Abstract
γ-lactams, bearing one or more chiral centers are important scaffolds and widely occur in many natural and synthetic products of clinical interest, but the synthetic approaches mainly focus on the preparation of rings that display trisubstituted carbons, whereas only a few examples concern the construction of chiral γ- lactams that display tetrasubstituted carbon atoms. However, in recent years, the broad potential of these latter compounds was recognized and deserved high interest, owing to their complex three-dimensional features and structural rigidity. Thus, several efforts were engaged in the pursuit of new synthetic strategies towards γ-lactam rings that contain tetrasubstituted carbons that pose a particular challenge, and the present review gathers advances reported since 2015 about the enantioselective preparation of these molecules, carried out to exploit both internal and external asymmetric induction.
Graphical Abstract
[http://dx.doi.org/10.1039/B903905H] [PMID: 19636449];
(b) Caruano, J.; Muccioli, G.G.; Robiette, R. Biologically active γ-lactams: Synthesis and natural sources. Org. Biomol. Chem., 2016, 14(43), 10134-10156.
[http://dx.doi.org/10.1039/C6OB01349J] [PMID: 27748489];
(c) Saldívar-González, F.I.; Lenci, E.; Trabocchi, A.; Medina-Franco, J.L. Exploring the chemical space and the bioactivity profile of lactams: A chemoinformatic study. RSC Advances, 2019, 9(46), 27105-27116.
[http://dx.doi.org/10.1039/C9RA04841C] [PMID: 35528563]
[http://dx.doi.org/10.1021/jm0255670] [PMID: 12408705]
[http://dx.doi.org/10.1021/ol200886j] [PMID: 21591679];
(b) Marx, L.B.; Burton, J.W. A total synthesis of salinosporamide A. Chemistry, 2018, 24(26), 6747-6754.
[http://dx.doi.org/10.1002/chem.201800046] [PMID: 29415322];
(c) Serrano-Aparicio, N.; Moliner, V.; Świderek, K. On the origin of the different reversible characters of Salinosporamide A and Homosalinosporamide A in the covalent inhibition of the Human 20S proteasome. ACS Catal., 2021, 11(18), 11806-11819.
[http://dx.doi.org/10.1021/acscatal.1c02614];
(d) Li, Y.; Sun, Z.; Qu, X. Advances in the treatment of extramedullary disease in multiple myeloma. Transl. Oncol., 2022, 22, 101465.
[http://dx.doi.org/10.1016/j.tranon.2022.101465] [PMID: 35679743]
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1676:AID-ANIE1676>3.0.CO;2-T] [PMID: 29711503];
(b) Bulman Page, P.C.; Goodyear, R.L.; Chan, Y.; Slawin, A.M.Z.; Allin, S.M. Formal synthesis of (+)-lactacystin from L-serine. RSC Advances, 2019, 9(51), 30019-30032.
[http://dx.doi.org/10.1039/C9RA07244F] [PMID: 35531531];
(c) Ōmura, S.; Crump, A. Lactacystin: First-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J. Antibiot., 2019, 72(4), 189-201.
[http://dx.doi.org/10.1038/s41429-019-0141-8] [PMID: 30755736]
[http://dx.doi.org/10.1021/cr940337h] [PMID: 15884788];
(b) Talele, T.T. Natural-products-inspired use of the gem-dimethyl group in medicinal chemistry. J. Med. Chem., 2018, 61(6), 2166-2210.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00315] [PMID: 28850227]
[http://dx.doi.org/10.1016/j.tet.2009.10.004]
[http://dx.doi.org/10.1002/chem.201102103] [PMID: 21971979]
[http://dx.doi.org/10.1039/B612071G] [PMID: 17136245]
[http://dx.doi.org/10.1002/ejoc.200700318];
(b) Marek, I.; Minko, Y.; Pasco, M.; Mejuch, T.; Gilboa, N.; Chechik, H.; Das, J.P. All-carbon quaternary stereogenic centers in acyclic systems through the creation of several C-C bonds per chemical step. J. Am. Chem. Soc., 2014, 136(7), 2682-2694.
[http://dx.doi.org/10.1021/ja410424g] [PMID: 24512113];
(c) Eppe, G.; Didier, D.; Marek, I. Stereocontrolled formation of several carbon-carbon bonds in acyclic systems. Chem. Rev., 2015, 115(17), 9175-9206.
[http://dx.doi.org/10.1021/cr500715t] [PMID: 25768205];
(d) Roy, S.R.; Didier, D.; Kleiner, A.; Marek, I. Diastereodivergent combined carbometalation/zinc homologation/C-C fragmentation reaction as an efficient tool to prepare acyclic allylic quaternary carbon stereocenters. Chem. Sci., 2016, 7(9), 5989-5994.
(b) Trost, B.M.; Jiang, C. Catalytic enantioselective construction of all-carbon quaternary stereocenters. Synthesis, 2006, (3), 369-396.
[http://dx.doi.org/10.1055/s-2006-926302];
(c) Hong, A.Y.; Stoltz, B.M. The construction of all-carbon quaternary stereocenters by use of Pd-catalyzed asymmetric allylic alkylation reactions in total synthesis. Eur. J. Org. Chem., 2013, 2013(14), 2745-2759.
[http://dx.doi.org/10.1002/ejoc.201201761] [PMID: 24944521];
(d) Quasdorf, K.W.; Overman, L.E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature, 2014, 516(7530), 181-191.
[http://dx.doi.org/10.1038/nature14007] [PMID: 25503231];
(e) Liu, Y.; Han, S.J.; Liu, W.B.; Stoltz, B.M. Catalytic enantioselective construction of quaternary stereocenters: Assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res., 2015, 48(3), 740-751.
[http://dx.doi.org/10.1021/ar5004658] [PMID: 25715056];
(f) Büschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K.B; Overman, L.E. Synthetic strategies toward natural products containing contiguous stereogenic quaternary carbon atoms. Angew. Chem. Int. Ed., 2016, 55(13), 4156-4186.
[http://dx.doi.org/10.1002/anie.201507549] [PMID: 26836448];
(g) Hu, P.; Chi, H.M.; DeBacker, K.C.; Gong, X; Keim, J.H.; Hsu, I.T. Snyder, S.A. Quaternary-centre-guided synthesis of complex polycyclic terpenes. Nature, 2019, 569(7758), 703-707.
[http://dx.doi.org/10.1038/s41586-019-1179-2] [PMID: 31022719]
[http://dx.doi.org/10.2174/1385272819666140407212959];
(b) Martelli, G.; Monsignori, A.; Orena, M.; Rinaldi, S. Recent advances in chemistry of γ-lactams: Part II. Functionalization by C-C or C-Heteroatom bond formation. Curr. Org. Chem., 2014, 18(12), 1539-1585.
[http://dx.doi.org/10.2174/1385272819666140407213209];
(c) Ye, L.W.; Shu, C.; Gagosz, F. Recent progress towards transition metal-catalyzed synthesis of γ-lactams. Org. Biomol. Chem., 2014, 12(12), 1833-1845.
[http://dx.doi.org/10.1039/C3OB42181C] [PMID: 24473105];
(d) Rivas, F.; Ling, T. Advances toward the synthesis of functionalized γ-lactams. Org. Prep. Proced. Int., 2016, 48(3), 254-295.
[http://dx.doi.org/10.1080/00304948.2016.1165059];
(e) Pandey, G.; Khamrai, J.; Mishra, A. Generation of all-carbon quaternary stereocenters at C-3 carbon of lactams and its application. Indian J. Het. Chem., 2018, 28(1), 25-42.;
(f) Pandey, G.; Mishra, A.; Khamrai, J. Generation of all carbon quaternary stereocenters at the C-3 carbon of piperidinones and pyrrolidinones and its application in natural product total synthesis. Tetrahedron, 2018, 74(38), 4903-4915.
[http://dx.doi.org/10.1016/j.tet.2018.05.004]
[http://dx.doi.org/10.1021/acs.orglett.7b03537] [PMID: 29272139]
[http://dx.doi.org/10.1007/s00726-015-2100-4] [PMID: 26403848]
[http://dx.doi.org/10.1016/j.tet.2010.01.073]
[http://dx.doi.org/10.1002/ejoc.201601283] [PMID: 28808413]
[http://dx.doi.org/10.1002/anie.201808460] [PMID: 30160825]
[http://dx.doi.org/10.1021/acs.orglett.0c02837] [PMID: 32991189]
[http://dx.doi.org/10.1007/s11426-021-9992-2]
[http://dx.doi.org/10.1002/anie.202207536] [PMID: 35818326]
[http://dx.doi.org/10.1021/ja8097492] [PMID: 19209853]
[http://dx.doi.org/10.1021/jacs.0c09949] [PMID: 33170685]
[http://dx.doi.org/10.31635/ccschem.022.202202010]
[http://dx.doi.org/10.1038/s41586-018-0042-1] [PMID: 29695848];
(b) Zhang, X.; Ren, J.; Tan, S.M.; Tan, D.; Lee, R.; Tan, C.H. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science, 2019, 363(6425), 400-404.
[http://dx.doi.org/10.1126/science.aau7797] [PMID: 30679372]
[http://dx.doi.org/10.1038/nchem.1222] [PMID: 22270628]
[http://dx.doi.org/10.1038/s41557-020-00609-7] [PMID: 33432109]
[http://dx.doi.org/10.1021/acscatal.2c01973]
[http://dx.doi.org/10.1021/acs.joc.0c02573] [PMID: 33464902]
[http://dx.doi.org/10.1002/anie.200905329] [PMID: 20014377]
[http://dx.doi.org/10.1002/anie.200602275] [PMID: 16953500]
[http://dx.doi.org/10.1055/s-0035-1560090]
[http://dx.doi.org/10.1021/jacs.6b02120] [PMID: 27373124]
[http://dx.doi.org/10.1002/anie.201814475] [PMID: 30677201]
[http://dx.doi.org/10.1055/s-0029-1217350];
(b) Chen, F.; Miao, Z. Asymmetric aldol reactions of heterocyclic dienolsilanes and α,β-unsaturated carbonyl derived dienolsilanes. Synthesis, 2012, 44(16), 2506-2514.
[http://dx.doi.org/10.1055/s-0032-1316604];
(c) Jusseau, X.; Chabaud, L.; Guillou, C. Synthesis of γ-butenolides and α,β-unsaturated γ-butyrolactams by addition of vinylogous nucleophiles to Michael acceptors. Tetrahedron, 2014, 70(16), 2595-2615.
[http://dx.doi.org/10.1016/j.tet.2014.01.057]
[http://dx.doi.org/10.1021/acs.orglett.8b03613] [PMID: 30645137]
[http://dx.doi.org/10.1039/C7OB01714F] [PMID: 28752177]
[http://dx.doi.org/10.1002/anie.202100642] [PMID: 33538070]
[http://dx.doi.org/10.1021/acs.orglett.8b02232] [PMID: 30350659]
[http://dx.doi.org/10.1039/C6OB00048G] [PMID: 27381361]
[http://dx.doi.org/10.1002/anie.201612148] [PMID: 28128534]
[http://dx.doi.org/10.1002/chem.201901028] [PMID: 31050082]
[http://dx.doi.org/10.1021/jacs.2c03746] [PMID: 35580261]
[http://dx.doi.org/10.1021/jacs.9b12493] [PMID: 31868355]
[http://dx.doi.org/10.1021/jacs.8b06814] [PMID: 30114355]
[http://dx.doi.org/10.1021/acs.orglett.1c00952] [PMID: 33908782]
[http://dx.doi.org/10.1002/chem.201702777] [PMID: 28845883]
[http://dx.doi.org/10.1039/C7CC01058C] [PMID: 28394383]
[http://dx.doi.org/10.1002/anie.200602925] [PMID: 17001710]
[http://dx.doi.org/10.1002/chem.202101696] [PMID: 34132427]
[http://dx.doi.org/10.1021/acs.orglett.8b00076] [PMID: 29417818]
[http://dx.doi.org/10.1021/ja807937m] [PMID: 19053399]
[http://dx.doi.org/10.1002/asia.201000617] [PMID: 21254434]
[http://dx.doi.org/10.1039/C9CC09269B] [PMID: 31930267]
[http://dx.doi.org/10.1002/anie.201708994] [PMID: 29149518]
[http://dx.doi.org/10.1039/D2QO00350C]
[http://dx.doi.org/10.1002/anie.201909971] [PMID: 31553519]
[http://dx.doi.org/10.1021/acs.orglett.1c00204] [PMID: 33683896]
[http://dx.doi.org/10.1002/anie.201405508] [PMID: 24986088]
[http://dx.doi.org/10.1002/anie.201505916] [PMID: 26271618]
[http://dx.doi.org/10.1002/anie.201505382] [PMID: 26220276]