Fish Shellfish Immunol., 2023, 139, 108884.
[http://dx.doi.org/10.1016/j.fsi.2023.108884] [PMID: 37302677]
[215]
Zhang, A.; Qian, F.; Li, Y.; Li, B.; Yang, F.; Hu, C.; Sun, W.; Huang, Y. Research progress of metformin in the treatment of liver fibrosis. Int. Immunopharmacol., 2023, 116, 109738.
[http://dx.doi.org/10.1016/j.intimp.2023.109738] [PMID: 36696857]
[216]
Ishikane, S.; Arioka, M.; Takahashi-Yanaga, F. Promising small molecule anti-fibrotic agents: Newly developed or repositioned drugs targeting myofibroblast transdifferentiation. Biochem. Pharmacol., 2023, 214, 115663.
[http://dx.doi.org/10.1016/j.bcp.2023.115663] [PMID: 37336252]
[217]
Zhang, Y.; Gao, Z.; Pan, Z.; Fu, H.; Jiang, F.; Yan, H.; Yang, B.; He, Q.; Luo, P.; Xu, Z.; Yang, X. Temporary removal: Crizotinib induces pulmonary toxicity by blocking autophagy flux in alveolar epithelial cells. Biochem. Pharmacol., 2023, 115636, 115636.
[http://dx.doi.org/10.1016/j.bcp.2023.115636] [PMID: 37290598]
[218]
Covington, T.A.; Pilz, P.M.; Mulhern, R.M.; Ngoy, S.; Loscalzo, A.; Liu, J.; Fisch, S.; Grune, J. GPx3 deficiency exacerbates maladaptive right ventricular remodeling in experimental pulmonary artery banding. Am. J. Physiol. Lung Cell. Mol. Physiol., 2023, 324(4), L550-L556.
[http://dx.doi.org/10.1152/ajplung.00379.2022] [PMID: 36880685]
[219]
Wallace, S.R.; Pagano, P.J.; Kračun, D. MicroRNAs in the regulation of NADPH oxidases in vascular diabetic and ischemic pathologies: A case for alternate inhibitory strategies? Antioxidants, 2022, 12(1), 70.
[http://dx.doi.org/10.3390/antiox12010070] [PMID: 36670932]
[220]
Ji, H.; Dong, H.; Lan, Y.; Bi, Y.; Gu, X.; Han, Y.; Yang, C.; Cheng, M.; Gao, J. Metformin attenuates fibroblast activation during pulmonary fibrosis by targeting S100A4 via AMPK-STAT3 axis. Front. Pharmacol., 2023, 14, 1089812.
[http://dx.doi.org/10.3389/fphar.2023.1089812] [PMID: 36817136]
[221]
Ryan, E.A.; Lakey, J.R.T.; Paty, B.W.; Imes, S.; Korbutt, G.S.; Kneteman, N.M.; Bigam, D.; Rajotte, R.V.; Shapiro, A.M.J. Successful islet transplantation: Continued insulin reserve provides long-term glycemic control. Diabetes, 2002, 51(7), 2148-2157.
[http://dx.doi.org/10.2337/diabetes.51.7.2148] [PMID: 12086945]
[222]
Blonde, L.; Umpierrez, G.E.; Reddy, S.S.; McGill, J.B.; Berga, S.L.; Bush, M.; Chandrasekaran, S.; DeFronzo, R.A.; Einhorn, D.; Galindo, R.J.; Gardner, T.W.; Garg, R.; Garvey, W.T.; Hirsch, I.B.; Hurley, D.L.; Izuora, K.; Kosiborod, M.; Olson, D.; Patel, S.B.; Pop-Busui, R.; Sadhu, A.R.; Samson, S.L.; Stec, C.; Tamborlane, W.V., Jr; Tuttle, K.R.; Twining, C.; Vella, A.; Vellanki, P.; Weber, S.L. American association of clinical endocrinology clinical practice guideline: Developing a diabetes mellitus comprehensive care plan-2022 update. Endocr. Pract., 2022, 28(10), 923-1049.
[http://dx.doi.org/10.1016/j.eprac.2022.08.002] [PMID: 35963508]
[223]
Scheen, A.J. Drug treatment of non-insulin-dependent diabetes mellitus in the 1990s. Achievements and future developments. Drugs, 1997, 54(3), 355-368.
[http://dx.doi.org/10.2165/00003495-199754030-00001] [PMID: 9279500]
[224]
Sim, A.Y.; Barua, S.; Kim, J.Y.; Lee, Y.; Lee, J.E. Role of DPP-4 and SGLT2 inhibitors connected to Alzheimer disease in type 2 diabetes mellitus. Front. Neurosci., 2021, 15, 708547.
[http://dx.doi.org/10.3389/fnins.2021.708547] [PMID: 34489627]
[225]
Scheen, A.J. Metformin and COVID-19: From cellular mechanisms to reduced mortality. Diabetes Metab., 2020, 46(6), 423-426.
[http://dx.doi.org/10.1016/j.diabet.2020.07.006] [PMID: 32750451]
[226]
Tonelli, J.; Li, W.; Kishore, P.; Pajvani, U.B.; Kwon, E.; Weaver, C.; Scherer, P.E.; Hawkins, M. Mechanisms of early insulin-sensitizing effects of thiazolidinediones in type 2 diabetes. Diabetes, 2004, 53(6), 1621-1629.
[http://dx.doi.org/10.2337/diabetes.53.6.1621] [PMID: 15161771]
[227]
Meregildo-Rodriguez, E.D.; Asmat-Rubio, M.G.; Zavaleta-Alaya, P.; Vásquez-Tirado, G.A. Effect of oral antidiabetic drugs on tuberculosis risk and treatment outcomes: systematic review and meta-analysis. Trop. Med. Infect. Dis., 2022, 7(11), 343.
[http://dx.doi.org/10.3390/tropicalmed7110343] [PMID: 36355885]
[228]
Joentausta, R.M.; Rannikko, A.; Murtola, T.J. Prostate cancer–specific survival after radical prostatectomy is improved among metformin users but not among other antidiabetic drug users. Europ. Urol. Open Sci., 2021, 34, 86-93.
[http://dx.doi.org/10.1016/j.euros.2021.10.002]
[229]
Umpierrez, G.E.; Murphy, M.B.; Kitabchi, A.E. Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome. Diabetes Spectr., 2002, 15(1), 28-36.
[http://dx.doi.org/10.2337/diaspect.15.1.28]
[230]
Kendall, D.M.; Cuddihy, R.M.; Bergenstal, R.M. Clinical application of incretin-based therapy: Therapeutic potential, patient selection and clinical use. Am. J. Med., 2009, 122(6)(Suppl.), S37-S50.
[http://dx.doi.org/10.1016/j.amjmed.2009.03.015] [PMID: 19464427]
[231]
Mily, A.; Sarker, P.; Taznin, I.; Hossain, D.; Haq, M.A.; Kamal, S.M.M.; Agerberth, B.; Brighenti, S.; Raqib, R. Slow radiological improvement and persistent low-grade inflammation after chemotherapy in tuberculosis patients with type 2 diabetes. BMC Infect. Dis., 2020, 20(1), 933.
[http://dx.doi.org/10.1186/s12879-020-05473-x] [PMID: 33287713]
[232]
Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, 2017, 252, 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[233]
Klatman, E.L.; Jenkins, A.J.; Ahmedani, M.Y.; Ogle, G.D. Blood glucose meters and test strips: Global market and challenges to access in low-resource settings. Lancet Diabetes Endocrinol., 2019, 7(2), 150-160.
[http://dx.doi.org/10.1016/S2213-8587(18)30074-3] [PMID: 30072234]
[234]
Alsultan, A.; Peloquin, C.A. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs, 2014, 74(8), 839-854.
[http://dx.doi.org/10.1007/s40265-014-0222-8] [PMID: 24846578]
[235]
Mirsaeidi, M.; Sadikot, R.T. Patients at high risk of tuberculosis recurrence. Int. J. Mycobacteriol., 2018, 7(1), 1-6.
[http://dx.doi.org/10.1016/j.ijmyco.2013.01.004] [PMID: 29516879]
[236]
Owiti, P.; Keter, A.; Harries, A.D.; Pastakia, S.; Wambugu, C.; Kirui, N.; Kasera, G.; Momanyi, R.; Masini, E.; Some, F.; Gardner, A. Diabetes and pre-diabetes in tuberculosis patients in western Kenya using point-of-care glycated haemoglobin. Public Health Action, 2017, 7(2), 147-154.
[http://dx.doi.org/10.5588/pha.16.0114] [PMID: 28695089]
[237]
Liu, Q.; Li, W.; Xue, M.; Chen, Y.; Du, X.; Wang, C.; Han, L.; Tang, Y.; Feng, Y.; Tao, C.; He, J.Q. Diabetes mellitus and the risk of multidrug resistant tuberculosis: A meta-analysis. Sci. Rep., 2017, 7(1), 1090.
[http://dx.doi.org/10.1038/s41598-017-01213-5] [PMID: 28439071]
[238]
Gillespie, S.H. Evolution of drug resistance in Mycobacterium tuberculosis: Clinical and molecular perspective. Antimicrob. Agents Chemother., 2002, 46(2), 267-274.
[http://dx.doi.org/10.1128/AAC.46.2.267-274.2002] [PMID: 11796329]
[239]
Quispe, N.; Asencios, L.; Obregon, C.; Velásquez, G.E.; Mitnick, C.D.; Lindeborg, M.; Jave, H.; Solari, L. The fourth national anti-tuberculosis drug resistance survey in Peru. Int. J. Tuberc. Lung Dis., 2020, 24(2), 207-213.
[http://dx.doi.org/10.5588/ijtld.19.0186] [PMID: 32127106]
[240]
Sharma, S.K.; Mohan, A.; Sharma, A. Challenges in the diagnosis & treatment of miliary tuberculosis. Indian J. Med. Res., 2012, 135(5), 703-730.
[PMID: 22771605]
[241]
Jiménez-Ruiz, C.A.; Andreas, S.; Lewis, K.E.; Tonnesen, P.; van Schayck, C.P.; Hajek, P.; Tonstad, S.; Dautzenberg, B.; Fletcher, M.; Masefield, S.; Powell, P.; Hering, T.; Nardini, S.; Tonia, T.; Gratziou, C. Statement on smoking cessation in COPD and other pulmonary diseases and in smokers with comorbidities who find it difficult to quit. Eur. Respir. J., 2015, 46(1), 61-79.
[http://dx.doi.org/10.1183/09031936.00092614] [PMID: 25882805]
[242]
Mokti, K.; Isa, Z.; Abdul Manaf, M.R.; Hayati, F.; Syed Abd Rahim, S.S. Nutritional burden in tuberculosis and inter-sectoral nutritional management for tuberculosis patients in Malaysia. Turk. Klin. Tip Bilim. Derg., 2020, 40(1), 83-95.
[http://dx.doi.org/10.5336/medsci.2019-70810]
[243]
Zhang, S.; Pan, H.; Peng, X.; Lu, H.; Fan, H.; Zheng, X.; Xu, G.; Wang, M.; Wang, J. Preventive use of a hepatoprotectant against anti‐tuberculosis drug‐induced liver injury: A randomized controlled trial. J. Gastroenterol. Hepatol., 2016, 31(2), 409-416.
[http://dx.doi.org/10.1111/jgh.13070] [PMID: 26243373]
[244]
Biberoğlu, S.; İpekci, A.; İkizceli, İ.; Çakmak, F.; Akdeniz, Y.S.; Kanbakan, A.; Konukoğlu, D.; Bolayırlı, İ.M.; Börekçi, Ş.; Ürkmez, S.; Özkan, S. Role of plasma angiotensin II and angiotensin-converting enzyme 2 levels on prognosis and mortality in hypertensive patients with COVID-19. Biomarkers Med., 2021, 15(17), 1581-1588.
[http://dx.doi.org/10.2217/bmm-2021-0121] [PMID: 34704822]
[245]
Bansal, A. Respiratory acidosis, respiratory alkalosis, and mixed acid-base disorders. In: . Feehally, J.; (Eds.) Comprehensive Clinical Nephrology-e-book; Elsevier, 2023; pp. 170-183.e1.
[246]
Trandafir, L.M.; Frăsinariu, O.E.; Țarcă, E.; Butnariu, L.I.; Leon Constantin, M.M.; Moscalu, M.; Temneanu, O.R.; Melinte Popescu, A.S.; Popescu, M.G.M.; Stârcea, I.M.; Cojocaru, E.; Moisa, S.M. Can bioactive food substances contribute to cystic fibrosis-related cardiovascular disease prevention? Nutrients, 2023, 15(2), 314.
[http://dx.doi.org/10.3390/nu15020314] [PMID: 36678185]
[247]
Chen, Q.; Su, H.; Yu, X.; Chen, Y.; Ding, X.; Xiong, B.; Wang, C.; Xia, L.; Ye, T.; Lan, K.; Hou, J.; Xiong, S.; Cai, L. The stress hyperglycemia ratio improves the predictive ability of the GRACE score for in-hospital mortality in patients with acute myocardial infarction. Hellenic J. Cardiol., 2023, 70, 36-45.
[http://dx.doi.org/10.1016/j.hjc.2022.12.012] [PMID: 36586422]
[248]
Riza, A.L.; Pearson, F.; Ugarte-Gil, C.; Alisjahbana, B.; van de Vijver, S.; Panduru, N.M.; Hill, P.C.; Ruslami, R.; Moore, D.; Aarnoutse, R.; Critchley, J.A.; van Crevel, R. Clinical management of concurrent diabetes and tuberculosis and the implications for patient services. Lancet Diabetes Endocrinol., 2014, 2(9), 740-753.
[http://dx.doi.org/10.1016/S2213-8587(14)70110-X] [PMID: 25194887]
[249]
Yusuff, K.B.; Obe, O.; Joseph, B.Y. Adherence to anti-diabetic drug therapy and self management practices among type-2 diabetics in Nigeria. Pharm. World Sci., 2008, 30(6), 876-883.
[http://dx.doi.org/10.1007/s11096-008-9243-2] [PMID: 18784982]
[250]
Aljasir, B.; Bryson, M.; Al-shehri, B. Yoga practice for the management of type II diabetes mellitus in adults: A systematic review. Evid. Based Complement. Alternat. Med., 2010, 7(4), 399-408.
[http://dx.doi.org/10.1093/ecam/nen027] [PMID: 18955338]
[251]
Zaharieva, D.P.; Morrison, D.; Paldus, B.; Lal, R.A.; Buckingham, B.A.; O’Neal, D.N. Practical aspects and exercise safety benefits of automated insulin delivery systems in type 1 diabetes. Diabetes Spectr., 2023, 36(2), 127-136.
[http://dx.doi.org/10.2337/dsi22-0018] [PMID: 37193203]
[252]
Nozawa, K.; Suzuki, T.; Kayanuma, G.; Yamamoto, H.; Nagayasu, K.; Shirakawa, H.; Kaneko, S. Lisinopril prevents bullous pemphigoid induced by dipeptidyl peptidase 4 inhibitors via the Mas receptor pathway. Front. Immunol., 2023, 13, 1084960.
[http://dx.doi.org/10.3389/fimmu.2022.1084960] [PMID: 36685490]
[253]
Murin, S.; Bilello, K.S.; Matthay, R. Other smoking-affected pulmonary diseases. Clin. Chest Med., 2000, 21(1), 121-137. ix.
[http://dx.doi.org/10.1016/S0272-5231(05)70012-5] [PMID: 10763094]
[254]
Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med., 2012, 18(7), 1028-1040.
[http://dx.doi.org/10.1038/nm.2807] [PMID: 22772564]
[255]
Yang, F.; Luo, X.; Li, J.; Lei, Y.; Zeng, F.; Huang, X.; Lan, Y.; Liu, R. Application of glucagon-like peptide-1 receptor antagonists in fibrotic diseases. Biomed. Pharmacother., 2022, 152, 113236.
[http://dx.doi.org/10.1016/j.biopha.2022.113236] [PMID: 35691154]
[256]
Rosenstock, J. Management of type 2 diabetes mellitus in the elderly: Special considerations. Drugs Aging, 2001, 18(1), 31-44.
[http://dx.doi.org/10.2165/00002512-200118010-00003] [PMID: 11232737]
[257]
Wang, X.; Chan, Y.S.; Wong, K.; Yoshitake, R.; Sadava, D.; Synold, T.W.; Frankel, P.; Twardowski, P.W.; Lau, C.; Chen, S. Mechanism-driven and clinically focused development of botanical foods as multitarget anticancer medicine: Collective perspectives and insights from preclinical studies, ind applications and early-phase clinical trials. Cancers, 2023, 15(3), 701.
[http://dx.doi.org/10.3390/cancers15030701] [PMID: 36765659]
[258]
Cáceres, G.; Calderon, R.; Ugarte-Gil, C. Tuberculosis and comorbidities: Treatment challenges in patients with comorbid diabetes mellitus and depression. Ther. Adv. Infect. Dis., 2022, 9.
[http://dx.doi.org/10.1177/20499361221095831] [PMID: 35646347]
[259]
Patel, N.; Das, P.; Jain, D. Systemic manifestations of gastrointestinal tract diseases and systemic diseases involving the gastrointestinal tract. insurgical pathology of the gastrointestinal system: Volume i-gastrointestinal tract; Springer: Singapore, 2022, pp. 521-572.
[http://dx.doi.org/10.1007/978-981-16-6395-6_14]
[260]
Sharma, S.K.; Sharma, A.; Kadhiravan, T.; Tharyan, P. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Evid. Based Child Health, 2014, 9(1), 169-294.
[http://dx.doi.org/10.1002/ebch.1962] [PMID: 25404581]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy