Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

A Review of miRNA Regulation in Japanese Encephalitis (JEV) Virus Infection

Author(s): Maneesh Kumar, Ganesh Chandra Sahoo*, Vidya Nand Rabi Das, Kamal Singh and Krishna Pandey

Volume 25, Issue 5, 2024

Published on: 04 October, 2023

Page: [521 - 533] Pages: 13

DOI: 10.2174/0113892010241606231003102047

Price: $65

conference banner
Abstract

Japanese encephalitis (JE) is a mosquito-borne disease that causes neuronal damage and inflammation of microglia, and in severe cases, it can be fatal. JE infection can resist cellular immune responses and survive in host cells. Japanese encephalitis virus (JEV) infects macrophages and peripheral blood lymphocytes. In addition to regulating biological signaling pathways, microRNAs in cells also influence virus-host interactions. Under certain circumstances, viruses can change microRNA production. These changes affect the replication and spread of the virus. Host miRNAs can contain viral pathogenicity by downregulating the antiviral immune response pathways. Simultaneous profiling of miRNA and messenger RNA (mRNA) could help us detect pathogenic factors, and dual RNA detection is possible. This work highlights important miRNAs involved in human JE infection. In this study, we have shown the important miRNAs that play significant roles in JEV infection. We found that during JEV infection, miRNA-155, miRNA-29b, miRNA-15b, miRNA-146a, miRNA-125b-5p, miRNA-30la, miRNA-19b-3p, and miRNA-124, cause upregulation of human genes whereas miRNA-432, miRNA-370, miRNA- 33a-5p, and miRNA-466d-3p are responsible for downregulation of human genes respectively. Further, these miRNAs are also responsible for the inflammatory effects. Although several other miRNAs critical to the JEV life cycle are yet unknown, there is currently no evidence for the role of miRNAs in persistence.

Next »
Graphical Abstract

[1]
Sharma, N.; Verma, R.; Kumawat, K.L.; Basu, A.; Singh, S.K. miR-146a suppresses cellular immune response during Japanese encephalitis virus JaOArS982 strain infection in human microglial cells. J. Neuroinflammation, 2015, 12(1), 30.
[http://dx.doi.org/10.1186/s12974-015-0249-0] [PMID: 25889446]
[2]
Sapkal, G.N.; Gore, M.M.; Wairagkar, N.S.; Ayachit, V.M.; Bondre, V.P. Detection and isolation of Japanese encephalitis virus from blood clots collected during the acute phase of infection. Am. J. Trop. Med. Hyg., 2007, 77(6), 1139-1145.
[http://dx.doi.org/10.4269/ajtmh.2007.77.1139] [PMID: 18165537]
[3]
Thongtan, T.; Thepparit, C.; Smith, D.R. The involvement of microglial cells in Japanese encephalitis infections. Clin. Dev. Immunol., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/890586] [PMID: 22919405]
[4]
Liu, Liu Autoimmune encephalitis after Japanese encephalitis in children: A prospective study. J. Neurol. Sci., 2021, 424, 17394.
[5]
Kumar, M.; Topno, R.; Madhukar, M.; Pandey, K.; Mishra, B.; Sahoo, G.; Singh, A.; Kamble, B.; Das, P. Acute encephalitis syndrome child patient with multi-viral co-infection: A rare case report. J. Med. Appl. Sci., 2019, 9(2), 100-102.
[http://dx.doi.org/10.5455/jmas.23328]
[6]
Filgueira, L.; Lannes, N. Review of emerging Japanese encephalitis virus: New aspects and concepts about entry into the brain and inter-cellular spreading. Pathogens, 2019, 8(3), 111.
[http://dx.doi.org/10.3390/pathogens8030111]
[7]
Chan, Y.C.; Banerjee, J.; Choi, S.Y.; Sen, C.K. miR-210: The master hypoxamir. Microcirculation, 2012, 19(3), 215-223.
[http://dx.doi.org/10.1111/j.1549-8719.2011.00154.x] [PMID: 22171547]
[8]
Tsai, K.W.; Leung, C.M.; Lo, Y.H.; Chen, T.W.; Chan, W.C.; Yu, S.Y.; Tu, Y.T.; Lam, H.C.; Li, S.C.; Ger, L.P.; Liu, W.S.; Chang, H.T. Arm selection preference of microRNA-193a varies in breast cancer. Sci. Rep., 2016, 6(1), 28176.
[http://dx.doi.org/10.1038/srep28176] [PMID: 27307030]
[9]
Bernier, A.; Sagan, S. The diverse roles of microRNAs at the hostΓÇövirus interface. Viruses, 2018, 10(8), 440.
[http://dx.doi.org/10.3390/v10080440] [PMID: 30126238]
[10]
Yang, C.Y.; Chen, Y.H.; Liu, P.J.; Hu, W.C.; Lu, K.C.; Tsai, K.W. The emerging role of miRNAs in the pathogenesis of COVID-19: Protective effects of nutraceutical polyphenolic compounds against SARS-CoV-2 infection. Int. J. Med. Sci., 2022, 19(8), 1340-1356.
[http://dx.doi.org/10.7150/ijms.76168] [PMID: 35928726]
[11]
Zhou, H.; Zhang, J.; Li, B.; Liu, J.; Xu, J.J.; Chen, H.Y. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold- mediated strand displacement amplification reaction. Anal. Chem., 2021, 93(15), 6120-6127.
[http://dx.doi.org/10.1021/acs.analchem.0c05221] [PMID: 33821629]
[12]
Chandan, K.; Gupta, M.; Sarwat, M. Role of host and pathogen-derived microRNAs in immune regulation during infectious and inflammatory diseases. Front. Immunol., 2020, 10, 3081.
[http://dx.doi.org/10.3389/fimmu.2019.03081] [PMID: 32038627]
[13]
Ambike, S.; Cheng, C.C.; Feuerherd, M.; Velkov, S.; Baldassi, D.; Afridi, S.Q.; Porras-Gonzalez, D.; Wei, X.; Hagen, P.; Kneidinger, N.; Stoleriu, M.G.; Grass, V.; Burgstaller, G.; Pichlmair, A.; Merkel, O.M.; Ko, C.; Michler, T. Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread. Nucleic Acids Res., 2022, 50(1), 333-349.
[http://dx.doi.org/10.1093/nar/gkab1248] [PMID: 34928377]
[14]
Levanova, A.; Poranen, M.M. RNA interference as a prospective tool for the control of human viral infections. Front. Microbiol., 2018, 9, 2151.
[http://dx.doi.org/10.3389/fmicb.2018.02151] [PMID: 30254624]
[15]
Takahashi, T.; Heaton, S.M.; Parrish, N.F. Mammalian antiviral systems directed by small RNA. PLoS Pathog., 2021, 17(12), e1010091.
[http://dx.doi.org/10.1371/journal.ppat.1010091] [PMID: 34914813]
[16]
O’Connor, C.M.; Vanicek, J.; Murphy, E.A. Host microRNA regulation of human cytomegalovirus immediate early protein translation promotes viral latency. J. Virol., 2014, 88(10), 5524-5532.
[http://dx.doi.org/10.1128/JVI.00481-14] [PMID: 24599990]
[17]
Zhang, Y.; Fan, M.; Geng, G.; Liu, B.; Huang, Z.; Luo, H.; Zhou, J.; Guo, X.; Cai, W.; Zhang, H. A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region. Retrovirology, 2014, 11(1), 23.
[http://dx.doi.org/10.1186/1742-4690-11-23]
[18]
Liu, Y.G.; Chen, Y.; Wang, X.; Zhao, P.; Zhu, Y.; Qi, Z. Ezrin is essential for the entry of Japanese encephalitis virus into the human brain microvascular endothelial cells. Emerg. Microbes Infect., 2020, 9(1), 1330-1341.
[http://dx.doi.org/10.1080/22221751.2020.1757388] [PMID: 32538298]
[19]
Mukherjee, S.; Arisi, G.M.; Mims, K.; Hollingsworth, G.; O’Neil, K.; Shapiro, L.A. Neuroinflammatory mechanisms of post-traumatic epilepsy. J. Neuroinflammation, 2020, 17(1), 193.
[http://dx.doi.org/10.1186/s12974-020-01854-w] [PMID: 32552898]
[20]
Mo, L.; Zeng, Z.; Deng, R.; Li, Z. sun, J.; Hu, N.; Shi, J.; Hu, Y. Hepatitis A virus-induced hsa-miR-146a-5p attenuates IFN-ß signaling by targeting adaptor protein TRAF6. Arch. Virol., 2021, 166(3), 789-799.
[http://dx.doi.org/10.1007/s00705-021-04952-z] [PMID: 33459883]
[21]
Vigorito, E.; Perks, K.L.; Abreu-Goodger, C.; Bunting, S.; Xiang, Z.; Kohlhaas, S.; Das, P.P.; Miska, E.A.; Rodriguez, A.; Bradley, A.; Smith, K.G.C.; Rada, C.; Enright, A.J.; Toellner, K.M.; MacLennan, I.C.M.; Turner, M. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity, 2007, 27(6), 847-859.
[http://dx.doi.org/10.1016/j.immuni.2007.10.009] [PMID: 18055230]
[22]
Sandhu, S.K.; Volinia, S.; Costinean, S.; Galasso, M.; Neinast, R.; Santhanam, R.; Parthun, M.R.; Perrotti, D.; Marcucci, G.; Garzon, R.; Croce, C.M. miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eµ-miR-155 transgenic mouse model. Proc. Natl. Acad. Sci., 2012, 109(49), 20047-20052.
[http://dx.doi.org/10.1073/pnas.1213764109] [PMID: 23169640]
[23]
Arbore, G.; Henley, T.; Biggins, L.; Andrews, S.; Vigorito, E.; Turner, M.; Leyland, R. MicroRNA-155 is essential for the optimal proliferation and survival of plasmablast B cells. Life Sci. Alliance, 2019, 2(3), e201800244.
[http://dx.doi.org/10.26508/lsa.201800244] [PMID: 31097471]
[24]
Thai, T.H.; Calado, D.P.; Casola, S.; Ansel, K.M.; Xiao, C.; Xue, Y.; Murphy, A.; Frendewey, D.; Valenzuela, D.; Kutok, J.L.; Schmidt-Supprian, M.; Rajewsky, N.; Yancopoulos, G.; Rao, A.; Rajewsky, K. Regulation of the germinal center response by microRNA-155. Science, 2007, 316(5824), 604-608.
[http://dx.doi.org/10.1126/science.1141229] [PMID: 17463289]
[25]
Thounaojam, M.C.; Kaushik, D.K.; Kundu, K.; Basu, A. MicroRNA-29b modulates Japanese encephalitis virus-induced microglia activation by targeting tumor necrosis factor alpha-induced protein 3. J. Neurochem., 2014, 129(1), 143-154.
[http://dx.doi.org/10.1111/jnc.12609] [PMID: 24236890]
[26]
Thounaojam, M.C.; Kaushik, D.K.; Basu, A. MicroRNAs in the brain: It’s regulatory role in neuroinflammation. Mol. Neurobiol., 2013, 47(3), 1034-1044.
[http://dx.doi.org/10.1007/s12035-013-8400-3] [PMID: 23315269]
[27]
Thompson, M.R.; Kaminski, J.J.; Kurt-Jones, E.A.; Fitzgerald, K.A. Pattern recognition receptors and the innate immune response to viral infection. Viruses, 2011, 3(6), 920-940.
[http://dx.doi.org/10.3390/v3060920] [PMID: 21994762]
[28]
Rastogi, M.; Singh, S.K. Japanese Encephalitis Virus exploits microRNA-155 to suppress the non-canonical NF-κB pathway in human microglial cells. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2020, 1863(11), 194639.
[http://dx.doi.org/10.3389/fimmu.2019.00104] [PMID: 30778351]
[29]
Hughes, B.M.; Burton, C.S.; Reese, A.; Jabeen, M.F.; Wright, C.; Willis, J.; Khoshaein, N.; Marsh, E.K.; Peachell, P.; Sun, S.C.; Dockrell, D.H.; Marriott, H.M.; Sabroe, I.; Condliffe, A.M.; Prince, L.R. Pellino-l regulates immune responses to haemophilusinfluenzae in models of inflammatory lung disease. Front. Immunol., 2019, 10, 1721.
[http://dx.doi.org/10.3389/fimmu.2019.01721] [PMID: 31417543]
[30]
Graff, J.W.; Dickson, A.M.; McCaffrey, A.P.; Wilson, M.E. Identifying functional microRNAs in macrophages with polarized phenotypes. J. Biol. Chem., 2012, 287(26), 21816-21825.
[http://dx.doi.org/10.1074/jbc.M111.327031] [PMID: 22549785]
[31]
Tahamtan, A.; Inchley, C.S.; Marzban, M.; Tavakoli-Yaraki, M.; Teymoori-Rad, M.; Nakstad, B.; Salimi, V. The role of microRNAs in respiratory viral infection: Friend or foe? Rev. Med. Virol., 2016, 26(6), 389-407.
[http://dx.doi.org/10.1002/rmv.1894] [PMID: 27373545]
[32]
Zhu, B.; Ye, J.; Nie, Y.; Ashraf, U.; Zohaib, A.; Duan, X.; Fu, Z.F.; Song, Y.; Chen, H.; Cao, S. MicroRNA-15b modulates Japanese encephalitis virus–mediated inflammation via targeting RNF125. J. Immunol., 2015, 195(5), 2251-2262.
[http://dx.doi.org/10.4049/jimmunol.1500370] [PMID: 26202983]
[33]
Chen, C.J.; Liao, S.L.; Kuo, M.D.; Wang, Y.M. Astrocytic alteration induced by Japanese encephalitis virus infection. Neuroreport, 2000, 11(9), 1933-1937.
[http://dx.doi.org/10.1097/00001756-200006260-00025] [PMID: 10884046]
[34]
Olson, J.K.; Miller, S.D. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol., 2004, 173(6), 3916-3924.
[http://dx.doi.org/10.4049/jimmunol.173.6.3916] [PMID: 15356140]
[35]
Yue, J.; Tigyi, G. Conservation of miR-15a/16-1 and miR-15b/16-2 clusters. Mamm. Genome, 2010, 21(1-2), 88-94.
[http://dx.doi.org/10.1007/s00335-009-9240-3] [PMID: 20013340]
[36]
Chung, G.E.; Yoon, J.H.; Myung, S.J.; Lee, J.H.; Lee, S.H.; Lee, S.M.; Kim, S.J.; Hwang, S.Y.; Lee, H.S.; Kim, C.Y. High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol. Rep., 2010, 23(1), 113-119.
[PMID: 19956871]
[37]
Satzger, I.; Mattern, A.; Kuettler, U.; Weinspach, D.; Voelker, B.; Kapp, A.; Gutzmer, R. MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int. J. Cancer, 2010, 126(11), 2553-2562.
[http://dx.doi.org/10.1002/ijc.24960] [PMID: 19830692]
[38]
Dai, X.; Zhang, H. sun, S.; Yu, Guo; Kou, Z.; Zhao, M.; Jiang, S.; Zhang, J. Modulation of HBV replication by microRNA-15b in rough targeting hepatocyte nuclear factor Ia. Nucleic Acids Res., 2014, 42(10), 6578-6590.
[http://dx.doi.org/10.1093/nar/gku260] [PMID: 24705650]
[39]
Lu, L.F.; Boldin, M.P.; Chaudhry, A.; Lin, L.L.; Taganov, K.D.; Hanada, T.; Yoshimura, A.; Baltimore, D.; Rudensky, A.Y. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell, 2010, 142(6), 914-929.
[http://dx.doi.org/10.1016/j.cell.2010.08.012] [PMID: 20850013]
[40]
Tang, Y.; Luo, X.; Cui, H.; Ni, X.; Yuan, M.; Guo, Y.; Huang, X.; Zhou, H.; de Vries, N.; Tak, P.P.; Chen, S.; Shen, N. MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum., 2009, 60(4), 1065-1075.
[http://dx.doi.org/10.1002/art.24436] [PMID: 19333922]
[41]
Zeng, Z.; Gong, H.; Li, Y.; Jie, K.; Ding, C.; Shao, Q.; Liu, F.; Zhan, Y.; Nie, C.; Zhu, W.; Qian, K. Upregulation of miR-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury. Exp. Lung Res., 2013, 39(7), 275-282.
[http://dx.doi.org/10.3109/01902148.2013.808285] [PMID: 23848342]
[42]
Taganov, K.D. Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci., 2006, 103(33), 12481-12486.
[http://dx.doi.org/10.1073/pnas.0605298103] [PMID: 16885212]
[43]
Venkatesan, A.; Benavides, D.R. Autoimmune encephalitis and its relation to infection. Curre. neurol. neurosci. rep, 2015, 15(3), 3.
[http://dx.doi.org/10.1007/s11910-015-0529-1]
[44]
Deng, M.; Du, G.; Zhao, J.; Du, X. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells. Arch. Virol., 2017, 162(6), 1495-1505.
[http://dx.doi.org/10.1007/s00705-017-3226-3] [PMID: 28190197]
[45]
Sun, Y.M.; Lin, K.Y.; Chen, Y.Q. Diverse functions of miR-125 family in different cell contexts. J. Hematol. Oncol., 2013, 6(1), 6.
[http://dx.doi.org/10.1186/1756-8722-6-6] [PMID: 23321005]
[46]
Wu, S.; Liu, F. miR-125b suppresses proliferation and invasion by targeting MCLI in gastric cancer. BioMed res. int., 2015, 2015.
[47]
Wu, N.; Lin, X.; Zhao, X.; Zheng, L.; Xiao, L.; Liu, J.; Ge, L.; Cao, S. MiR-125b acts as an oncogene in glioblastoma cells and inhibits cell apoptosis through p53 and p38MAPK-independent pathways. Br. J. Cancer, 2013, 109(11), 2853-2863.
[http://dx.doi.org/10.1038/bjc.2013.672] [PMID: 24169356]
[48]
Surdziel, E.; Cabanski, M.; Dallmann, I.; Lyszkiewicz, M.; Krueger, A.; Ganser, A.; Scherr, M.; Eder, M. Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood, 2011, 117(16), 4338-4348.
[http://dx.doi.org/10.1182/blood-2010-06-289058] [PMID: 21368288]
[49]
Huang, C.F.; Sun, C.C.; Zhao, F.; Zhang, Y.D.; Li, D.J. miR-33a levels in hepatic and serum after chronic HBV-induced fibrosis. J. Gastroenterol., 2015, 50(4), 480-490.
[http://dx.doi.org/10.1007/s00535-014-0986-3] [PMID: 25155445]
[50]
Ashraf, U.; Zhu, B.; Ye, J. wan, S.; Nie, Y.; Chen, Z.; cui, M.; Wang, C.; Zhang, H.; Chen, H. MicroRNA-19b-3p modulates Japanese encephalitis virus-mediated inflammation via targeting RNFI I. J. Virol., 2016, 90(9), 4780-4795.
[http://dx.doi.org/10.1128/JVI.02586-15] [PMID: 26937036]
[51]
Evans, L.P.; Roghair, A.M.; Gilkes, N.J.; Bassuk, A.G. Visual outcomes in experimental rodent models of blast-mediated traumatic brain injury. Front. Mol. Neurosci., 2021, 14, 659576.
[http://dx.doi.org/10.3389/fnmol.2021.659576] [PMID: 33935648]
[52]
Yang, S.; Liu, X.; Li, X.; Sun, S.; Sun, F.; Fan, B.; Zhao, S. MicroRNA-124 reduces caveolar density by targeting caveolin-1 in porcine kidney epithelial PK15 cells. Mol. Cell. Biochem., 2013, 384(1-2), 213-219.
[http://dx.doi.org/10.1007/s11010-013-1800-x] [PMID: 24000013]
[53]
Zhang, Y.; Jing, J.; Li, X.; Wang, J.; Feng, X.; Cao, R.; Chen, P. Integration analysis of miRNA and mRNA expression profiles in swine testis cells infected with Japanese encephalitis virus. Infect. Genet. Evol., 2015, 32, 342-347.
[http://dx.doi.org/10.1016/j.meegid.2015.03.037] [PMID: 25847692]
[54]
Liang, Y.J.; Wang, Q.Y.; Zhou, C.X.; Yin, Q.Q.; He, M.; Yu, X.T.; Cao, D.X.; Chen, G.Q.; He, J.R.; Zhao, Q. MiR-124 targets Slug to regulate epithelial–mesenchymal transition and metastasis of breast cancer. Carcinogenesis, 2013, 34(3), 713-722.
[http://dx.doi.org/10.1093/carcin/bgs383] [PMID: 23250910]
[55]
Zheng, F.; Liao, Y.J.; Cai, M.Y.; Liu, Y.H.; Liu, T.H.; Chen, S.P.; Bian, X.W.; Guan, X.Y.; Lin, M.C.; Zeng, Y.X.; Kung, H.F.; Xie, D. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut, 2012, 61(2), 278-289.
[http://dx.doi.org/10.1136/gut.2011.239145] [PMID: 21672940]
[56]
López, P.; Girardi, E.; Mounce, B.C.; Weiss, A.; Chane-Woon-Ming, B.; Messmer, M.; Kaukinen, P.; Kopp, A.; Bortolamiol-Becet, D.; Fendri, A.; Vignuzzi, M.; Brino, L.; Pfeffer, S. High- throughput fluorescence-based screen identifies the neuronal microRNA miR-124 as a positive regulator of alphavirus infection. J. Virol., 2020, 94(9), e02145-e19.
[http://dx.doi.org/10.1128/JVI.02145-19] [PMID: 32102877]
[57]
Yang, S.; Pei, Y.; Li, X.; Zhao, S.; Zhu, M.; Zhao, A. miR-124 attenuates Japanese encephalitis virus replication by targeting DNM2. Virol. J., 2016, 13(1), 105.
[http://dx.doi.org/10.1186/s12985-016-0562-y] [PMID: 27329300]
[58]
Hazra, B.; Chakraborty, S.; Bhaskar, M.; Mukherjee, S.; Mahadevan, A.; Basu, A. miR 301a regulates inflammatory response to Japanese encephalitis virus infection vi suppression of NKRF activity. J. Immunol., 2019, 203(8), 2222-2238.
[http://dx.doi.org/10.4049/jimmunol.1900003] [PMID: 31527198]
[59]
Hazra, B.; Chakraborty, S.; Basu, A. miR-301a mediated immune evasion by Japanese encephalitis virus. Oncotarget, 2017, 8(53), 90620-90621.
[http://dx.doi.org/10.18632/oncotarget.21674] [PMID: 29207584]
[60]
Sharma, N.; Kumawat, K.L.; Rastogi, M.; Basu, A.; Singh, S.K. Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5. Sci. Rep., 2016, 6(1), 27685.
[http://dx.doi.org/10.1038/srep27685] [PMID: 27282499]
[61]
Cui, W.; Li, W.; Cheng, P.; Nie, S. miR-370 mimic inhibits replication of Japanese encephalitis virus in glioblastoma cells. Neuropsychiatr. Dis. Treat., 2016, 12, 2411-2417.
[http://dx.doi.org/10.2147/NDT.S113236] [PMID: 27703358]
[62]
Goswami, S.; Banerjee, A.; Kumari, B.; Bandopadhyay, B.; Bhattacharya, N.; Basu, N.; Vrati, S.; Banerjee, A. Differential expression and significance of circulating microRNAs in cerebrospinal fluid of acute encephalitis patients infected with Japanese encephalitis virus. Mol. Neurobiol., 2017, 54(2), 1541-1551.
[http://dx.doi.org/10.1007/s12035-016-9764-y] [PMID: 26860411]
[63]
Chiang, K.; Liu, H.; Rice, A.P. miR-132 enhances HIV-I replication. Virology, 2013, (4380), 1-4.
[64]
Lee, C.H.; Kim, J.H.; Lee, S.W. The role of microRNAs in hepatitis C virus replication and related liver diseases. J. microbiol., 2014, 52(6), 445-451.
[http://dx.doi.org/10.1007/s12275-014-4267-x]
[65]
Goedeke, L.; Vales-Lara, F.M.; Fenstermaker, M.; Cirera-Salinas, D.; Chamorro-Jorganes, A.; Ramírez, C.M.; Mattison, J.A.; de Cabo, R.; Suárez, Y.; Fernández-Hernando, C. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol. Cell. Biol., 2013, 33(11), 2339-2352.
[http://dx.doi.org/10.1128/MCB.01714-12] [PMID: 23547260]
[66]
Lendvai, G.; Jármay, K.; Karácsony, G.; Halász, T.; Kovalszky, I.; Baghy, K.; Wittmann, T.; Schaff, Z.; Kiss, A. Elevated miR-33a and miR-224 in steatotic chronic hepatitis C liver biopsies. World J. Gastroenterol., 2014, 20(41), 15343-15350.
[http://dx.doi.org/10.3748/wjg.v20.i41.15343] [PMID: 25386083]
[67]
Chen, Z.; Ye, J.; Ashraf, U.; Li, Y.; Wei, S.; Wan, S.; Zohaib, A.; Song, Y.; Chen, H.; Cao, S. MicroRNA-33a-5p modulates Japanese encephalitis virus replication by targeting eukaryotic translation elongation factor IA l. J. Virol., 2016, 90(7), 3722-3734.
[http://dx.doi.org/10.1128/JVI.03242-15] [PMID: 26819305]
[68]
Vera, M.; Pani, B.; Griffiths, L.A.; Muchardt, C.; Abbott, C.M.; Singer, R.H.; Nudler, E. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife, 2014, 3, e03164.
[http://dx.doi.org/10.7554/eLife.03164] [PMID: 25233275]
[69]
Kumar, P.; Mishra, R.; Topno, R.K.; Kumar, M.; Dinesh, D.S.; Singh, D.K. Seasonal prevalence of japanese encephalitis (je) in patna district of Bihar, India. J. Commun. Dis., 2019, 51(4), 58-61.
[70]
Zhu, B.; Ye, J.; Ashraf, U.; Li, Y.; Song, Y.; Cao, S. Transcriptional regulation of miR-15b by c-Rel and CREB in Japanese encephalitis virus infection. Sci. Rep., 2016, 6(1), 1-15.
[PMID: 28442746]
[71]
Jiang, H.; Bai, L.; Ji, L.; Bai, Z.; Su, J.; Qin, T.; Wang, G.; Balasubramaniam, V.; Wang, X.; Cui, M.; Ye, J.; Cao, S.; Li, G.; Yang, Y. Degradation of microRNA miR-466d-3p by Japanese encephalitis virus NS3 facilitates viral replication and interleukin-Iß expression. J. Virol., 2020, 94(15), e00294-e20.
[http://dx.doi.org/10.1128/JVI.00294-20] [PMID: 32461319]
[72]
Topno, R.K.; Pandey, K.; Singh, B.B.; Dikhit, M.R.; Kumar, A.; Kumar, M.; Sahoo, G.C.; Rabidas, V.N.; Siddiqui, N.A.; Paswan, W.; Lal, A. Viral etiological factors causing acute encephalitis syndrome (AES) In Gaya Division, India. Hosp. Pract. Res., 2019, 4(3), 92-96.
[http://dx.doi.org/10.15171/hpr.2019.18]
[73]
Kumar, M.; Topno, R.K.; Singh, B.K.; Madhukar, M.; Kamble, B.; Sahoo, G.C.; Das, P.; Pandey, K.; Singh, A. Multiple viral co-infections in a pediatric patient of acute encephalitis syndrome (AES) : An unique case report. Int. J. Trop. Dis. Health, 2020, 41(19), 22-27.
[http://dx.doi.org/10.9734/ijtdh/2020/v41i1930384]
[74]
Turtle, L.; Solomon, T. Japanese encephalitis : The prospects for new treatments. Nat. Rev. Neurol., 2018, 14(5), 298-313.
[http://dx.doi.org/10.1038/nrneurol.2018.30] [PMID: 29697099]
[75]
Chang, C.Y.; Wu, C.C.; Wang, J.D.; Li, J.R.; Wang, Y.Y.; Lin, S.Y.; Chen, W.Y.; Liao, S.L.; Chen, C.J. DHA attenuated Japanese Encephalitis virus infection-induced neuroinflammation and neuronal cell death in cultured rat Neuron/glia. Brain Behav. Immun., 2021, 93, 194-205.
[http://dx.doi.org/10.1016/j.bbi.2021.01.012] [PMID: 33486004]
[76]
Sahoo, G.C.; Dikhit, M.R.; Das, P. Functional assignment to JEV proteins using SVM. Bioinformation, 2008, 3(1), 1-7.
[http://dx.doi.org/10.6026/97320630003001] [PMID: 19052658]
[77]
Patil, R.N.; Karpe, Y.A. Uncovering the roles of miR-214 in hepatitis E virus replication. J. Mol. Biol., 2020, 432(19), 5322-5342.
[http://dx.doi.org/10.1016/j.jmb.2020.07.015]
[78]
Dikhit, M.R.; Sahoo, G.C.; Das, P. JEVBase: An Interactive resource for protein annotation of JE Virus. Int J Biomet Bioinform, 2009, 3(4), 59.
[79]
Rastogi, M.; Singh, S.K. Japanese encephalitis virus exploits microRNA-155 to suppress the non-canonical NF-KB pathway in human microglial cells. biochimicaetbiophysicaacta (BBA)-. Gene Regulatory Mechanisms, 2020, 1863(11), 194639.
[PMID: 32987149]
[80]
Hazra, B.; Chakraborty, S.; Bhaskar, M.; Mukherjee, S.; Mahadevan, A.; Basu, A. miR- 301a regulates inflammatory response to Japanese encephalitis virus infection via suppression of NKRF activity. J. Immunol., 2019, 203(8), 2222-2238.
[http://dx.doi.org/10.4049/jimmunol.1900003] [PMID: 31527198]
[81]
Hazra, B.; Kumawat, K.L.; Basu, A. The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci. Signal., 2017, 10(466), eaaf5185.
[http://dx.doi.org/10.1126/scisignal.aaf5185] [PMID: 28196914]
[82]
Hou, J.; Wang, P.; Lin, L.; Liu, X.; Ma, F.; An, H.; Wang, Z.; Cao, X. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J. Immunol., 2009, 183(3), 2150-2158.
[http://dx.doi.org/10.4049/jimmunol.0900707] [PMID: 19596990]
[83]
Watanabe, H.; Kubo, M.; Numata, K.; Takagi, K.; Mizuta, H.; Okada, S.; Ito, T.; Matsukawa, A. Overexpression of suppressor of cytokine signaling-5 in T cells augments innate immunity during septic peritonitis. J. Immunol. Res., 2006, 177(12), 8650-8657.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy