Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Asymmetric Construction of γ-lactams Displaying All-carbon, Aza-, Thia- and Oxaquaternary Chiral Centers

Author(s): Mario Orena* and Samuele Rinaldi*

Volume 27, Issue 15, 2023

Published on: 04 October, 2023

Page: [1292 - 1307] Pages: 16

DOI: 10.2174/0113852728264028230919060328

Price: $65

Abstract

γ-lactams, bearing one or more chiral centers are important scaffolds and widely occur in many natural and synthetic products of clinical interest, but the synthetic approaches mainly focus on the preparation of rings that display trisubstituted carbons, whereas only a few examples concern the construction of chiral γ- lactams that display tetrasubstituted carbon atoms. However, in recent years, the broad potential of these latter compounds was recognized and deserved high interest, owing to their complex three-dimensional features and structural rigidity. Thus, several efforts were engaged in the pursuit of new synthetic strategies towards γ-lactam rings that contain tetrasubstituted carbons that pose a particular challenge, and the present review gathers advances reported since 2015 about the enantioselective preparation of these molecules, carried out to exploit both internal and external asymmetric induction.

Graphical Abstract

[1]
(a) Nay, B.; Riache, N.; Evanno, L. Chemistry and biology of non-tetramic γ-hydroxy-γ-lactams and γ-alkylidene-γ-lactams from natural sources. Nat. Prod. Rep., 2009, 26(8), 1044-1062.
[http://dx.doi.org/10.1039/B903905H] [PMID: 19636449];
(b) Caruano, J.; Muccioli, G.G.; Robiette, R. Biologically active γ-lactams: Synthesis and natural sources. Org. Biomol. Chem., 2016, 14(43), 10134-10156.
[http://dx.doi.org/10.1039/C6OB01349J] [PMID: 27748489];
(c) Saldívar-González, F.I.; Lenci, E.; Trabocchi, A.; Medina-Franco, J.L. Exploring the chemical space and the bioactivity profile of lactams: A chemoinformatic study. RSC Advances, 2019, 9(46), 27105-27116.
[http://dx.doi.org/10.1039/C9RA04841C] [PMID: 35528563]
[2]
Blencowe, P.; Charles, M.; Cridland, A.; Ekwuru, T.; Heald, R.; Macdonald, E.; McCarron, H.; Rigoreau, L. Heterocyclic substituted ureas, for use against cancer. WO Patent 030925A1, 2020.
[3]
Duan, J.J.W.; Chen, L.; Wasserman, Z.R.; Lu, Z.; Liu, R.Q.; Covington, M.B.; Qian, M.; Hardman, K.D.; Magolda, R.L.; Newton, R.C.; Christ, D.D.; Wexler, R.R.; Decicco, C.P. Discovery of γ-lactam hydroxamic acids as selective inhibitors of tumor necrosis factor α converting enzyme: Design, synthesis, and structure-activity relationships. J. Med. Chem., 2002, 45(23), 4954-4957.
[http://dx.doi.org/10.1021/jm0255670] [PMID: 12408705]
[4]
(a) Satoh, N.; Yokoshima, S.; Fukuyama, T. Total synthesis of (-)-salinosporamide A. Org. Lett., 2011, 13(12), 3028-3031.
[http://dx.doi.org/10.1021/ol200886j] [PMID: 21591679];
(b) Marx, L.B.; Burton, J.W. A total synthesis of salinosporamide A. Chemistry, 2018, 24(26), 6747-6754.
[http://dx.doi.org/10.1002/chem.201800046] [PMID: 29415322];
(c) Serrano-Aparicio, N.; Moliner, V.; Świderek, K. On the origin of the different reversible characters of Salinosporamide A and Homosalinosporamide A in the covalent inhibition of the Human 20S proteasome. ACS Catal., 2021, 11(18), 11806-11819.
[http://dx.doi.org/10.1021/acscatal.1c02614];
(d) Li, Y.; Sun, Z.; Qu, X. Advances in the treatment of extramedullary disease in multiple myeloma. Transl. Oncol., 2022, 22, 101465.
[http://dx.doi.org/10.1016/j.tranon.2022.101465] [PMID: 35679743]
[5]
(a) Corey, E.J.; Li, W.; Nagamitsu, T. An efficient and concise enantioselective total synthesis of Lactacystin. Angew. Chem. Int. Ed., 1998, 37(12), 1676-1679.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1676:AID-ANIE1676>3.0.CO;2-T] [PMID: 29711503];
(b) Bulman Page, P.C.; Goodyear, R.L.; Chan, Y.; Slawin, A.M.Z.; Allin, S.M. Formal synthesis of (+)-lactacystin from L-serine. RSC Advances, 2019, 9(51), 30019-30032.
[http://dx.doi.org/10.1039/C9RA07244F] [PMID: 35531531];
(c) Ōmura, S.; Crump, A. Lactacystin: First-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J. Antibiot., 2019, 72(4), 189-201.
[http://dx.doi.org/10.1038/s41429-019-0141-8] [PMID: 30755736]
[(6]
Burdack, C.; Kalinski, C.; Ross, G.; Weber, L.; Khazak, V. Pyrrolidin-2-ones as HDM2 ligands. WO Patent 028862A1, 2010.
[7]
(a) Jung, M.E.; Piizzi, G. gem-Disubstituent effect: Theoretical basis and synthetic applications. Chem. Rev., 2005, 105(5), 1735-1766.
[http://dx.doi.org/10.1021/cr940337h] [PMID: 15884788];
(b) Talele, T.T. Natural-products-inspired use of the gem-dimethyl group in medicinal chemistry. J. Med. Chem., 2018, 61(6), 2166-2210.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00315] [PMID: 28850227]
[8]
Crucianelli, E.; Galeazzi, R.; Martelli, G.; Orena, M.; Rinaldi, S.; Sabatino, P. A novel conformationally restricted analogue of 3-methylaspartic acid via stereoselective methylation of chiral pyrrolidin-2-ones. Tetrahedron, 2010, 66(1), 400-405.
[http://dx.doi.org/10.1016/j.tet.2009.10.004]
[9]
Galeazzi, R.; Martelli, G.; Mazzanti, A.; Orena, M.; Rinaldi, S. Quaternary centres as a tool for modulating foldamer conformation. Chemistry, 2011, 17(45), 12564-12568.
[http://dx.doi.org/10.1002/chem.201102103] [PMID: 21971979]
[10]
Menegazzo, I.; Fries, A.; Mammi, S.; Galeazzi, R.; Martelli, G.; Orena, M.; Rinaldi, S. Synthesis and structural characterisation as 12-helix of the hexamer of a β-amino acid tethered to a pyrrolidin-2-one ring. Chem. Commun., 2006, (47), 4915-4917.
[http://dx.doi.org/10.1039/B612071G] [PMID: 17136245]
[11]
For selected reviews on acyclic frameworks see: (a) Cozzi, P.G.; Hilgraf, R.; Zimmermann, N. Enantioselective catalytic formation of quaternary stereogenic centers. Eur. J. Org. Chem., 2007, 2007(36), 5969-5994.
[http://dx.doi.org/10.1002/ejoc.200700318];
(b) Marek, I.; Minko, Y.; Pasco, M.; Mejuch, T.; Gilboa, N.; Chechik, H.; Das, J.P. All-carbon quaternary stereogenic centers in acyclic systems through the creation of several C-C bonds per chemical step. J. Am. Chem. Soc., 2014, 136(7), 2682-2694.
[http://dx.doi.org/10.1021/ja410424g] [PMID: 24512113];
(c) Eppe, G.; Didier, D.; Marek, I. Stereocontrolled formation of several carbon-carbon bonds in acyclic systems. Chem. Rev., 2015, 115(17), 9175-9206.
[http://dx.doi.org/10.1021/cr500715t] [PMID: 25768205];
(d) Roy, S.R.; Didier, D.; Kleiner, A.; Marek, I. Diastereodivergent combined carbometalation/zinc homologation/C-C fragmentation reaction as an efficient tool to prepare acyclic allylic quaternary carbon stereocenters. Chem. Sci., 2016, 7(9), 5989-5994.
[12]
For selected reviews on acyclic frameworks see: (a) Christoffers, J.; Baro, A.; Ley, S.V., Eds.; Quaternary stereocenters - Challenges and solutions for organic synthesis; Wiley-VCH, 2006. ;
(b) Trost, B.M.; Jiang, C. Catalytic enantioselective construction of all-carbon quaternary stereocenters. Synthesis, 2006, (3), 369-396.
[http://dx.doi.org/10.1055/s-2006-926302];
(c) Hong, A.Y.; Stoltz, B.M. The construction of all-carbon quaternary stereocenters by use of Pd-catalyzed asymmetric allylic alkylation reactions in total synthesis. Eur. J. Org. Chem., 2013, 2013(14), 2745-2759.
[http://dx.doi.org/10.1002/ejoc.201201761] [PMID: 24944521];
(d) Quasdorf, K.W.; Overman, L.E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature, 2014, 516(7530), 181-191.
[http://dx.doi.org/10.1038/nature14007] [PMID: 25503231];
(e) Liu, Y.; Han, S.J.; Liu, W.B.; Stoltz, B.M. Catalytic enantioselective construction of quaternary stereocenters: Assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res., 2015, 48(3), 740-751.
[http://dx.doi.org/10.1021/ar5004658] [PMID: 25715056];
(f) Büschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K.B; Overman, L.E. Synthetic strategies toward natural products containing contiguous stereogenic quaternary carbon atoms. Angew. Chem. Int. Ed., 2016, 55(13), 4156-4186.
[http://dx.doi.org/10.1002/anie.201507549] [PMID: 26836448];
(g) Hu, P.; Chi, H.M.; DeBacker, K.C.; Gong, X; Keim, J.H.; Hsu, I.T. Snyder, S.A. Quaternary-centre-guided synthesis of complex polycyclic terpenes. Nature, 2019, 569(7758), 703-707.
[http://dx.doi.org/10.1038/s41586-019-1179-2] [PMID: 31022719]
[13]
For selected reviews on synthesis of γ-lactams, see: (a) Martelli, G.; Orena, M.; Rinaldi, S. Recent advances in chemistry of γ-lactams: Part I. Synthesis starting from acyclic or cyclic precursors. Curr. Org. Chem., 2014, 18(11), 1373-1481.
[http://dx.doi.org/10.2174/1385272819666140407212959];
(b) Martelli, G.; Monsignori, A.; Orena, M.; Rinaldi, S. Recent advances in chemistry of γ-lactams: Part II. Functionalization by C-C or C-Heteroatom bond formation. Curr. Org. Chem., 2014, 18(12), 1539-1585.
[http://dx.doi.org/10.2174/1385272819666140407213209];
(c) Ye, L.W.; Shu, C.; Gagosz, F. Recent progress towards transition metal-catalyzed synthesis of γ-lactams. Org. Biomol. Chem., 2014, 12(12), 1833-1845.
[http://dx.doi.org/10.1039/C3OB42181C] [PMID: 24473105];
(d) Rivas, F.; Ling, T. Advances toward the synthesis of functionalized γ-lactams. Org. Prep. Proced. Int., 2016, 48(3), 254-295.
[http://dx.doi.org/10.1080/00304948.2016.1165059];
(e) Pandey, G.; Khamrai, J.; Mishra, A. Generation of all-carbon quaternary stereocenters at C-3 carbon of lactams and its application. Indian J. Het. Chem., 2018, 28(1), 25-42.;
(f) Pandey, G.; Mishra, A.; Khamrai, J. Generation of all carbon quaternary stereocenters at the C-3 carbon of piperidinones and pyrrolidinones and its application in natural product total synthesis. Tetrahedron, 2018, 74(38), 4903-4915.
[http://dx.doi.org/10.1016/j.tet.2018.05.004]
[14]
Pandey, G.; Khamrai, J.; Mishra, A. Generation of all-carbon quaternary stereocenters at the C-3 carbon of lactams via [3,3]-sigmatropic rearrangement and revision of absolute configuration: Total synthesis of (-)- Physostigmine. Org. Lett., 2018, 20(1), 166-169.
[http://dx.doi.org/10.1021/acs.orglett.7b03537] [PMID: 29272139]
[15]
Amabili, P.; Amici, A.; Civitavecchia, A.; Maggiore, B.; Orena, M.; Rinaldi, S.; Tolomelli, A. Highly stable atropisomers by electrophilic amination of a chiral γ-lactam within the synthesis of an elusive conformationally restricted analogue of α-methylhomoserine. Amino Acids, 2016, 48(2), 461-478.
[http://dx.doi.org/10.1007/s00726-015-2100-4] [PMID: 26403848]
[16]
Yasui, Y.; Kamisaki, H.; Ishida, T.; Takemoto, Y. Synthesis of 3,3-disubstituted oxindoles through Pd-catalyzed intramolecular cyanoamidation. Tetrahedron, 2010, 66(11), 1980-1989.
[http://dx.doi.org/10.1016/j.tet.2010.01.073]
[17]
Dreis, A.M.; Otte, S.C.; Eastwood, M.S.; Alonzi, E.R.; Brethorst, J.T.; Douglas, C.J. Diastereoselective intramolecular cyanoamidation with alkenes. Eur. J. Org. Chem., 2017, 2017(1), 45-48.
[http://dx.doi.org/10.1002/ejoc.201601283] [PMID: 28808413]
[18]
Whyte, A.; Burton, K.I.; Zhang, J.; Lautens, M. Enantioselective intramolecular copper-catalyzed borylacylation. Angew. Chem. Int. Ed., 2018, 57(42), 13927-13930.
[http://dx.doi.org/10.1002/anie.201808460] [PMID: 30160825]
[19]
Torelli, A.; Whyte, A.; Polishchuk, I.; Bajohr, J.; Lautens, M. Stereoselective construction of γ-lactams via copper-catalyzed borylacylation. Org. Lett., 2020, 22(20), 7915-7919.
[http://dx.doi.org/10.1021/acs.orglett.0c02837] [PMID: 32991189]
[20]
Feng, Z.; Li, Q.; Chen, L.; Yao, H.; Lin, A. Palladium-catalyzed asymmetric carbamoyl-carbonylation of alkenes. Sci. China Chem., 2021, 64(8), 1367-1371.
[http://dx.doi.org/10.1007/s11426-021-9992-2]
[21]
Wu, X.; Turlik, A.; Luan, B.; He, F.; Qu, J.; Houk, K.N.; Chen, Y. Nickel-catalyzed enantioselective reductive alkyl-carbamoylation of internal alkenes. Angew. Chem. Int. Ed., 2022, 61(36), e202207536.
[http://dx.doi.org/10.1002/anie.202207536] [PMID: 35818326]
[22]
Kochi, T.; Urano, S.; Seki, H.; Mizushima, E.; Sato, M.; Kakiuchi, F. Ruthenium-catalyzed amino- and alkoxycarbonylations with carbamoyl chlorides and alkyl chloroformates via aromatic C-H bond cleavage. J. Am. Chem. Soc., 2009, 131(8), 2792-2793.
[http://dx.doi.org/10.1021/ja8097492] [PMID: 19209853]
[23]
Li, Y.; Zhang, F.P.; Wang, R.H.; Qi, S.L.; Luan, Y.X.; Ye, M. Carbamoyl fluoride-enabled enantioselective Ni-catalyzed carbocarbamoylation of unactivated alkenes. J. Am. Chem. Soc., 2020, 142(47), 19844-19849.
[http://dx.doi.org/10.1021/jacs.0c09949] [PMID: 33170685]
[24]
He, F.; Hou, L.; Wu, X.; Ding, H.; Qu, J.; Chen, Y. Enantioselective synthesis of α-alkenylated γ-lactam enabled by Ni-catalyzed 1,4-arylcarbamoylation of 1,3-dienes. CCS Chem., 2023, 5(2), 341-349.
[http://dx.doi.org/10.31635/ccschem.022.202202010]
[25]
For recent enantioconvergent syntheses of quaternary centers see: (a) Wendlandt, A.E.; Vangal, P.; Jacobsen, E.N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature, 2018, 556(7702), 447-451.
[http://dx.doi.org/10.1038/s41586-018-0042-1] [PMID: 29695848];
(b) Zhang, X.; Ren, J.; Tan, S.M.; Tan, D.; Lee, R.; Tan, C.H. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science, 2019, 363(6425), 400-404.
[http://dx.doi.org/10.1126/science.aau7797] [PMID: 30679372]
[26]
Behenna, D.C.; Liu, Y.; Yurino, T.; Kim, J.; White, D.E.; Virgil, S.C.; Stoltz, B.M. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams. Nat. Chem., 2012, 4(2), 130-133.
[http://dx.doi.org/10.1038/nchem.1222] [PMID: 22270628]
[27]
Wang, Z.; Yang, Z.P.; Fu, G.C. Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides. Nat. Chem., 2021, 13(3), 236-242.
[http://dx.doi.org/10.1038/s41557-020-00609-7] [PMID: 33432109]
[28]
Mo, X.; Huang, H.; Zhang, G. Tetrasubstituted carbon stereocenters via copper-catalyzed asymmetric Sonogashira coupling reactions with cyclic gem-dihaloketones and tertiary α-carbonyl bromides. ACS Catal., 2022, 12(16), 9944-9952.
[http://dx.doi.org/10.1021/acscatal.2c01973]
[29]
Yang, J.; Park, Y.; Yang, S.; Lee, G.; Ha, M.W.; Kim, M.; Hong, S.; Park, H. Enantioselective total synthesis of Nitraria alkaloids: (+)-Nitramine,(+)-Isonitramine, (-)-Isonitramine, and (-)-Sibirine via asymmetric phase-transfer catalytic α-allylations of α-carboxylactams. J. Org. Chem., 2021, 86(6), 4375-4390.
[http://dx.doi.org/10.1021/acs.joc.0c02573] [PMID: 33464902]
[30]
Moss, T.A.; Alonso, B.; Fenwick, D.R.; Dixon, D.J. Catalytic enantio- and diastereoselective alkylations with cyclic sulfamidates. Angew. Chem. Int. Ed., 2010, 49(3), 568-571.
[http://dx.doi.org/10.1002/anie.200905329] [PMID: 20014377]
[31]
Poulsen, T.B.; Bernardi, L.; Bell, M.; Jørgensen, K.A. Organocatalytic enantioselective nucleophilic vinylic substitution. Angew. Chem. Int. Ed., 2006, 45(39), 6551-6554.
[http://dx.doi.org/10.1002/anie.200602275] [PMID: 16953500]
[32]
Kotsuki, H.; Nunokawa, S.; Minamisawa, M.; Nakano, K.; Ichikawa, Y. Asymmetric Michael addition reaction of α-aryl-substituted lactams catalyzed by chiral quaternary ammonium salts derived from Cinchona alkaloids: A new short synthesis of (+)-Mesembrine. Synlett, 2015, 26(16), 2301-2305.
[http://dx.doi.org/10.1055/s-0035-1560090]
[33]
Hayashi, M.; Bachman, S.; Hashimoto, S.; Eichman, C.C.; Stoltz, B.M. Ni-catalyzed enantioselective C-acylation of α-substituted lactams. J. Am. Chem. Soc., 2016, 138(29), 8997-9000.
[http://dx.doi.org/10.1021/jacs.6b02120] [PMID: 27373124]
[34]
Jette, C.I.; Geibel, I.; Bachman, S.; Hayashi, M.; Sakurai, S.; Shimizu, H.; Morgan, J.B.; Stoltz, B.M. Palladium-catalyzed construction of quaternary stereocenters by enantioselective arylation of γ-lactams with aryl chlorides and bromides. Angew. Chem. Int. Ed., 2019, 58(13), 4297-4301.
[http://dx.doi.org/10.1002/anie.201814475] [PMID: 30677201]
[35]
For some reviews, see: (a) Casiraghi, G.; Zanardi, F.; Battistini, L.; Rassu, G. Advances in exploring heterocyclic dienoxysilane nucleophiles in asymmetric synthesis. Synlett, 2009, 2009(10), 1525-1542.
[http://dx.doi.org/10.1055/s-0029-1217350];
(b) Chen, F.; Miao, Z. Asymmetric aldol reactions of heterocyclic dienolsilanes and α,β-unsaturated carbonyl derived dienolsilanes. Synthesis, 2012, 44(16), 2506-2514.
[http://dx.doi.org/10.1055/s-0032-1316604];
(c) Jusseau, X.; Chabaud, L.; Guillou, C. Synthesis of γ-butenolides and α,β-unsaturated γ-butyrolactams by addition of vinylogous nucleophiles to Michael acceptors. Tetrahedron, 2014, 70(16), 2595-2615.
[http://dx.doi.org/10.1016/j.tet.2014.01.057]
[36]
Song, T.; Arseniyadis, S.; Cossy, J. Asymmetric synthesis of α-quaternary γ-lactams through palladium-catalyzed asymmetric allylic alkylation. Org. Lett., 2019, 21(3), 603-607.
[http://dx.doi.org/10.1021/acs.orglett.8b03613] [PMID: 30645137]
[37]
Singha Roy, S.J.; Mukherjee, S.; Mukherjee, S. “On water” catalytic enantioselective sulfenylation of deconjugated butyrolactams. Org. Biomol. Chem., 2017, 15(33), 6921-6925.
[http://dx.doi.org/10.1039/C7OB01714F] [PMID: 28752177]
[38]
Sietmann, J.; Ong, M.; Mück-Lichtenfeld, C.; Daniliuc, C.G.; Wahl, J.M. Desymmetrization of prochiral cyclobutanones via nitrogen insertion: A concise route to chiral γ-lactams. Angew. Chem. Int. Ed., 2021, 60(17), 9719-9723.
[http://dx.doi.org/10.1002/anie.202100642] [PMID: 33538070]
[39]
Braun, J.; Ariëns, M.I.; Matsuo, B.T.; de Vries, S.; van Wordragen, E.D.H.; Ellenbroek, B.D.; Vande Velde, C.M.L.; Orru, R.V.A.; Ruijter, E. Stereoselective synthesis of fused vinylcyclopropanes by intramolecular Tsuji-Trost cascade cyclization. Org. Lett., 2018, 20(21), 6611-6615.
[http://dx.doi.org/10.1021/acs.orglett.8b02232] [PMID: 30350659]
[40]
Cronin, S.A.; Gutiérrez Collar, A.; Gundala, S.; Cornaggia, C.; Torrente, E.; Manoni, F.; Botte, A.; Twamley, B.; Connon, S.J. The first catalytic asymmetric cycloadditions of imines with an enolisable anhydride. Org. Biomol. Chem., 2016, 14(29), 6955-6959.
[http://dx.doi.org/10.1039/C6OB00048G] [PMID: 27381361]
[41]
Jarvis, C.L.; Hirschi, J.S.; Vetticatt, M.J.; Seidel, D. Catalytic enantioselective synthesis of lactams through formal [4+2] cycloaddition of imines with homophthalic anhydride. Angew. Chem. Int. Ed., 2017, 56(10), 2670-2674.
[http://dx.doi.org/10.1002/anie.201612148] [PMID: 28128534]
[42]
Collar, A.G.; Trujillo, C.; Lockett-Walters, B.; Twamley, B.; Connon, S.J. Catalytic asymmetric γ-lactam synthesis from enolisable anhydrides and imines. Chemistry, 2019, 25(30), 7275-7279.
[http://dx.doi.org/10.1002/chem.201901028] [PMID: 31050082]
[43]
Yu, X.; Zhang, Z.; Dong, G. Catalytic enantioselective synthesis of γ-lactams with β-quaternary centers via merging of C-C activation and sulfonyl radical migration. J. Am. Chem. Soc., 2022, 144(21), 9222-9228.
[http://dx.doi.org/10.1021/jacs.2c03746] [PMID: 35580261]
[44]
Ashida, K.; Hoshimoto, Y.; Tohnai, N.; Scott, D.E.; Ohashi, M.; Imaizumi, H.; Tsuchiya, Y.; Ogoshi, S. Enantioselective synthesis of polycyclic γ-lactams with multiple chiral carbon centers via Ni(0)-catalyzed asymmetric carbonylative cycloadditions without stirring. J. Am. Chem. Soc., 2020, 142(3), 1594-1602.
[http://dx.doi.org/10.1021/jacs.9b12493] [PMID: 31868355]
[45]
Wang, C.; Ge, S. Versatile cobalt-catalyzed enantioselective entry to boryl-functionalized all-carbon quaternary stereogenic centers. J. Am. Chem. Soc., 2018, 140(34), 10687-10690.
[http://dx.doi.org/10.1021/jacs.8b06814] [PMID: 30114355]
[46]
Ren, X.; Tang, L.; Shen, C.; Li, H.; Wang, P.; Dong, K. Enantioselective hydroesterificative cyclization of 1,6-enynes to chiral γ-lactams bearing a quaternary carbon stereocenter. Org. Lett., 2021, 23(9), 3561-3566.
[http://dx.doi.org/10.1021/acs.orglett.1c00952] [PMID: 33908782]
[47]
Espinosa, M.; Blay, G.; Cardona, L.; Muñoz, M.C.; Pedro, J.R. Catalytic asymmetric formal [3+2] cycloaddition of 2-isocyanatomalonate esters and unsaturated imines: Synthesis of highly substituted chiral γ-lactams. Chemistry, 2017, 23(59), 14707-14711.
[http://dx.doi.org/10.1002/chem.201702777] [PMID: 28845883]
[48]
Arlt, A.; Toyama, H.; Takada, K.; Hashimoto, T.; Maruoka, K. Phase-transfer catalyzed asymmetric synthesis of α,β-unsaturated γ,γ-disubstituted γ-lactams. Chem. Commun. (Camb.), 2017, 53(35), 4779-4782.
[http://dx.doi.org/10.1039/C7CC01058C] [PMID: 28394383]
[49]
Gotoh, H.; Masui, R.; Ogino, H.; Shoji, M.; Hayashi, Y. Enantioselective ene reaction of cyclopentadiene and α,β-enals catalyzed by a diphenylprolinol silyl ether. Angew. Chem. Int. Ed., 2006, 45(41), 6853-6856.
[http://dx.doi.org/10.1002/anie.200602925] [PMID: 17001710]
[50]
Lelais, G.; MacMillan, D.W.C. Modern strategies in organic catalysis: The advent and development of iminium activation. Aldrichim Acta, 2006, 39(3), 79-87.
[51]
Laina-Martín, V.; Fernández-Salas, J.A.; Alemán, J. Organocatalytic strategies for the development of the enantioselective inverse-electron-demand Hetero-Diels-Alder reaction. Chemistry, 2021, 27(49), 12509-12520.
[http://dx.doi.org/10.1002/chem.202101696] [PMID: 34132427]
[52]
Kalaitzakis, D.; Sofiadis, M.; Triantafyllakis, M.; Daskalakis, K.; Vassilikogiannakis, G. Asymmetric and site-selective [3+2]-annulations for the synthesis of high-value bicyclic lactams. Org. Lett., 2018, 20(4), 1146-1149.
[http://dx.doi.org/10.1021/acs.orglett.8b00076] [PMID: 29417818]
[53]
Rommel, M.; Fukuzumi, T.; Bode, J.W. Cyclic ketimines as superior electrophiles for NHC-catalyzed homoenolate additions with broad scope and low catalyst loadings. J. Am. Chem. Soc., 2008, 130(51), 17266-17267.
[http://dx.doi.org/10.1021/ja807937m] [PMID: 19053399]
[54]
Zheng, P.; Gondo, C.A.; Bode, J.W. Late-stage diversification of chiral N-heterocyclic-carbene precatalysts for enantioselective homoenolate additions. Chem. Asian J., 2011, 6(2), 614-620.
[http://dx.doi.org/10.1002/asia.201000617] [PMID: 21254434]
[55]
Zhang, Z.Z.; Zhang, Y.; Duan, H.X.; Deng, Z.F.; Wang, Y.Q. Enantioselective (3+2) cycloaddition via N-heterocyclic carbene-catalyzed addition of homoenolates to cyclic N-sulfonyl trifluoromethylated ketimines: Synthesis of fused N-heterocycle γ-lactams. Chem. Commun. (Camb.), 2020, 56(10), 1553-1556.
[http://dx.doi.org/10.1039/C9CC09269B] [PMID: 31930267]
[56]
Chen, X.Y.; Xiong, J.W.; Liu, Q.; Li, S.; Sheng, H.; von Essen, C.; Rissanen, K.; Enders, D. Control of N-heterocyclic carbene catalyzed reactions of enals: Asymmetric synthesis of oxindole-γ-amino acid derivatives. Angew. Chem. Int. Ed., 2018, 57(1), 300-304.
[http://dx.doi.org/10.1002/anie.201708994] [PMID: 29149518]
[57]
Zhang, J.; Liang, Z.; Zhang, S.; Chen, L.; Wang, X.; Wang, Y.; Feng, J.; Lu, T.; Du, D.; Gao, J. An N-heterocyclic carbene-catalyzed enantioselective [3+2] annulation of enals with propargylic imines: Access to γ,γ-disubstituted pyrrolidin-2-ones bearing quaternary stereogenic centers. Org. Chem. Front., 2022, 9(14), 3763-3768.
[http://dx.doi.org/10.1039/D2QO00350C]
[58]
Wang, S.G.; Liu, Y.; Cramer, N. Asymmetric alkenyl C-H functionalization by CpxRhIII forms 2H-pyrrol-2-ones through [4+1]-annulation of acryl amides and allenes. Angew. Chem. Int. Ed., 2019, 58(50), 18136-18140.
[http://dx.doi.org/10.1002/anie.201909971] [PMID: 31553519]
[59]
Wu, L.S.; Ding, Y.; Han, Y.Q.; Shi, B.F. Asymmetric synthesis of γ-lactams containing α,β-contiguous stereocenters via Pd(II)-catalyzed cascade methylene C(sp3)-H alkenylation/Aza-Wacker cyclization. Org. Lett., 2021, 23(6), 2048-2051.
[http://dx.doi.org/10.1021/acs.orglett.1c00204] [PMID: 33683896]
[60]
Pedroni, J.; Boghi, M.; Saget, T.; Cramer, N. Access to β-lactams by enantioselective palladium(0)-catalyzed C(sp3)-H alkylation. Angew. Chem. Int. Ed., 2014, 53(34), 9064-9067.
[http://dx.doi.org/10.1002/anie.201405508] [PMID: 24986088]
[61]
Pedroni, J.; Cramer, N. Chiral γ-lactams by enantioselective Palladium(0)-catalyzed cyclopropane functionalizations. Angew. Chem. Int. Ed., 2015, 54(40), 11826-11829.
[http://dx.doi.org/10.1002/anie.201505916] [PMID: 26271618]
[62]
Hatano, M.; Nishimura, T. Hydroxoiridium/chiral diene complexes as effective catalysts for asymmetric annulation of α-oxo- and iminocarboxamides with 1,3-dienes. Angew. Chem. Int. Ed., 2015, 54(37), 10949-10952.
[http://dx.doi.org/10.1002/anie.201505382] [PMID: 26220276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy