Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Review on the Drug Intolerance and Vaccine Development for the Leishmaniasis

Author(s): Priya Kumari, Afrin Mamud and Anupam Nath Jha*

Volume 24, Issue 13, 2023

Published on: 04 October, 2023

Page: [1023 - 1031] Pages: 9

DOI: 10.2174/0113894501254585230927100440

Price: $65

Abstract

Leishmaniasis is one of the Neglected Tropical Diseases (NTDs), a zoonotic disease of vector-borne nature that is caused by a protozoan parasite Leishmania. This parasite is transmitted by the vector sandfly into the human via a bite. Visceral leishmaniasis (VL), also called kala-azar, is the most fatal among the types of leishmaniasis, with high mortality mostly spread in the East Africa and South Asia regions. WHO report stated that approximately 3.3 million disabilities occur every year due to the disease along with approximately 50,000 annual deaths. The real matter of concern is that there is no particular effective medicine/vaccine available against leishmaniasis to date except a few approved drugs and chemotherapy for the infected patient. The current selection of small compounds was constrained, and their growing drug resistance had been a major worry. Additionally, the serious side effects on humans of the available therapy or drugs have made it essential to discover efficient and low-cost methods to speed up the development of new drugs against leishmaniasis. Ideally, the vaccine could be a low risk and effective alternative for both CL and VL and elicit long-lasting immunity against the disease. There are a number of vaccine candidates at various stages of clinical development and preclinical stage. However, none has successfully passed all clinical trials. But, the successful development and approval of commercially available vaccines for dogs against canine leishmaniasis (CanL) provides evidence that it can be possible for humans in distant future. In the present article, the approaches used for the development of vaccines for leishmaniasis are discussed and the progress being made is briefly reviewed.

Graphical Abstract

[1]
Alemayehu B, Alemayehu M. Leishmaniasis: A review on parasite, vector and reservoir host. Health Sci J 2017; 11(4): 1.
[http://dx.doi.org/10.21767/1791-809X.1000519]
[2]
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: A review. F1000 Res 2017; 6: 750.
[http://dx.doi.org/10.12688/f1000research.11120.1] [PMID: 28649370]
[3]
Mazein A, Ostaszewski M, Kuperstein I, et al. Systems medicine disease maps: Community-driven comprehensive representation of disease mechanisms. NPJ Syst Biol Appl 2018; 4(1): 21.
[http://dx.doi.org/10.1038/s41540-018-0059-y] [PMID: 29872544]
[4]
Elmahallawy EK, Sampedro Martinez A, Rodriguez-Granger J, et al. Diagnosis of leishmaniasis. J Infect Dev Ctries 2014; 8(8): 961-72.
[http://dx.doi.org/10.3855/jidc.4310] [PMID: 25116660]
[5]
Mansuri R, Singh J, Diwan A. An insight into the current perspective and potential drug targets for visceral leishmaniasis (VL). Curr Drug Targets 2020; 21(11): 1105-29.
[http://dx.doi.org/10.2174/1389450121666200422083735] [PMID: 32321399]
[6]
Kashif M. Screening of novel inhibitors against Leishmania donovani calcium ion channel to fight leishmaniasis. Infect Disord Drug Targets 2017; 17(2): 120-9.
[http://dx.doi.org/10.2174/1871526516666161230124513]
[7]
Hoyos CL. Epidemiology of American tegumentary leishmaniasis and Trypanosoma cruzi infection in the Northwestern Argentina. Biomed Res Int 2016; 2016: 6456031.
[8]
Desjeux P. Leishmaniasis: Current situation and new perspectives. Comp Immunol Microbiol Infect Dis 2004; 27(5): 305-18.
[http://dx.doi.org/10.1016/j.cimid.2004.03.004] [PMID: 15225981]
[9]
Desjeux P. The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg 2001; 95(3): 239-43.
[http://dx.doi.org/10.1016/S0035-9203(01)90223-8] [PMID: 11490989]
[10]
Saha A, Basu M, Ukil A. Recent advances in understanding Leishmania donovani infection: The importance of diverse host regulatory pathways. IUBMB Life 2018; 70(7): 593-601.
[http://dx.doi.org/10.1002/iub.1759] [PMID: 29684241]
[11]
Poinar G Jr, Poinar R. Fossil evidence of insect pathogens. J Invertebr Pathol 2005; 89(3): 243-50.
[http://dx.doi.org/10.1016/j.jip.2005.05.007] [PMID: 16009374]
[12]
Cox F, Lee D. Modern Parasitology: A Textbook of Parasitology. Hoboken, New Jersey: Wiley 1994.
[13]
Channon JY, Roberts MB, Blackwell JM. A study of the differential respiratory burst activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunology 1984; 53(2): 345-55.
[PMID: 6490087]
[14]
McConville MJ, de Souza D, Saunders E, Likic VA, Naderer T. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol 2007; 23(8): 368-75.
[http://dx.doi.org/10.1016/j.pt.2007.06.009] [PMID: 17606406]
[15]
Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002; 420(6915): 502-7.
[http://dx.doi.org/10.1038/nature01152] [PMID: 12466842]
[16]
Gurung P, Karki R, Vogel P, et al. An NLRP3 inflammasome–triggered Th2-biased adaptive immune response promotes leishmaniasis. J Clin Invest 2015; 125(3): 1329-38.
[http://dx.doi.org/10.1172/JCI79526] [PMID: 25689249]
[17]
Sacks D, Anderson C. Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice. Immunol Rev 2004; 201(1): 225-38.
[http://dx.doi.org/10.1111/j.0105-2896.2004.00185.x] [PMID: 15361244]
[18]
Chang K-P, Hendricks L. Laboratory cultivation and maintenance of Leishmania. Human Parasitic Dis 1985; 1: 213-44.
[19]
Gossage SM, Rogers ME, Bates PA. Two separate growth phases during the development of Leishmania in sand flies: Implications for understanding the life cycle. Int J Parasitol 2003; 33(10): 1027-34.
[http://dx.doi.org/10.1016/S0020-7519(03)00142-5] [PMID: 13129524]
[20]
Akhoundi M, Kuhls K, Cannet A, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 2016; 10(3): e0004349.
[http://dx.doi.org/10.1371/journal.pntd.0004349] [PMID: 26937644]
[21]
Vannier-Santos M, Martiny A, Souza W. Cell biology of Leishmania spp.: Invading and evading. Curr Pharm Des 2002; 8(4): 297-318.
[http://dx.doi.org/10.2174/1381612023396230] [PMID: 11860368]
[22]
Gluenz E, Ginger ML, McKean PG. Flagellum assembly and function during the Leishmania life cycle. Curr Opin Microbiol 2010; 13(4): 473-9.
[http://dx.doi.org/10.1016/j.mib.2010.05.008] [PMID: 20541962]
[23]
Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol 2007; 37(10): 1097-106.
[http://dx.doi.org/10.1016/j.ijpara.2007.04.003] [PMID: 17517415]
[24]
Jha AN. Editorial: Computational approaches to build therapeutic paradigms targeting genes, proteins and pathways against neglected tropical diseases (NTDs). Front Genet 2023; 14: 1183034.
[http://dx.doi.org/10.3389/fgene.2023.1183034] [PMID: 37265962]
[25]
Shaker B, Ahmad S, Lee J, Jung C, Na D. in silico methods and tools for drug discovery. Comput Biol Med 2021; 137: 104851.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104851] [PMID: 34520990]
[26]
Agamah FE, Mazandu GK, Hassan R, et al. Computational/in silico methods in drug target and lead prediction. Brief Bioinform 2020; 21(5): 1663-75.
[http://dx.doi.org/10.1093/bib/bbz103] [PMID: 31711157]
[27]
Hazarika Z, Rajkhowa S, Jha AN. Role of Force Fields in Protein Function Prediction.Homology Molecular Modeling-Perspectives and Applications. Houston: IntechOpen 2020.
[28]
Hazarika Z, Jha AN. A Comparative Evaluation of Docking Programs using Influenza Endonuclease as Target Protein. 2020 International Conference on Computational Performance Evaluation (ComPE). Shillong, India . IEEE 2020.
[http://dx.doi.org/10.1109/ComPE49325.2020.9200180]
[29]
Lyndem S, Hazarika U, Athul P, et al. A comprehensive in vitro exploration into the interaction mechanism of coumarin derivatives with bovine hemoglobin: Spectroscopic and computational methods. J Photochem Photobiol Chem 2023; 436: 114425.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114425]
[30]
Indari O, Kumar Singh A, Tiwari D, Chandra Jha H, Nath Jha A. Deciphering antiviral efficacy of malaria box compounds against malaria exacerbating viral pathogens- Epstein Barr virus and SARS-CoV-2, an in silico study. Medicine in Drug Discovery 2022; 16: 100146.
[http://dx.doi.org/10.1016/j.medidd.2022.100146] [PMID: 36415887]
[31]
Borkotoky S, Dey D, Hazarika Z, Joshi A, Tripathi K. Unravelling viral dynamics through molecular dynamics simulations - A brief overview. Biophys Chem 2022; 291: 106908.
[http://dx.doi.org/10.1016/j.bpc.2022.106908] [PMID: 36244086]
[32]
Jha AN, Hazarika Z, Saikia S. Interaction of Nanomaterials with Protein-Peptide. Curr Protein Pept Sci 2022; 23(8): 548-62.
[http://dx.doi.org/10.2174/1389203723666220822152141] [PMID: 36043760]
[33]
Kumari I, Lakhanpal D, Swargam S, Nath Jha A. Leishmaniasis: Omics Approaches to Understand its Biology from Molecule to Cell Level. Curr Protein Pept Sci 2023; 24(3): 229-39.
[http://dx.doi.org/10.2174/1389203724666230210123147] [PMID: 36809951]
[34]
Peacock CS, Seeger K, Harris D, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 2007; 39(7): 839-47.
[http://dx.doi.org/10.1038/ng2053] [PMID: 17572675]
[35]
Sereno D, Cordeiro da Silva A, Mathieu-Daude F, Ouaissi A. Advances and perspectives in Leishmania cell based drug-screening procedures. Parasitol Int 2007; 56(1): 3-7.
[http://dx.doi.org/10.1016/j.parint.2006.09.001] [PMID: 17079188]
[36]
Ogungbe I, Setzer W. in-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules 2013; 18(7): 7761-847.
[http://dx.doi.org/10.3390/molecules18077761] [PMID: 23823876]
[37]
Scotti L, Ishiki H, Mendonca FJB, Silva MS, Scotti MT. In-silico analyses of natural products on leishmania enzyme targets. Mini Rev Med Chem 2015; 15(3): 253-69.
[http://dx.doi.org/10.2174/138955751503150312141854] [PMID: 25769973]
[38]
dos Santos Vasconcelos CR, Rezende AM. Systematic in silico evaluation of Leishmania spp. proteomes for drug discovery. Front Chem 2021; 9: 607139.
[http://dx.doi.org/10.3389/fchem.2021.607139] [PMID: 33987166]
[39]
Chawla B, Madhubala R. Drug targets in Leishmania. J Parasit Dis 2010; 34(1): 1-13.
[http://dx.doi.org/10.1007/s12639-010-0006-3] [PMID: 21526026]
[40]
Saha D, Nath Jha A. Computational multi-target approach to target essential enzymes of Leishmania donovani using comparative molecular dynamic simulations and MMPBSA analysis. Phytochem Anal 2023(Online ahead of print)2023;
[http://dx.doi.org/10.1002/pca.3213]
[41]
Coombs GH, Hart DT, Capaldo J. Leishmania mexicann : Drug sensititvitles of promastigotes and transforming amastigotes. J Antimicrob Chemother 1983; 11(2): 151-62.
[http://dx.doi.org/10.1093/jac/11.2.151] [PMID: 6833171]
[42]
Guerin PJ, Olliaro P, Sundar S, et al. Visceral leishmaniasis: Current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2002; 2(8): 494-501.
[http://dx.doi.org/10.1016/S1473-3099(02)00347-X] [PMID: 12150849]
[43]
Sundar S, More DK, Singh MK, et al. Failure of pentavalent antimony in visceral leishmaniasis in India: Report from the center of the Indian epidemic. Clin Infect Dis 2000; 31(4): 1104-7.
[http://dx.doi.org/10.1086/318121] [PMID: 11049798]
[44]
Ouellette M, Légaré D, Haimeur A, et al. ABC transporters in Leishmania and their role in drug resistance. Drug Resist Updat 1998; 1(1): 43-8.
[http://dx.doi.org/10.1016/S1368-7646(98)80213-6] [PMID: 17092795]
[45]
Sereno D, Cavaleyra M, Zemzoumi K, Maquaire S, Ouaissi A, Lemesre JL. Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother 1998; 42(12): 3097-102.
[http://dx.doi.org/10.1128/AAC.42.12.3097] [PMID: 9835497]
[46]
Gourbal B, Sonuc N, Bhattacharjee H, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 2004; 279(30): 31010-7.
[http://dx.doi.org/10.1074/jbc.M403959200] [PMID: 15138256]
[47]
Jhingran A, Chawla B, Saxena S, Barrett MP, Madhubala R. Paromomycin: Uptake and resistance in Leishmania donovani. Mol Biochem Parasitol 2009; 164(2): 111-7.
[http://dx.doi.org/10.1016/j.molbiopara.2008.12.007] [PMID: 19146886]
[48]
Croft SL, Coombs GH. Leishmaniasis– current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 2003; 19(11): 502-8.
[http://dx.doi.org/10.1016/j.pt.2003.09.008] [PMID: 14580961]
[49]
Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev 2006; 19(1): 111-26.
[http://dx.doi.org/10.1128/CMR.19.1.111-126.2006] [PMID: 16418526]
[50]
Sundar S, Singh A, Rai M, et al. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis 2012; 55(4): 543-50.
[http://dx.doi.org/10.1093/cid/cis474] [PMID: 22573856]
[51]
García-Hernández R, Manzano JI, Castanys S, Gamarro F. Leishmania donovani develops resistance to drug combinations. PLoS Negl Trop Dis 2012; 6(12): e1974.
[http://dx.doi.org/10.1371/journal.pntd.0001974] [PMID: 23285310]
[52]
Hefnawy A, Berg M, Dujardin JC, De Muylder G. Exploiting knowledge on Leishmania drug resistance to support the quest for new drugs. Trends Parasitol 2017; 33(3): 162-74.
[http://dx.doi.org/10.1016/j.pt.2016.11.003] [PMID: 27993477]
[53]
Natera S, Machuca C, Padrón-Nieves M, Romero A, Díaz E, Ponte-Sucre A. Leishmania spp.: Proficiency of drug-resistant parasites. Int J Antimicrob Agents 2007; 29(6): 637-42.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.01.004] [PMID: 17353113]
[54]
Sereno D, Roy G, Lemesre JL, Papadopoulou B, Ouellette M. DNA transformation of Leishmania infantum axenic amastigotes and their use in drug screening. Antimicrob Agents Chemother 2001; 45(4): 1168-73.
[http://dx.doi.org/10.1128/AAC.45.4.1168-1173.2001] [PMID: 11257031]
[55]
Bora N, Nath Jha A. An integrative approach using systems biology, mutational analysis with molecular dynamics simulation to challenge the functionality of a target protein. Chem Biol Drug Des 2019; 93(6): cbdd.13502.
[http://dx.doi.org/10.1111/cbdd.13502] [PMID: 30891955]
[56]
Bora N, Jha AN. In silico metabolic pathway analysis identifying target against leishmaniasis – A kinetic modeling approach. Front Genet 2020; 11: 179.
[http://dx.doi.org/10.3389/fgene.2020.00179] [PMID: 32211028]
[57]
Croft SL, Yardley V, Kendrick H. Drug sensitivity of Leishmania species: Some unresolved problems. Trans R Soc Trop Med Hyg 2002; 96 (Suppl. 1): S127-9.
[http://dx.doi.org/10.1016/S0035-9203(02)90063-5] [PMID: 12055825]
[58]
Fumarola L, Spinelli R, Brandonisio O. In vitro assays for evaluation of drug activity against Leishmania spp. Res Microbiol 2004; 155(4): 224-30.
[http://dx.doi.org/10.1016/j.resmic.2004.01.001] [PMID: 15142618]
[59]
Rajkhowa S, Hazarika Z, Jha AN. Systems biology and bioinformatics approaches in leishmaniasis.Applications of Nanobiotechnology for Neglected Tropical Diseases. Amsterdam: Elsevier 2021; pp. 509-48.
[http://dx.doi.org/10.1016/B978-0-12-821100-7.00018-2]
[60]
Lye LF, Owens K, Shi H, et al. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 2010; 6(10): e1001161.
[http://dx.doi.org/10.1371/journal.ppat.1001161] [PMID: 21060810]
[61]
Bates PA. Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology 1994; 108(1): 1-9.
[http://dx.doi.org/10.1017/S0031182000078458] [PMID: 8152848]
[62]
Duncan SM, Jones NG, Mottram JC. Recent advances in Leishmania reverse genetics: Manipulating a manipulative parasite. Mol Biochem Parasitol 2017; 216: 30-8.
[http://dx.doi.org/10.1016/j.molbiopara.2017.06.005] [PMID: 28629934]
[63]
Duncan SM, Myburgh E, Philipon C, et al. Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in L eishmania mexicana cell cycle regulation. Mol Microbiol 2016; 100(6): 931-44.
[http://dx.doi.org/10.1111/mmi.13375] [PMID: 26991545]
[64]
Murta SMF, Vickers TJ, Scott DA, Beverley SM. Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10-CHO-THF are essential in Leishmania major. Mol Microbiol 2009; 71(6): 1386-401.
[http://dx.doi.org/10.1111/j.1365-2958.2009.06610.x] [PMID: 19183277]
[65]
Cruz A, Beverley SM. Gene replacement in parasitic protozoa. Nature 1990; 348(6297): 171-3.
[http://dx.doi.org/10.1038/348171a0] [PMID: 2234081]
[66]
Ivens AC, Peacock CS, Worthey EA, et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309(5733): 436-42.
[http://dx.doi.org/10.1126/science.1112680] [PMID: 16020728]
[67]
Bhaumik SK, Naskar K, De T. Complete protection against experimental visceral leishmaniasis with complete soluble antigen from attenuated Leishmania donovani promastigotes involves Th1-immunity and down-regulation of IL-10. Eur J Immunol 2009; 39(8): 2146-60.
[http://dx.doi.org/10.1002/eji.200839017] [PMID: 19593771]
[68]
Mohebali M, Nadim A, Khamesipour A. An overview of leishmanization experience: A successful control measure and a tool to evaluate candidate vaccines. Acta Trop 2019; 200: 105173.
[http://dx.doi.org/10.1016/j.actatropica.2019.105173] [PMID: 31525323]
[69]
Modabber F. Leishmaniasis vaccines: Past, present and future. Int J Antimicrob Agents 2010; 36 (Suppl. 1): S58-61.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.06.024] [PMID: 20801000]
[70]
Handman E. Leishmaniasis: Current status of vaccine development. Clin Microbiol Rev 2001; 14(2): 229-43.
[http://dx.doi.org/10.1128/CMR.14.2.229-243.2001] [PMID: 11292637]
[71]
Tabbara KS. Progress towards a Leishmania vaccine. Saudi Med J 2006; 27(7): 942-50.
[PMID: 16830009]
[72]
Khalil E A G, Ayed NB, Musa AM, et al. Dichotomy of protective cellular immune responses to human visceral leishmaniasis. Clin Exp Immunol 2005; 140(2): 349-53.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02768.x] [PMID: 15807861]
[73]
Bourdoiseau G, Hugnet C, Gonçalves RB, et al. Effective humoral and cellular immunoprotective responses in Li ESAp-MDP vaccinated protected dogs. Vet Immunol Immunopathol 2009; 128(1-3): 71-8.
[http://dx.doi.org/10.1016/j.vetimm.2008.10.309] [PMID: 19046774]
[74]
Manson-Bahr PEC. Immunity in kala-azar. Trans R Soc Trop Med Hyg 1961; 55(6): 550-5.
[http://dx.doi.org/10.1016/0035-9203(61)90078-5] [PMID: 14469435]
[75]
Gicheru MM, Olobo JO, Anjili CO. Heterologous protection by Leishmania donovani for Leishmania major infections in the vervet monkey model of the disease. Exp Parasitol 1997; 85(2): 109-16.
[http://dx.doi.org/10.1006/expr.1996.4117] [PMID: 9030661]
[76]
Jaffe CL, Rachamim N, Sarfstein R. Characterization of two proteins from Leishmania donovani and their use for vaccination against visceral leishmaniasis. J Immunol 1990; 144(2): 699-706.
[http://dx.doi.org/10.4049/jimmunol.144.2.699]
[77]
Rachamim N, Jaffe C. Pure protein from Leishmania donovani protects mice against both cutaneous and visceral leishmaniasis. J Immunol 1993; 150(6): 2322-31.
[http://dx.doi.org/10.4049/jimmunol.150.6.2322]
[78]
Wilson ME, Young BM, Andersen KP, et al. A recombinant Leishmania chagasi antigen that stimulates cellular immune responses in infected mice. Infect Immun 1995; 63(5): 2062-9.
[http://dx.doi.org/10.1128/iai.63.5.2062-2069.1995] [PMID: 7729921]
[79]
Stäger S, Smith DF, Kaye PM. Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. J Immunol 2000; 165(12): 7064-71.
[http://dx.doi.org/10.4049/jimmunol.165.12.7064] [PMID: 11120835]
[80]
Ghosh A, Labrecque S, Matlashewski G. Protection against Leishmania donovani infection by DNA vaccination: Increased DNA vaccination efficiency through inhibiting the cellular p53 response. Vaccine 2001; 19(23-24): 3169-78.
[http://dx.doi.org/10.1016/S0264-410X(01)00023-8] [PMID: 11312013]
[81]
Ghosh A, Zhang WW, Matlashewski G. Immunization with A2 protein results in a mixed Th1/Th2 and a humoral response which protects mice against Leishmania donovani infections. Vaccine 2001; 20(1-2): 59-66.
[http://dx.doi.org/10.1016/S0264-410X(01)00322-X] [PMID: 11567746]
[82]
Basu R, Bhaumik S, Basu JM, Naskar K, De T, Roy S. Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: Evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. J Immunol 2005; 174(11): 7160-71.
[http://dx.doi.org/10.4049/jimmunol.174.11.7160] [PMID: 15905560]
[83]
Coler R, Reed S. Second-generation vaccines against leishmaniasis. Trends Parasitol 2005; 21(5): 244-9.
[http://dx.doi.org/10.1016/j.pt.2005.03.006] [PMID: 15837614]
[84]
Gradoni L, Foglia Manzillo V, Pagano A, et al. Failure of a multi-subunit recombinant leishmanial vaccine (MML) to protect dogs from Leishmania infantum infection and to prevent disease progression in infected animals. Vaccine 2005; 23(45): 5245-51.
[http://dx.doi.org/10.1016/j.vaccine.2005.07.001] [PMID: 16054272]
[85]
Suffia I, Ferrua B, Stien X, et al. A novel Leishmania infantum recombinant antigen which elicits interleukin 10 production by peripheral blood mononuclear cells of patients with visceral leishmaniasis. Infect Immun 2000; 68(2): 630-6.
[http://dx.doi.org/10.1128/IAI.68.2.630-636.2000] [PMID: 10639426]
[86]
Gonzalo RM, del Real G, Rodriguez JR, et al. A heterologous prime–boost regime using DNA and recombinant vaccinia virus expressing the Leishmania infantum P36/LACK antigen protects BALB/c mice from cutaneous leishmaniasis. Vaccine 2002; 20(7-8): 1226-31.
[http://dx.doi.org/10.1016/S0264-410X(01)00427-3] [PMID: 11803085]
[87]
Ramiro MJ, Zárate JJ, Hanke T, et al. Protection in dogs against visceral leishmaniasis caused by Leishmania infantum is achieved by immunization with a heterologous prime-boost regime using DNA and vaccinia recombinant vectors expressing LACK. Vaccine 2003; 21(19-20): 2474-84.
[http://dx.doi.org/10.1016/S0264-410X(03)00032-X] [PMID: 12744881]
[88]
Melby PC, Yang J, Zhao W, Perez LE, Cheng J. Leishmania donovani p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infect Immun 2001; 69(8): 4719-25.
[http://dx.doi.org/10.1128/IAI.69.8.4719-4725.2001] [PMID: 11447143]
[89]
Daneshvar H, Coombs GH, Hagan P, Phillips RS. Leishmania mexicana and Leishmania major: Attenuation of wild-type parasites and vaccination with the attenuated lines. J Infect Dis 2003; 187(10): 1662-8.
[http://dx.doi.org/10.1086/374783] [PMID: 12721947]
[90]
Mitchell GF, Handman E, Spithill TW. Vaccination against cutaneous leishmaniasis in mice using nonpathogenic cloned promastigotes of Leishmania major and importance of route of injection. Aust J Exp Biol Med Sci 1984; 62(2): 145-53.
[http://dx.doi.org/10.1038/icb.1984.14] [PMID: 6466205]
[91]
Mauël J. Vaccination against Leishmania infections. Curr Drug Targets Immune Endocr Metabol Disord 2002; 2(3): 201-26.
[http://dx.doi.org/10.2174/1568008023340631] [PMID: 12476486]
[92]
Craft N, Birnbaum R, Quanquin N, et al. Topical resiquimod protects against visceral infection with Leishmania infantum chagasi in mice. Clin Vaccine Immunol 2014; 21(9): 1314-22.
[http://dx.doi.org/10.1128/CVI.00338-14] [PMID: 25030052]
[93]
Foglia Manzillo V, Di Muccio T, Cappiello S, et al. Prospective study on the incidence and progression of clinical signs in naïve dogs naturally infected by Leishmania infantum. PLoS Negl Trop Dis 2013; 7(5): e2225.
[http://dx.doi.org/10.1371/journal.pntd.0002225] [PMID: 23675551]
[94]
Boggiatto PM, Gibson-Corley KN, Metz K, et al. Transplacental transmission of Leishmania infantum as a means for continued disease incidence in North America. PLoS Negl Trop Dis 2011; 5(4): e1019.
[http://dx.doi.org/10.1371/journal.pntd.0001019] [PMID: 21532741]
[95]
Miró G, Cardoso L, Pennisi MG, Oliva G, Baneth G. Canine leishmaniosis – new concepts and insights on an expanding zoonosis: Part two. Trends Parasitol 2008; 24(8): 371-7.
[http://dx.doi.org/10.1016/j.pt.2008.05.003] [PMID: 18603476]
[96]
Franco AO, Davies CR, Mylne A, et al. Predicting the distribution of canine leishmaniasis in western Europe based on environmental variables. Parasitology 2011; 138(14): 1878-91.
[http://dx.doi.org/10.1017/S003118201100148X] [PMID: 21914251]
[97]
Alvar J, Cañavate C, Molina R, Moreno J, Nieto J. Canine Leishmaniasis. Adv Parasitol 2004; 57: 1-88.
[http://dx.doi.org/10.1016/S0065-308X(04)57001-X] [PMID: 15504537]
[98]
Carcelén J, Iniesta V, Fernández-Cotrina J, et al. The Chimerical Multi-Component Q protein from Leishmania in the absence of adjuvant protects dogs against an experimental Leishmania infantum infection. Vaccine 2009; 27(43): 5964-73.
[http://dx.doi.org/10.1016/j.vaccine.2009.07.069] [PMID: 19666153]
[99]
Bongiorno G, Paparcone R, Manzillo VF, Oliva G, Cuisinier AM, Gradoni L. Vaccination with LiESP/QA-21 (CaniLeish®) reduces the intensity of infection in Phlebotomus perniciosus fed on Leishmania infantum infected dogs—A preliminary xenodiagnosis study. Vet Parasitol 2013; 197(3-4): 691-5.
[http://dx.doi.org/10.1016/j.vetpar.2013.05.008] [PMID: 23747102]
[100]
Solano-Gallego L, Koutinas A, Miró G, et al. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet Parasitol 2009; 165(1-2): 1-18.
[http://dx.doi.org/10.1016/j.vetpar.2009.05.022] [PMID: 19559536]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy