Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Role of Astrogliosis in the Pathogenesis of Parkinson’s Disease: Insights into Astrocytic Nrf2 Pathway as a Potential Therapeutic Target

Author(s): Bharat Bhushan and Niraj Kumar Singh*

Volume 23, Issue 8, 2024

Published on: 04 October, 2023

Page: [1015 - 1029] Pages: 15

DOI: 10.2174/0118715273270473231002104610

Price: $65

Abstract

Recently, Parkinson’s disease (PD) has become a remarkable burden on families and society with an acceleration of population aging having several pathological hallmarks such as dopaminergic neuronal loss of the substantia nigra pars compacta, α-synucleinopathy, neuroinflammation, autophagy, last but not the least astrogliosis. Astrocyte, star-shaped glial cells perform notable physiological functions in the brain through several molecular and cellular mechanisms including nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. It has been well established that the downregulation of the astrocytic Nrf2 signaling pathway plays a crucial role in the pathogenesis of PD because it is a master regulator of cellular defense mechanism along with a regulator of numerous detoxifying and antioxidant enzymes gene expression. Fascinatingly, upregulation of the astrocytic Nrf2 signaling pathway attenuates the degeneration of nigrostriatal neurons, restores neuronal proliferation, rejuvenates astrocytic functions, and exhibits neuroprotective effects via numerous cellular and molecular mechanisms in the PD-like brain of the experimental animal. Here, we discuss the numerous in-vitro and in-vivo studies that evaluate the neuroprotective potential of the astrocytic Nrf2 signaling pathway against experimentally-induced PD-like manifestation. In conclusion, based on available preclinical reports, it can be assumed that the astrocytic Nrf2 signaling pathway could be an alternative target in the drug discovery process for the prevention, management, and treatment of PD.

Next »
Graphical Abstract

[1]
Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 2021; 20(5): 385-97.
[http://dx.doi.org/10.1016/S1474-4422(21)00030-2] [PMID: 33894193]
[2]
Singh NK, Bhushan B. Preclinical evidence-based neuroprotective potential of silibinin. Curr Drug Res Rev 2023.
[3]
Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol 2020; 27(1): 27-42.
[http://dx.doi.org/10.1111/ene.14108] [PMID: 31631455]
[4]
Singh NK, Singh A, Varshney M, Agrawal R. A research update on exendin-4 as a novel molecule against parkinson’s disease. Curr Mol Med 2023; 2023: 1566524023666230529093314.
[http://dx.doi.org/10.2174/1566524023666230529093314]
[5]
Perez FA, Palmiter RD. Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci 2005; 102(6): 2174-9.
[http://dx.doi.org/10.1073/pnas.0409598102] [PMID: 15684050]
[6]
Choi WS, Kruse SE, Palmiter RD, Xia Z. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP +, or paraquat. Proc Natl Acad Sci 2008; 105(39): 15136-41.
[http://dx.doi.org/10.1073/pnas.0807581105] [PMID: 18812510]
[7]
McDowell K, Chesselet MF. Animal models of the non-motor features of Parkinson’s disease. Neurobiol Dis 2012; 46(3): 597-606.
[http://dx.doi.org/10.1016/j.nbd.2011.12.040] [PMID: 22236386]
[8]
Marchetti B, Giachino C, Tirolo C, Serapide MF. Reframing ” dopamine signaling at the intersection of glial networks in the aged Parkinsonian brain as innate Nrf2/Wnt driver: Therapeutical implications. Aging Cell 2022; 21(4): e13575.
[http://dx.doi.org/10.1111/acel.13575] [PMID: 35262262]
[9]
Izumi Y. [Dopaminergic neuroprotection via Nrf2-ARE pathway activation: Identification of an activator from green perilla leaves]. Yakugaku Zasshi 2013; 133(9): 983-8.
[http://dx.doi.org/10.1248/yakushi.13-00166] [PMID: 23995806]
[10]
Goyal A, Verma A, Agrawal N. Dietary phytoestrogens: Neuroprotective role in parkinson’s disease. Curr Neurovasc Res 2021; 18(2): 254-67.
[http://dx.doi.org/10.2174/1567202618666210604121233] [PMID: 34086550]
[11]
Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease. Exp Mol Pathol 2023; 129: 104846.
[http://dx.doi.org/10.1016/j.yexmp.2022.104846] [PMID: 36436571]
[12]
Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 2013; 106-107: 17-32.
[http://dx.doi.org/10.1016/j.pneurobio.2013.04.004] [PMID: 23643800]
[13]
Schapira AHV. Mitochondrial pathology in Parkinson’s disease. Mt Sinai J Med 2011; 78(6): 872-81.
[http://dx.doi.org/10.1002/msj.20303] [PMID: 22069211]
[14]
Dickson DW. Neuropathology of parkinson disease. Parkinsonism Relat Disord 2018; 46 (Suppl. 1): S30-3.
[http://dx.doi.org/10.1016/j.parkreldis.2017.07.033] [PMID: 28780180]
[15]
Mohamed MA, Zeng Z, Gennaro M, et al. Astrogliosis in aging and Parkinson’s disease dementia: A new clinical study with 11C-BU99008 PET. Brain Commun 2022; 4(5): fcac199.
[http://dx.doi.org/10.1093/braincomms/fcac199] [PMID: 36072646]
[16]
Rao JS, Kellom M, Kim HW, Rapoport SI, Reese EA. Neuroinflammation and synaptic loss. Neurochem Res 2012; 37(5): 903-10.
[http://dx.doi.org/10.1007/s11064-012-0708-2] [PMID: 22311128]
[17]
Yang Z, Wang KKW. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 2015; 38(6): 364-74.
[http://dx.doi.org/10.1016/j.tins.2015.04.003] [PMID: 25975510]
[18]
Zgorzynska E, Dziedzic B, Walczewska A. An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases. Int J Mol Sci 2021; 22(17): 9592.
[http://dx.doi.org/10.3390/ijms22179592] [PMID: 34502501]
[19]
Li W, Jain MR, Chen C, et al. Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif. J Biol Chem 2005; 280(31): 28430-8.
[http://dx.doi.org/10.1074/jbc.M410601200] [PMID: 15917227]
[20]
Bahn G, Jo DG. Therapeutic approaches to alzheimer’s disease through modulation of NRF2. Neuromolecular Med 2019; 21(1): 1-11.
[http://dx.doi.org/10.1007/s12017-018-08523-5] [PMID: 30617737]
[21]
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 461-91.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[22]
Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L. p62-Keap1-NRF2-ARE pathway: A contentious player for selective targeting of autophagy, oxidative stress and mitochondrial dysfunction in prion diseases. Front Mol Neurosci 2018; 11: 310.
[http://dx.doi.org/10.3389/fnmol.2018.00310] [PMID: 30337853]
[23]
Skibinski G, Hwang V, Ando DM, et al. Nrf2 mitigates LRRK2- and α-synuclein–induced neurodegeneration by modulating proteostasis. Proc Natl Acad Sci 2017; 114(5): 1165-70.
[http://dx.doi.org/10.1073/pnas.1522872114] [PMID: 28028237]
[24]
Thiruvengadam M, Venkidasamy B, Subramanian U, et al. Bioactive compounds in oxidative stress-mediated diseases: Targeting the NRF2/ARE signaling pathway and epigenetic regulation. Antioxidants 2021; 10(12): 1859.
[http://dx.doi.org/10.3390/antiox10121859] [PMID: 34942962]
[25]
Zhao M, Lewis Wang FS, Hu X, Chen F, Chan HM. Acrylamideinduced neurotoxicity in primary astrocytes and microglia: Roles of the Nrf2-ARE and NF-κB pathways. Food Chem Toxicol 2017; 106(Pt A): 25-35.
[http://dx.doi.org/10.1016/j.fct.2017.05.007] [PMID: 28526328]
[26]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[27]
Ishii T, Itoh K, Takahashi S, et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 2000; 275(21): 16023-9.
[http://dx.doi.org/10.1074/jbc.275.21.16023] [PMID: 10821856]
[28]
Lastres-Becker I, García-Yagüe AJ, Scannevin RH, et al. Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in parkinson’s disease. Antioxid Redox Signal 2016; 25(2): 61-77.
[http://dx.doi.org/10.1089/ars.2015.6549] [PMID: 27009601]
[29]
Ahuja M, Ammal Kaidery N, Yang L, et al. Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine-induced experimental parkinson’s-like disease. J Neurosci 2016; 36(23): 6332-51.
[http://dx.doi.org/10.1523/JNEUROSCI.0426-16.2016] [PMID: 27277809]
[30]
Chen PC, Vargas MR, Pani AK, et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: Critical role for the astrocyte. Proc Natl Acad Sci 2009; 106(8): 2933-8.
[http://dx.doi.org/10.1073/pnas.0813361106] [PMID: 19196989]
[31]
Bonvento G, Bolaños JP. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab 2021; 33(8): 1546-64.
[http://dx.doi.org/10.1016/j.cmet.2021.07.006] [PMID: 34348099]
[32]
Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun 2021; 91: 740-55.
[http://dx.doi.org/10.1016/j.bbi.2020.10.007] [PMID: 33039660]
[33]
Wang DD, Bordey A. The astrocyte odyssey. Prog Neurobiol 2008; 86(4): 342-67.
[PMID: 18948166]
[34]
Shih AY, Johnson DA, Wong G, et al. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 2003; 23(8): 3394-406.
[http://dx.doi.org/10.1523/JNEUROSCI.23-08-03394.2003] [PMID: 12716947]
[35]
Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA. Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 2008; 28(50): 13574-81.
[http://dx.doi.org/10.1523/JNEUROSCI.4099-08.2008] [PMID: 19074031]
[36]
Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab 2011; 14(6): 724-38.
[http://dx.doi.org/10.1016/j.cmet.2011.08.016] [PMID: 22152301]
[37]
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015; 86(4): 883-901.
[http://dx.doi.org/10.1016/j.neuron.2015.03.035] [PMID: 25996133]
[38]
Henneberger C, Papouin T, Oliet SHR, Rusakov DA. Long-term potentiation depends on release of d-serine from astrocytes. Nature 2010; 463(7278): 232-6.
[http://dx.doi.org/10.1038/nature08673] [PMID: 20075918]
[39]
Min R, Nevian T. Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat Neurosci 2012; 15(5): 746-53.
[http://dx.doi.org/10.1038/nn.3075] [PMID: 22446881]
[40]
Navarrete M, Perea G, de Sevilla DF, et al. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 2012; 10(2): e1001259.
[http://dx.doi.org/10.1371/journal.pbio.1001259] [PMID: 22347811]
[41]
Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res 2000; 25(9/10): 1439-51.
[http://dx.doi.org/10.1023/A:1007677003387] [PMID: 11059815]
[42]
Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 2014; 565: 30-8.
[http://dx.doi.org/10.1016/j.neulet.2013.12.071] [PMID: 24406153]
[43]
Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci 2018; 115(8): E1896-905.
[http://dx.doi.org/10.1073/pnas.1800165115] [PMID: 29437957]
[44]
Cohen J, Torres C. Astrocyte senescence: Evidence and significance. Aging Cell 2019; 18(3): e12937.
[http://dx.doi.org/10.1111/acel.12937] [PMID: 30815970]
[45]
Chen K, Wang H, Ilyas I, Mahmood A, Hou L. Microglia and astrocytes dysfunction and key neuroinflammation-based biomarkers in parkinson’s disease. Brain Sci 2023; 13(4): 634.
[http://dx.doi.org/10.3390/brainsci13040634] [PMID: 37190599]
[46]
Chai H, Diaz-Castro B, Shigetomi E, et al. Neural circuit-specialized astrocytes: Transcriptomic, proteomic, morphological, and functional evidence. Neuron 2017; 95(3): 531-549.e9.
[http://dx.doi.org/10.1016/j.neuron.2017.06.029] [PMID: 28712653]
[47]
Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009; 32(12): 638-47.
[http://dx.doi.org/10.1016/j.tins.2009.08.002] [PMID: 19782411]
[48]
Kang X, Zhang B, Du W, et al. High-frequency repetitive transcranial magnetic stimulation regulates astrocyte activation by modulating the endocannabinoid system in parkinson’s disease. Mol Neurobiol 2022; 59(8): 5121-34.
[http://dx.doi.org/10.1007/s12035-022-02879-3] [PMID: 35672602]
[49]
Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 2015; 32: 121-30.
[http://dx.doi.org/10.1016/j.ceb.2015.02.004] [PMID: 25726916]
[50]
Burda JE, Sofroniew MV. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 2014; 81(2): 229-48.
[http://dx.doi.org/10.1016/j.neuron.2013.12.034] [PMID: 24462092]
[51]
Leal MC, Casabona JC, Puntel M, Pitossi FJ. Interleukin-1β and tumor necrosis factor-α: Reliable targets for protective therapies in Parkinson’s Disease? Front Cell Neurosci 2013; 7: 53.
[http://dx.doi.org/10.3389/fncel.2013.00053] [PMID: 23641196]
[52]
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[53]
Yun SP, Kam TI, Panicker N, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 2018; 24(7): 931-8.
[http://dx.doi.org/10.1038/s41591-018-0051-5] [PMID: 29892066]
[54]
Zhong Z, Umemura A, Sanchez-Lopez E, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 2016; 164(5): 896-910.
[http://dx.doi.org/10.1016/j.cell.2015.12.057] [PMID: 26919428]
[55]
Castagnet PI, Golovko MY, Barceló-Coblijn GC, Nussbaum RL, Murphy EJ. Fatty acid incorporation is decreased in astrocytes cultured from α-synuclein gene-ablated mice. J Neurochem 2005; 94(3): 839-49.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03247.x] [PMID: 16033426]
[56]
Song YJC, Halliday GM, Holton JL, et al. Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. J Neuropathol Exp Neurol 2009; 68(10): 1073-83.
[http://dx.doi.org/10.1097/NEN.0b013e3181b66f1b] [PMID: 19918119]
[57]
Zhang Y, Sloan SA, Clarke LE, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 2016; 89(1): 37-53.
[http://dx.doi.org/10.1016/j.neuron.2015.11.013] [PMID: 26687838]
[58]
Lee HJ, Suk JE, Patrick C, et al. Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 2010; 285(12): 9262-72.
[http://dx.doi.org/10.1074/jbc.M109.081125] [PMID: 20071342]
[59]
Lee HJ, Kim C, Lee SJ. Alpha-synuclein stimulation of astrocytes: Potential role for neuroinflammation and neuroprotection. Oxid Med Cell Longev 2010; 3(4): 283-7.
[http://dx.doi.org/10.4161/oxim.3.4.12809] [PMID: 20972375]
[60]
Rannikko EH, Weber SS, Kahle PJ. Exogenous α-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neurosci 2015; 16(1): 57.
[http://dx.doi.org/10.1186/s12868-015-0192-0] [PMID: 26346361]
[61]
Lindström V, Gustafsson G, Sanders LH, et al. Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci 2017; 82: 143-56.
[http://dx.doi.org/10.1016/j.mcn.2017.04.009] [PMID: 28450268]
[62]
Innamorato NG, Jazwa A, Rojo AI, et al. Different susceptibility to the Parkinson’s toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1. PLoS One 2010; 5(7): e11838.
[http://dx.doi.org/10.1371/journal.pone.0011838] [PMID: 20676377]
[63]
Terada S, Ishizu H, Yokota O, et al. Glial involvement in diffuse Lewy body disease. Acta Neuropathol 2003; 105(2): 163-9.
[http://dx.doi.org/10.1007/s00401-002-0622-9] [PMID: 12536227]
[64]
Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun 2020; 8(1): 189.
[http://dx.doi.org/10.1186/s40478-020-01062-w] [PMID: 33168089]
[65]
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015; 85(2): 257-73.
[http://dx.doi.org/10.1016/j.neuron.2014.12.007] [PMID: 25611507]
[66]
Choi I, Choi DJ, Yang H, et al. PINK1 expression increases during brain development and stem cell differentiation, and affects the development of GFAP-positive astrocytes. Mol Brain 2016; 9(1): 5.
[http://dx.doi.org/10.1186/s13041-016-0186-6] [PMID: 26746235]
[67]
Khasnavis S, Pahan K. Cinnamon treatment upregulates neuroprotective proteins Parkin and DJ-1 and protects dopaminergic neurons in a mouse model of Parkinson’s disease. J Neuroimmune Pharmacol 2014; 9(4): 569-81.
[http://dx.doi.org/10.1007/s11481-014-9552-2] [PMID: 24946862]
[68]
Sun L, Shen R, Agnihotri SK, Chen Y, Huang Z, Büeler H. Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep 2018; 8(1): 383.
[http://dx.doi.org/10.1038/s41598-017-18786-w] [PMID: 29321620]
[69]
Singh K, Han K, Tilve S, Wu K, Geller HM, Sack MN. Parkin targets NOD2 to regulate astrocyte endoplasmic reticulum stress and inflammation. Glia 2018; 66(11): 2427-37.
[http://dx.doi.org/10.1002/glia.23482] [PMID: 30378174]
[70]
Schmidt S, Linnartz B, Mendritzki S, et al. Genetic mouse models for Parkinson’s disease display severe pathology in glial cell mitochondria. Hum Mol Genet 2011; 20(6): 1197-211.
[http://dx.doi.org/10.1093/hmg/ddq564] [PMID: 21212098]
[71]
Solano RM, Casarejos MJ, Menéndez-Cuervo J, Rodriguez-Navarro JA, García de Yébenes J, Mena MA. Glial dysfunction in parkin null mice: Effects of aging. J Neurosci 2008; 28(3): 598-611.
[http://dx.doi.org/10.1523/JNEUROSCI.4609-07.2008] [PMID: 18199761]
[72]
Choi I, Kim J, Jeong HK, et al. Pink1 deficiency attenuates astrocyte proliferation through mitochondrial dysfunction, reduced akt and increased p38 mapk activation, and downregulation of egfr. Glia 2013; 61(5): 800-12.
[http://dx.doi.org/10.1002/glia.22475] [PMID: 23440919]
[73]
Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 2015; 88((Pt B)): 179-88.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.036] [PMID: 25975984]
[74]
Manzoni C, Mamais A, Dihanich S, et al. Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta Mol Cell Res 2013; 1833(12): 2900-10.
[http://dx.doi.org/10.1016/j.bbamcr.2013.07.020] [PMID: 23916833]
[75]
Sharma S, Bandopadhyay R, Lashley T, et al. LRRK2 expression in idiopathic and G2019S positive Parkinson’s disease subjects: A morphological and quantitative study. Neuropathol Appl Neurobiol 2011; 37(7): 777-90.
[http://dx.doi.org/10.1111/j.1365-2990.2011.01187.x] [PMID: 21696411]
[76]
Menzies FM, Fleming A, Caricasole A, et al. Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron 2017; 93(5): 1015-34.
[http://dx.doi.org/10.1016/j.neuron.2017.01.022] [PMID: 28279350]
[77]
Manzoni C, Mamais A, Roosen DA, et al. mTOR independent regulation of macroautophagy by leucine rich repeat kinase 2 via beclin-1. Sci Rep 2016; 6(1): 35106.
[http://dx.doi.org/10.1038/srep35106] [PMID: 27731364]
[78]
di Domenico A, Carola G, Calatayud C, et al. Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in parkinson’s disease. Stem Cell Reports 2019; 12(2): 213-29.
[http://dx.doi.org/10.1016/j.stemcr.2018.12.011] [PMID: 30639209]
[79]
Henry AG, Aghamohammadzadeh S, Samaroo H, et al. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet 2015; 24(21): 6013-28.
[http://dx.doi.org/10.1093/hmg/ddv314] [PMID: 26251043]
[80]
Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson’s disease. Neurobiol Dis 2020; 144: 105028.
[http://dx.doi.org/10.1016/j.nbd.2020.105028] [PMID: 32736085]
[81]
Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18(4): 571-80.
[http://dx.doi.org/10.1038/cdd.2010.191] [PMID: 21311563]
[82]
Asanuma M, Miyazaki I. Glutathione and related molecules in parkinsonism. Int J Mol Sci 2021; 22(16): 8689.
[http://dx.doi.org/10.3390/ijms22168689] [PMID: 34445395]
[83]
Wang H, Liu K, Geng M, et al. RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res 2013; 73(10): 3097-108.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3386] [PMID: 23612120]
[84]
Plafker KS, Nguyen L, Barneche M, Mirza S, Crawford D, Plafker SM. The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2. J Biol Chem 2010; 285(30): 23064-74.
[http://dx.doi.org/10.1074/jbc.M110.121913] [PMID: 20484052]
[85]
Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med 2015; 88((Pt B)): 101-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.034] [PMID: 26057936]
[86]
Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999; 13(1): 76-86.
[http://dx.doi.org/10.1101/gad.13.1.76] [PMID: 9887101]
[87]
Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 2020; 40(13): e00099-20.
[http://dx.doi.org/10.1128/MCB.00099-20] [PMID: 32284348]
[88]
Wakabayashi N, Itoh K, Wakabayashi J, et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 2003; 35(3): 238-45.
[http://dx.doi.org/10.1038/ng1248] [PMID: 14517554]
[89]
Miyazaki I, Asanuma M, Kikkawa Y, et al. Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity. Glia 2011; 59(3): 435-51.
[http://dx.doi.org/10.1002/glia.21112] [PMID: 21264950]
[90]
Yao H, He Q, Huang C, et al. Panaxatriol saponin ameliorates myocardial infarction-induced cardiac fibrosis by targeting Keap1/Nrf2 to regulate oxidative stress and inhibit cardiac-fibroblast activation and proliferation. Free Radic Biol Med 2022; 190: 264-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.08.016] [PMID: 35977659]
[91]
He Q, Song N, Jia F, et al. Role of α-synuclein aggregation and the nuclear factor E2-related factor 2/heme oxygenase-1 pathway in iron-induced neurotoxicity. Int J Biochem Cell Biol 2013; 45(6): 1019-30.
[http://dx.doi.org/10.1016/j.biocel.2013.02.012] [PMID: 23454680]
[92]
Yang X, Yang R, Zhang F. Role of Nrf2 in parkinson’s disease: Toward new perspectives. Front Pharmacol 2022; 13: 919233.
[http://dx.doi.org/10.3389/fphar.2022.919233] [PMID: 35814229]
[93]
Delaidelli A, Richner M, Jiang L, et al. α-Synuclein pathology in Parkinson disease activates homeostatic NRF2 anti-oxidant response. Acta Neuropathol Commun 2021; 9(1): 105.
[http://dx.doi.org/10.1186/s40478-021-01209-3] [PMID: 34092244]
[94]
van Muiswinkel FL, de Vos RAI, Bol JGJM, et al. Expression of NAD(P)H: Quinone oxidoreductase in the normal and Parkinsonian substantia nigra. Neurobiol Aging 2004; 25(9): 1253-62.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.12.010] [PMID: 15312971]
[95]
Wei Y, Lu M, Mei M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun 2020; 11(1): 941.
[http://dx.doi.org/10.1038/s41467-020-14788-x] [PMID: 32071304]
[96]
Chen WF, Wu L, Du ZR, et al. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine 2017; 25: 93-9.
[http://dx.doi.org/10.1016/j.phymed.2016.12.017] [PMID: 28190476]
[97]
Johnson DA, Johnson JA. Nrf2-a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med 2015; 88(Pt B): 253-67.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.07.147] [PMID: 26281945]
[98]
Park JS, Leem YH, Park JE, Kim DY, Kim HS. Neuroprotective effect of β-lapachone in MPTP-induced parkinson’s disease mouse model: Involvement of astroglial p-AMPK/Nrf2/HO-1 signaling pathways. Biomol Ther 2019; 27(2): 178-84.
[http://dx.doi.org/10.4062/biomolther.2018.234] [PMID: 30739428]
[99]
Habas A, Hahn J, Wang X, Margeta M. Neuronal activity regulates astrocytic Nrf2 signaling. Proc Natl Acad Sci 2013; 110(45): 18291-6.
[http://dx.doi.org/10.1073/pnas.1208764110] [PMID: 24145448]
[100]
Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 2004; 24(5): 1101-12.
[http://dx.doi.org/10.1523/JNEUROSCI.3817-03.2004] [PMID: 14762128]
[101]
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65(8): 1205-26.
[http://dx.doi.org/10.1002/glia.23136] [PMID: 28300322]
[102]
Pistollato F, Canovas-Jorda D, Zagoura D, Bal-Price A. Nrf2 pathway activation upon rotenone treatment in human iPSC-derived neural stem cells undergoing differentiation towards neurons and astrocytes. Neurochem Int 2017; 108: 457-71.
[http://dx.doi.org/10.1016/j.neuint.2017.06.006] [PMID: 28627367]
[103]
Gan L, Vargas MR, Johnson DA, Johnson JA. Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model. J Neurosci 2012; 32(49): 17775-87.
[http://dx.doi.org/10.1523/JNEUROSCI.3049-12.2012] [PMID: 23223297]
[104]
Bell KFS, Al-Mubarak B, Martel MA, et al. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat Commun 2015; 6(1): 7066.
[http://dx.doi.org/10.1038/ncomms8066] [PMID: 25967870]
[105]
Neal M, Luo J, Harischandra DS, et al. Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes. Glia 2018; 66(10): 2137-57.
[http://dx.doi.org/10.1002/glia.23467] [PMID: 30277602]
[106]
Guo Q, Wang B, Wang X, Smith WW, Zhu Y, Liu Z. Activation of Nrf2 in astrocytes suppressed PD-like phenotypes via antioxidant and autophagy pathways in rat and drosophila models. Cells 2021; 10(8): 1850.
[http://dx.doi.org/10.3390/cells10081850] [PMID: 34440619]
[107]
Lin YE, Lin CH, Ho EP, et al. Glial Nrf2 signaling mediates the neuroprotection exerted by Gastrodia elata Blume in Lrrk2-G2019S Parkinson’s disease. eLife 2021; 10: e73753.
[http://dx.doi.org/10.7554/eLife.73753] [PMID: 34779396]
[108]
Williamson TP, Johnson DA, Johnson JA. Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity. Neurotoxicology 2012; 33(3): 272-9.
[http://dx.doi.org/10.1016/j.neuro.2012.01.015] [PMID: 22342405]
[109]
Im JY, Lee KW, Woo JM, Junn E, Mouradian MM. DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Hum Mol Genet 2012; 21(13): 3013-24.
[http://dx.doi.org/10.1093/hmg/dds131] [PMID: 22492997]
[110]
Frøyset AK, Edson AJ, Gharbi N, et al. Astroglial DJ-1 over-expression up-regulates proteins involved in redox regulation and is neuroprotective in vivo. Redox Biol 2018; 16: 237-47.
[http://dx.doi.org/10.1016/j.redox.2018.02.010] [PMID: 29525604]
[111]
Baxter PS, Márkus NM, Dando O, et al. Targeted de-repression of neuronal Nrf2 inhibits α-synuclein accumulation. Cell Death Dis 2021; 12(2): 218.
[http://dx.doi.org/10.1038/s41419-021-03507-z] [PMID: 33637689]
[112]
Gan L, Johnson DA, Johnson JA. Keap1-Nrf2 activation in the presence and absence of DJ-1. Eur J Neurosci 2010; 31(6): 967-77.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07138.x] [PMID: 20377612]
[113]
Jakel RJ, Townsend JA, Kraft AD, Johnson JA. Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 2007; 1144: 192-201.
[http://dx.doi.org/10.1016/j.brainres.2007.01.131] [PMID: 17336276]
[114]
Masaki Y, Izumi Y, Matsumura A, Akaike A, Kume T. Protective effect of Nrf2–ARE activator isolated from green perilla leaves on dopaminergic neuronal loss in a Parkinson’s disease model. Eur J Pharmacol 2017; 798: 26-34.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.005] [PMID: 28167258]
[115]
Inose Y, Izumi Y, Takada-Takatori Y, et al. Protective effects of Nrf2-ARE activator on dopaminergic neuronal loss in Parkinson disease model mice: Possible involvement of heme oxygenase-1. Neurosci Lett 2020; 736: 135268.
[http://dx.doi.org/10.1016/j.neulet.2020.135268] [PMID: 32712353]
[116]
Zhang JX, Zhou KG, Yin YX, et al. Mesencephalic astrocyte-derived neurotrophic factor (MANF) prevents the neuroinflammation induced dopaminergic neurodegeneration. Exp Gerontol 2023; 171: 112037.
[http://dx.doi.org/10.1016/j.exger.2022.112037] [PMID: 36436758]
[117]
Song IY, Snyder AM, Kim Y, Neely EB, Wade QW, Connor JR. The Nrf2-mediated defense mechanism associated with HFE genotype limits vulnerability to oxidative stress-induced toxicity. Toxicology 2020; 441: 152525.
[http://dx.doi.org/10.1016/j.tox.2020.152525] [PMID: 32540480]
[118]
Lastres-Becker I, Ulusoy A, Innamorato NG, et al. α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 2012; 21(14): 3173-92.
[http://dx.doi.org/10.1093/hmg/dds143] [PMID: 22513881]
[119]
Lee E, Yin Z, Sidoryk-Węgrzynowicz M, Jiang H, Aschner M. 15-Deoxy-Δ12,14-prostaglandin J2 modulates manganese-induced activation of the NF-κB, Nrf2, and PI3K pathways in astrocytes. Free Radic Biol Med 2012; 52(6): 1067-74.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.12.016] [PMID: 22245093]
[120]
Zhou J, Qu XD, Li ZY, et al. Salvianolic acid B attenuates toxin-induced neuronal damage via Nrf2-dependent glial cells-mediated protective activity in Parkinson’s disease models. PLoS One 2014; 9(7): e101668.
[http://dx.doi.org/10.1371/journal.pone.0101668] [PMID: 24991814]
[121]
Tambe MA, de Rus Jacquet A, Strathearn KE, et al. Protective effects of polyphenol-rich extracts against neurotoxicity elicited by paraquat or rotenone in cellular models of parkinson’s disease. bioRxiv 2023; 2023; 538474.
[122]
Chiu YJ, Lin CH, Lin CY, et al. Investigating therapeutic effects of indole derivatives targeting inflammation and oxidative stress in neurotoxin-induced cell and mouse models of parkinson’s disease. Int J Mol Sci 2023; 24(3): 2642.
[http://dx.doi.org/10.3390/ijms24032642] [PMID: 36768965]
[123]
Muhammad T, Ikram M, Ullah R, Rehman S, Kim M. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients 2019; 11(3): 648.
[http://dx.doi.org/10.3390/nu11030648] [PMID: 30884890]
[124]
Yang Y, Kong F, Ding Q, et al. Bruceine D elevates Nrf2 activation to restrain Parkinson’s disease in mice through suppressing oxidative stress and inflammatory response. Biochem Biophys Res Commun 2020; 526(4): 1013-20.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.097] [PMID: 32321640]
[125]
Huang TT, Hao DL, Wu BN, Mao LL, Zhang J. Uric acid demonstrates neuroprotective effect on Parkinson’s disease mice through Nrf2-ARE signaling pathway. Biochem Biophys Res Commun 2017; 493(4): 1443-9.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.004] [PMID: 28986252]
[126]
Zhang J, Tong W, Sun H, et al. Nrf2-mediated neuroprotection by MANF against 6-OHDA-induced cell damage via PI3K/AKT/GSK3β pathway. Exp Gerontol 2017; 100: 77-86.
[http://dx.doi.org/10.1016/j.exger.2017.10.021] [PMID: 29079145]
[127]
Zhang JX, Tong WF, Jiang M, et al. MANF inhibits α-synuclein accumulation through activation of autophagic pathways. Oxid Med Cell Longev 2022; 2022: 1-19.
[http://dx.doi.org/10.1155/2022/7925686] [PMID: 35847585]
[128]
Izumi Y, Kataoka H, Inose Y, Akaike A, Koyama Y, Kume T. Neuroprotective effect of an Nrf2-ARE activator identified from a chemical library on dopaminergic neurons. Eur J Pharmacol 2018; 818: 470-9.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.023] [PMID: 29154837]
[129]
Lin CH, Wei PC, Chen CM, et al. Lactulose and melibiose attenuate MPTP-induced parkinson’s disease in mice by inhibition of oxidative stress, reduction of neuroinflammation and up-regulation of autophagy. Front Aging Neurosci 2020; 12: 226.
[http://dx.doi.org/10.3389/fnagi.2020.00226] [PMID: 32848705]
[130]
Lev N, Barhum Y, Ben-Zur T, Melamed E, Steiner I, Offen D. Knocking out DJ-1 attenuates astrocytes neuroprotection against 6-hydroxydopamine toxicity. J Mol Neurosci 2013; 50(3): 542-50.
[http://dx.doi.org/10.1007/s12031-013-9984-9] [PMID: 23536331]
[131]
Guo Y, Ma Z, Ning X, et al. A novel synthetic precursor of styryl sulfone neuroprotective agents inhibits neuroinflammatory responses and oxidative stress damage through the P38 signaling pathway in the cell and animal model of parkinson’s disease. Molecules 2021; 26(17): 5371.
[http://dx.doi.org/10.3390/molecules26175371] [PMID: 34500807]
[132]
Lee DW, Ryu YK, Chang DH, et al. Agathobaculum butyriciproducens shows neuroprotective effects in a 6-OHDA-induced mouse model of parkinson’s disease. J Microbiol Biotechnol 2022; 32(9): 1168-77.
[http://dx.doi.org/10.4014/jmb.2205.05032] [PMID: 36168204]
[133]
Singh A, Yadawa AK, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. Mechanism for antiParkinsonian effect of resveratrol: Involvement of transporters, synaptic proteins, dendrite arborization, biochemical alterations, ER stress and apoptosis. Food Chem Toxicol 2021; 155: 112433.
[http://dx.doi.org/10.1016/j.fct.2021.112433] [PMID: 34302886]
[134]
Bergström P, Andersson HC, Gao Y, et al. Repeated transient sulforaphane stimulation in astrocytes leads to prolonged Nrf2-mediated gene expression and protection from superoxide-induced damage. Neuropharmacology 2011; 60(2-3): 343-53.
[http://dx.doi.org/10.1016/j.neuropharm.2010.09.023] [PMID: 20888844]
[135]
Bakshi R, Zhang H, Logan R, et al. Neuroprotective effects of urate are mediated by augmenting astrocytic glutathione synthesis and release. Neurobiol Dis 2015; 82: 574-9.
[http://dx.doi.org/10.1016/j.nbd.2015.08.022] [PMID: 26341543]
[136]
Jayaraj RL, Azimullah S, Parekh KA, Ojha SK, Beiram R. Effect of citronellol on oxidative stress, neuroinflammation and autophagy pathways in an in vivo model of Parkinson’s disease. Heliyon 2022; 8(11): e11434.
[http://dx.doi.org/10.1016/j.heliyon.2022.e11434] [PMID: 36387498]
[137]
Alarcón-Aguilar A, Luna-López A, Ventura-Gallegos JL, et al. Primary cultured astrocytes from old rats are capable to activate the Nrf2 response against MPP+ toxicity after tBHQ pretreatment. Neurobiol Aging 2014; 35(8): 1901-12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.01.143] [PMID: 24650792]
[138]
Wang GQ, Zhang B, He XM, Li DD, Shi JS, Zhang F. Naringenin targets on astroglial Nrf2 to support dopaminergic neurons. Pharmacol Res 2019; 139: 452-9.
[http://dx.doi.org/10.1016/j.phrs.2018.11.043] [PMID: 30527894]
[139]
Ramsey CP, Glass CA, Montgomery MB, et al. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 2007; 66(1): 75-85.
[http://dx.doi.org/10.1097/nen.0b013e31802d6da9] [PMID: 17204939]
[140]
Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson’s disease. Redox Biol 2020; 36: 101664.
[http://dx.doi.org/10.1016/j.redox.2020.101664] [PMID: 32863224]
[141]
L’Episcopo F, Tirolo C, Testa N, et al. Aging-induced Nrf2-ARE pathway disruption in the subventricular zone drives neurogenic impairment in parkinsonian mice via PI3K-Wnt/β-catenin dysregulation. J Neurosci 2013; 33(4): 1462-85.
[http://dx.doi.org/10.1523/JNEUROSCI.3206-12.2013] [PMID: 23345222]
[142]
L’Episcopo F, Tirolo C, Testa N, et al. Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neurobiol Dis 2011; 41(2): 508-27.
[http://dx.doi.org/10.1016/j.nbd.2010.10.023] [PMID: 21056667]
[143]
L’Episcopo F, Tirolo C, Peruzzotti-Jametti L, et al. Neural stem cell grafts promote astroglia-driven neurorestoration in the aged parkinsonian brain via Wnt/β-Catenin signaling. Stem Cells 2018; 36(8): 1179-97.
[http://dx.doi.org/10.1002/stem.2827] [PMID: 29575325]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy