Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Sustainable Synthesis of Phenazines: A Review of Green Approaches

Author(s): Drashti Shah, Tushar Bambharoliya, Dharti Patel, Krina Patel, Niyati Patel, Afzal Nagani, Vashisth Bhavsar, Anjali Mahavar and Ashish Patel*

Volume 27, Issue 13, 2023

Published on: 04 October, 2023

Page: [1143 - 1163] Pages: 21

DOI: 10.2174/0113852728257006230921091216

Price: $65

Abstract

Owing to its momentous significance in the development of new medications, phenazine, and its analogues are successful heterocyclic scaffolds as well as essential building blocks for developing physiologically active chemicals. Traditionally, phenazine and its derivatives have been synthesized using chemical methods that involve toxic organic solvents, dangerous reagents, and the risk of hazardous metal contamination in the final products. These drawbacks have significantly limited the widespread application of phenazine derivatives in therapeutic treatments and the pharmaceutical industry. Consequently, there is a growing demand for environmentally friendly methods that can address these challenges with less environmental damage. As a result, it is now possible to employ green and highly efficient methods for the synthesis of phenazine and its derivatives. These methods include mechanosynthesis, solvent-free and catalyst-free synthesis, green solvent-based synthesis, ultrasound-assisted synthesis, microwave- assisted synthesis, and other similar approaches. In light of the fact that the phenazine backbone is a widely present biologically active component and the growing need to decrease the use of hazardous solvents, catalysts, and energy, this review has provided a summary of various sustainable and facile synthetic strategies of phenazine derivatives.

Graphical Abstract

[1]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[2]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[3]
Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P. Current anti-diabetic agents and their molecular targets: A review. Eur. J. Med. Chem., 2018, 152, 436-488.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.061] [PMID: 29751237]
[4]
John, A.; Shaikh, M.M.; Ghosh, P. Palladium complexes of abnormal N-heterocyclic carbenes as precatalysts for the much preferred Cu-free and amine-free Sonogashira coupling in air in a mixed-aqueous medium. Dalton Trans., 2009, 47(47), 10581-10591.
[http://dx.doi.org/10.1039/b913068c] [PMID: 20023883]
[5]
Wan, J.; Zheng, C.J.; Fung, M.K.; Liu, X.K.; Lee, C.S.; Zhang, X.H. Multifunctional electron-transporting indolizine derivatives for highly efficient blue fluorescence, orange phosphorescence host and two-color based white OLEDs. J. Mater. Chem., 2012, 22(10), 4502-4510.
[http://dx.doi.org/10.1039/c2jm14904d]
[6]
Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2019, 23(28), 3156-3192.
[7]
Kunamneni, A.; Camarero, S.; García-Burgos, C.; Plou, F.J.; Ballesteros, A.; Alcalde, M. Engineering and applications of fungal laccases for organic synthesis. Microb. Cell Fact., 2008, 7(1), 32-49.
[http://dx.doi.org/10.1186/1475-2859-7-32] [PMID: 19019256]
[8]
Maphupha, M.; Juma, W.P.; de Koning, C.B.; Brady, D. A modern and practical laccase-catalysed route suitable for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. RSC Adv., 2018, 8(69), 39496-39510.
[http://dx.doi.org/10.1039/C8RA07377E] [PMID: 35558053]
[9]
Singhal, S.; Joseph, J.K.; Jain, S.L.; Sain, B. Synthesis of 3,4-dihydropyrimidinones in the presence of water under solvent free conditions using conventional heating, microwave irradiation/ultrasound. Green Chem. Lett. Rev., 2010, 3(1), 23-26.
[http://dx.doi.org/10.1080/17518250903490126]
[10]
Bhatt, K.; Patel, D.; Rathod, M.; Patel, A.; Shah, D. An update on the recent green synthetic approaches for imidazo[1,2-a] pyridine: a privileged scaffold. Curr. Org. Chem., 2023, 26(22), 2016-2054.
[http://dx.doi.org/10.2174/1385272827666230123124441]
[11]
Makgatho, M.E.; Anderson, R.; O’Sullivan, J.F.; Egan, T.J.; Freese, J.A.; Cornelius, N.; van Rensburg, C.E.J. Tetramethylpiperidine-substituted phenazines as novel anti-plasmodial agents. Drug Dev. Res., 2000, 50(2), 195-202.
[http://dx.doi.org/10.1002/1098-2299(200006)50:2<195:AID-DDR10>3.0.CO;2-T]
[12]
de Andrade-Neto, V.F.; Goulart, M.O.F.; da Silva Filho, J.F.; da Silva, M.J.; Pinto, M.C.F.R.; Pinto, A.V.; Zalis, M.G.; Carvalho, L.H.; Krettli, A.U. Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2004, 14(5), 1145-1149.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.069] [PMID: 14980653]
[13]
Neves-Pinto, C.; Malta, V.R.S.; Pinto, M.C.F.R.; Santos, R.H.A.; de Castro, S.L.; Pinto, A.V. A trypanocidal phenazine derived from β-lapachone. J. Med. Chem., 2002, 45(10), 2112-2115.
[http://dx.doi.org/10.1021/jm010377v] [PMID: 11985478]
[14]
Wang, W.; Préville, P.; Morin, N.; Mounir, S.; Cai, W.; Siddiqui, M.A. Hepatitis C viral IRES inhibition by phenazine and phenazine-like molecules. Bioorg. Med. Chem. Lett., 2000, 10(11), 1151-1154.
[http://dx.doi.org/10.1016/S0960-894X(00)00217-1] [PMID: 10866369]
[15]
Rewcastle, G.W.; Denny, W.A.; Baguley, B.C. Potential antitumor agents. 51. Synthesis and antitumor activity of substituted phenazine-1-carboxamides. J. Med. Chem., 1987, 30(5), 843-851.
[http://dx.doi.org/10.1021/jm00388a017] [PMID: 3572972]
[16]
Wang, S.; Miller, W.; Milton, J.; Vicker, N.; Stewart, A.; Charlton, P.; Mistry, P.; Hardick, D.; Denny, W.A. Structure-activity relationships for analogues of the phenazine-based dual topoisomerase I/II inhibitor XR11576. Bioorg. Med. Chem. Lett., 2002, 12(3), 415-418.
[http://dx.doi.org/10.1016/S0960-894X(01)00770-3] [PMID: 11814810]
[17]
Ye, L.; Zhang, H.; Xu, H.; Zou, Q.; Cheng, C.; Dong, D.; Xu, Y.; Li, R. Phenazine-1-carboxylic acid derivatives: Design, synthesis and biological evaluation against Rhizoctonia solani Kuhn. Bioorg. Med. Chem. Lett., 2010, 20(24), 7369-7371.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.050] [PMID: 21055934]
[18]
Wang, J.; Zhi, X.; Yu, X.; Xu, H. Synthesis and insecticidal activity of new deoxypodophyllotoxin-based phenazine analogues against Mythimna separata Walker. J. Agric. Food Chem., 2013, 61(26), 6336-6343.
[http://dx.doi.org/10.1021/jf4011033] [PMID: 23756712]
[19]
Guttenberger, N.; Blankenfeldt, W.; Breinbauer, R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg. Med. Chem., 2017, 25(22), 6149-6166.
[http://dx.doi.org/10.1016/j.bmc.2017.01.002] [PMID: 28094222]
[20]
Valliappan, K.; Sun, W.; Li, Z. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products. Appl. Microbiol. Biotechnol., 2014, 98(17), 7365-7377.
[http://dx.doi.org/10.1007/s00253-014-5954-6] [PMID: 25064352]
[21]
Yang, P.; Yang, Q.; Qian, X.; Cui, J. Novel synthetic isoquinolino[5,4-ab]phenazines: Inhibition toward topoisomerase I, antitumor and DNA photo-cleaving activities. Bioorg. Med. Chem., 2005, 13(21), 5909-5914.
[http://dx.doi.org/10.1016/j.bmc.2005.07.029] [PMID: 16115776]
[22]
Peng, H.; Zhang, P.; Bilal, M.; Wang, W.; Hu, H.; Zhang, X. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Microb. Cell Fact., 2018, 17(1), 117-129.
[http://dx.doi.org/10.1186/s12934-018-0962-3] [PMID: 30045743]
[23]
Tinsley, J.M. In Name Reactions in Heterocyclic Chemistry; Li, J.J.; Corey, E.J., Eds.; Wiley, 2005, p. 504.
[24]
Haddadin, M.J.; Issidorides, C.H. The Beirut Reaction. Heterocycles, 1993, 35(2), 1503-1525.
[http://dx.doi.org/10.3987/REV-92-SR(T)8]
[25]
Garrison, A.T.; Abouelhassan, Y.; Kallifidas, D.; Tan, H.; Kim, Y.S.; Jin, S.; Luesch, H.; Huigens, R.W., III An efficient buchwald-hartwig/reductive cyclization for the scaffold diversification of halogenated phenazines: Potent antibacterial targeting, biofilm eradication, and prodrug exploration. J. Med. Chem., 2018, 61(9), 3962-3983.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01903] [PMID: 29638121]
[26]
Sheng, J.; He, R.; Xue, J.; Wu, C.; Qiao, J.; Chen, C. Cu-catalyzed π-core evolution of benzoxadiazoles with diaryliodonium salts for regioselective synthesis of phenazine scaffolds. Org. Lett., 2018, 20(15), 4458-4461.
[http://dx.doi.org/10.1021/acs.orglett.8b01748] [PMID: 30040430]
[27]
Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: current status and future prospects. J. Antimicrob. Chemother., 2012, 67(2), 290-298.
[http://dx.doi.org/10.1093/jac/dkr444] [PMID: 22020137]
[28]
Pauliukaite, R.; Ghica, M.E.; Barsan, M.M.; Brett, C.M.A. Phenazines and polyphenazines in electrochemical sensors and biosensors. Anal. Lett., 2010, 43(10-11), 1588-1608.
[http://dx.doi.org/10.1080/00032711003653791]
[29]
Data, P.; Pander, P.; Okazaki, M.; Takeda, Y.; Minakata, S.; Monkman, A.P. Dibenzo[a,j]phenazine-cored donor-acceptor-donor compounds as green-to-red/NIR thermally activated delayed fluorescence organic light emitters. Angew. Chem. Int. Ed., 2016, 55(19), 5739-5744.
[http://dx.doi.org/10.1002/anie.201600113] [PMID: 27060474]
[30]
Okazaki, M.; Takeda, Y.; Data, P.; Pander, P.; Higginbotham, H.; Monkman, A.P.; Minakata, S. Thermally activated delayed fluorescent phenothiazine-dibenzo[a,j]phenazine-phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chem. Sci. (Camb.), 2017, 8(4), 2677-2686.
[http://dx.doi.org/10.1039/C6SC04863C] [PMID: 28553504]
[31]
Crossley, M.J.; Johnston, L.A. Laterally-extended porphyrin systems incorporating a switchable unit. Chem. Commun. (Camb.), 2002, 10(10), 1122-1123.
[http://dx.doi.org/10.1039/b111655j] [PMID: 12122695]
[32]
Ohira, K.; Imato, K.; Ooyama, Y. Development of phenazine-2,3-diol-based photosensitizers: effect of formyl groups on singlet oxygen generation. Mater. Chem. Front., 2021, 5(14), 5298-5304.
[http://dx.doi.org/10.1039/D1QM00649E]
[33]
Yang, J.; Gao, Y.; Jiang, T.; Liu, W.; Liu, C.; Lu, N.; Li, B.; Mei, J.; Peng, Q.; Hua, J. Substituent effects on the aggregation-induced emission and two-photon absorption properties of triphenylamine-dibenzo[a,c]phenazine adducts. Mater. Chem. Front., 2017, 1(7), 1396-1405.
[http://dx.doi.org/10.1039/C7QM00024C]
[34]
Zhang, H.L.; Wei, T.B.; Li, W.T.; Qu, W.J.; Leng, Y.L.; Zhang, J.H.; Lin, Q.; Zhang, Y.M.; Yao, H. Phenazine-based colorimetric and fluorescent sensor for the selective detection of cyanides based on supramolecular self-assembly in aqueous solution. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 175, 117-124.
[http://dx.doi.org/10.1016/j.saa.2016.12.022] [PMID: 28024245]
[35]
Zhang, Y.M.; Fang, H.; Zhu, W.; He, J.X.; Yao, H.; Wei, T.B.; Lin, Q.; Qu, W.J. Ratiometric fluorescent sensor based oxazolo-phenazine derivatives for detect hypochlorite via oxidation reaction and its application in environmental samples. Dyes Pigments, 2020, 172, 107765.
[http://dx.doi.org/10.1016/j.dyepig.2019.107765]
[36]
Wang, S.; Ren, W.X.; Hou, J.T.; Won, M.; An, J.; Chen, X.; Shu, J.; Kim, J.S. Fluorescence imaging of pathophysiological microenvironments. Chem. Soc. Rev., 2021, 50(16), 8887-8902.
[http://dx.doi.org/10.1039/D1CS00083G] [PMID: 34195735]
[37]
Edwards, N.Y.; Schnable, D.M.; Gearba-Dolocan, I.R.; Strubhar, J.L. Terpyridine-functionalized calixarenes: Synthesis, characterization and anion sensing applications. Molecules, 2020, 26(1), 87-103.
[http://dx.doi.org/10.3390/molecules26010087] [PMID: 33375511]
[38]
Yang, L.; Li, X.; Yang, J.; Qu, Y.; Hua, J. Colorimetric and ratiometric near-infrared fluorescent cyanide chemodosimeter based on phenazine derivatives. ACS Appl. Mater. Interfaces., 2013, 5(4), 1317-1326.
[http://dx.doi.org/10.1021/am303152w] [PMID: 23357465]
[39]
Guo, C.; Sedgwick, A.C.; Hirao, T.; Sessler, J.L. Supramolecular fluorescent sensors: An historical overview and update. Coord. Chem. Rev., 2021, 427, 213560.
[http://dx.doi.org/10.1016/j.ccr.2020.213560] [PMID: 34108734]
[40]
Li, J.; Shen, Y.; Wan, J.; Yu, X.; Zhang, Q. Recent progress in the usage of phenazinediamine and its analogues as building blocks to construct large N-heteroacenes. Eur. J. Org. Chem., 2018, 2018(26), 3375-3390.
[http://dx.doi.org/10.1002/ejoc.201800478]
[41]
Shi, B.; Li, W.; Qin, P.; Zhao, X.X.; Qi, X.N.; Chai, Y.; Yang, H.H.; Qu, W.J.; Yao, H.; Zhang, Y.M.; Wei, T.B.; Lin, Q. A selective and stable vapochromic system constructed by pillar[5]arene-based host-guest interactions. Dyes Pigments, 2022, 197, 109885.
[http://dx.doi.org/10.1016/j.dyepig.2021.109885]
[42]
Lefebvre, J.F.; Schindler, J.; Traber, P.; Zhang, Y.; Kupfer, S.; Gräfe, S.; Baussanne, I.; Demeunynck, M.; Mouesca, J.M.; Gambarelli, S.; Artero, V.; Dietzek, B.; Chavarot-Kerlidou, M. An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)-pyridoquinolinone ligand. Chem. Sci. (Camb.), 2018, 9(17), 4152-4159.
[http://dx.doi.org/10.1039/C7SC04348A] [PMID: 29780545]
[43]
Senapati, B.K. Recent progress in the synthesis of the furanosteroid family of natural products. Org. Chem. Front., 2021, 8(11), 2608-2642.
[http://dx.doi.org/10.1039/D0QO01454K]
[44]
Wang, H.; Zhao, B.; Ma, P.; Li, Z.; Wang, X.; Zhao, C.; Fan, X.; Tao, L.; Duan, C.; Zhang, J.; Han, C.; Chen, G.; Xu, H. A red thermally activated delayed fluorescence emitter employing dipyridophenazine with a gradient multi-inductive effect to improve radiation efficiency. J. Mater. Chem. C Mater. Opt. Electron. De., 2019, 7(25), 7525-7530.
[http://dx.doi.org/10.1039/C9TC02557J]
[45]
Patel, A.; Shah, D.; Patel, N.; Patel, K.; Soni, N.; Nagai, A.; Shah, U.; Patel, M.; Patel, S.; Bhimani, B.; Bambharoliya, T. Quinoxaline as ubiquitous structural fragment: An update on the recent development of its green synthetic approaches. Curr. Org. Chem., 2021, 25(24), 3004-3016.
[http://dx.doi.org/10.2174/1385272825666211125102145]
[46]
Bhimani, B.; Patel, A.; Shah, D. An update with recent green synthetic approaches to coumarins. Mini Rev. Org. Chem., 2023, 20, 1-18.
[47]
Patel, A.; Shah, D.; Patel, N.; Patel, K.; Soni, N.; Nagani, A.; Parikh, V.; Shah, H.; Bambharoliya, T. Benzimidazole as ubiquitous structural fragment: An update on development of its green synthetic approaches. Mini Rev. Org. Chem., 2021, 18(8), 1064-1085.
[http://dx.doi.org/10.2174/1570193X17999201211194908]
[48]
Wu, J.I.C.; Mo, Y.; Evangelista, F.A.; von Ragué Schleyer, P.; Von, R. Is cyclobutadiene really highly destabilized by antiaromaticity? Chem. Commun. (Camb.), 2012, 48(67), 8437-8439.
[http://dx.doi.org/10.1039/c2cc33521b] [PMID: 22801355]
[49]
Kumar, A.; Pericherla, K.; Kaswan, P.; Pandey, K. Recent developments in the synthesis of imidazo[1,2-a]pyridines. Synthesis, 2015, 47(7), 887-912.
[http://dx.doi.org/10.1055/s-0034-1380182]
[50]
Mohana Roopan, S.; Patil, S.M.; Palaniraja, J. Recent synthetic scenario on imidazo[1,2-a]pyridines chemical intermediate. Res. Chem. Intermed., 2016, 42(4), 2749-2790.
[http://dx.doi.org/10.1007/s11164-015-2216-x]
[51]
Yu, Y.; Su, Z.; Cao, H. Strategies for synthesis of imidazo[1,2-a]pyridine derivatives: Carbene transformations or C-H functionalizations. Chem. Rec., 2019, 19(10), 2105-2118.
[http://dx.doi.org/10.1002/tcr.201800168] [PMID: 30592370]
[52]
Kurteva, V. Recent progress in metal-free direct synthesis of imidazo[1,2-a]pyridines. ACS Omega, 2021, 6(51), 35173-35185.
[http://dx.doi.org/10.1021/acsomega.1c03476] [PMID: 34984250]
[53]
Al-Tel, T.H.; Al-Qawasmeh, R.A.; Zaarour, R. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur. J. Med. Chem., 2011, 46(5), 1874-1881.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.051] [PMID: 21414694]
[54]
Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 2016, 4(1), 7.
[http://dx.doi.org/10.1186/s40508-016-0051-z]
[55]
Sharing insights elevates their impact. S&P Global Available from: https://www.spglobal.com/commodityinsights/en/ci/industry/chemical.html(Accessed on: June 22, 2023).
[56]
Winterton, N. The green solvent: A critical perspective. Clean Technol. Environ. Policy, 2021, 23(9), 2499-2522.
[http://dx.doi.org/10.1007/s10098-021-02188-8] [PMID: 34608382]
[57]
Keskin, S.; Kayrak-Talay, D.; Akman, U.; Hortaçsu, Ö. A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids, 2007, 43(1), 150-180.
[http://dx.doi.org/10.1016/j.supflu.2007.05.013]
[58]
Vicker, N.; Burgess, L.; Chuckowree, I.S.; Dodd, R.; Folkes, A.J.; Hardick, D.J.; Hancox, T.C.; Miller, W.; Milton, J.; Sohal, S.; Wang, S.; Wren, S.P.; Charlton, P.A.; Dangerfield, W.; Liddle, C.; Mistry, P.; Stewart, A.J.; Denny, W.A. Novel angular benzophenazines: dual topoisomerase I and topoisomerase II inhibitors as potential anticancer agents. J. Med. Chem., 2002, 45(3), 721-739.
[http://dx.doi.org/10.1021/jm010329a] [PMID: 11806724]
[59]
Tang, W.; Zhu, Z.; Tan, L. [Ru(bpy)2(7-CH3-dppz)]2+ and [Ru(phen)2(7-CH3-dppz)]2+ as metallointercalators that affect third-strand stabilization of the poly(U)'poly(A)*poly(U) triplex. Mol. Biosyst., 2016, 12(5), 1478-1485.
[http://dx.doi.org/10.1039/C6MB00094K] [PMID: 26999574]
[60]
Karami, B.; Khodabakhshi, S.; Nikrooz, M. Synthesis of aza-polycyclic compounds: novel phenazines and quinoxalines using Molybdate Sulfuric Acid (MSA). Polycycl. Aromat. Compd., 2011, 31(2), 97-109.
[http://dx.doi.org/10.1080/10406638.2011.572577]
[61]
Niknam, K.; Saberi, D.; Mohagheghnejad, M. Silica bonded S-sulfonic acid: a recyclable catalyst for the synthesis of quinoxalines at room temperature. Molecules, 2009, 14(5), 1915-1926.
[http://dx.doi.org/10.3390/molecules14051915] [PMID: 19471211]
[62]
Karami, B.; Khodabakhshi, S. A novel and simple synthesis of some new and known dibenzo phenazine and quinoxaline derivatives using lead dichlorid. J. Chil. Chem. Soc., 2013, 58(2), 1655-1658.
[http://dx.doi.org/10.4067/S0717-97072013000200002]
[63]
He, Y.; Yagi, S.; Maeda, T.; Nakazumi, H. Synthesis and luminescent properties of novel dibenzo[a,c]phenazine derivatives with electron-donating side-arms. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2015, 621(1), 64-69.
[http://dx.doi.org/10.1080/15421406.2015.1095927]
[64]
Tandon, V.K.; Verma, M.K.; Maurya, H.K.; Kumar, S.; Panda, D. Micelles catalyzed one pot regio- and chemoselective synthesis of benzo[a]phenazines and naphtho[2,3-d]imidazoles ‘in H2O’. Tetrahedron Lett., 2014, 55(46), 6331-6334.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.103]
[65]
Yu, L.; Zhou, X.; Wu, D.; Xiang, H. Synthesis of phenazines by Cu-catalyzed homocoupling of 2-halogen anilines in water. J. Organomet. Chem., 2012, 705, 75-78.
[http://dx.doi.org/10.1016/j.jorganchem.2011.12.030]
[66]
Bharti, R.; Parvin, T. Multicomponent synthesis of diverse pyrano-fused benzophenazines using bifunctional thiourea-based organocatalyst in aqueous medium. Mol. Divers., 2016, 20(4), 867-876.
[http://dx.doi.org/10.1007/s11030-016-9681-z] [PMID: 27317166]
[67]
Khurana, J.M.; Chaudhary, A.; Lumb, A.; Nand, B. An expedient four-component domino protocol for the synthesis of novel benzo[a]phenazine annulated heterocycles and their photophysical studies. Green Chem., 2012, 14(8), 2321-2327.
[http://dx.doi.org/10.1039/c2gc35644a]
[68]
Rajeswari, M.; Khanna, G.; Chaudhary, A.; Khurana, J.M. Multicomponent domino process for the synthesis of some novel benzo[a]chromenophenazine fused ring systems using H2SO4, phosphotungstic acid, and [NMP]H2PO4. Synth. Commun., 2015, 45(12), 1426-1432.
[http://dx.doi.org/10.1080/00397911.2015.1024324]
[69]
Hasaninejad, A.; Firoozi, S.; Mandegani, F. An efficient synthesis of novel spiro[benzo[c]pyrano[3,2-a]phenazines] via domino multi-component reactions using L-proline as a bifunctional organocatalyst. Tetrahedron Lett., 2013, 54(22), 2791-2794.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.073]
[70]
Yazdani-Elah-Abadi, A.; Mohebat, R.; Maghsoodlou, M.T. Theophylline as the catalyst for the diastereoselective synthesis of trans-1,2-dihydrobenzo[a]furo[2,3-c]phenazines in water. RSC Advances., 2016, 6(87), 84326-84333.
[http://dx.doi.org/10.1039/C6RA18750A]
[71]
Mohebat, R.; Yazdani-Elah-Abadi, A.; Malek-Taher, M.; Hazeri, N. DABCO-catalyzed multi-component domino reactions for green and efficient synthesis of novel 3-oxo-3H-benzo[a]pyrano[2,3-c]phenazine-1-carboxylate and 3-(5-hydroxybenzo[a]phenazin-6-yl)acrylate derivatives in water. Chin. Chem. Lett., 2017, 28(5), 943-948.
[http://dx.doi.org/10.1016/j.cclet.2016.12.042]
[72]
Choudhary, A.S.; Malik, M.K.; Patil, S.R.; Prabhu, K.H.; Deshmukh, R.R.; Sekar, N. Phenazines and thiazine: green synthesis, photophysical properties and dichroic behavior in nematic host. Can. Chem. Trans., 2014, 2(4), 365-380.
[73]
Shahbazi-Alavi, H.; Safaei-Ghomi, J.; Dehghan, M.D. Ionic liquid-tethered colloidal silica nanoparticles as a reusable and effective catalyst for the synthesis of phenazines. Nanochem Res., 2020, 5(2), 111-119.
[74]
Yazdani-Elah-Abadi, A.; Razeghi, M.; Shams, N.; Kangani, M.; Mohebat, R.; Razieh, M. Fulvic acid: An efficient and green catalyst for the one-pot four-component domino synthesis of benzo[a]phenazine annulated heterocycles in aqueous medium. Org. Prep. Proced. Int., 2020, 52(1), 48-55.
[http://dx.doi.org/10.1080/00304948.2019.1697608]
[75]
Yan, L.; Li, Y.; Yang, B.; Gao, W. InBr3-catalyzed synthesis of highly functionalized piperidines and benzo[a]pyrano[2,3-c] phenazines. Polycycl. Aromat. Compd., 2022, 42(2), 534-542.
[http://dx.doi.org/10.1080/10406638.2020.1744026]
[76]
Sahu, B.; Bharti, R.; Thakur, A.D.; Verma, M.; Sharma, R. DMAP catalyzed one-pot multicomponent synthesis of benzo phenazine and pyrimidine tethered tri-substituted methanes and their DFT analysis. Mater. Today Proc., 2022, 86.
[77]
Dehnavian, M.; Dehghani, A.; Moradi, L. Introducing a green nanocatalytic process toward the synthesis of benzo[a]pyrano-[2,3-c]phenazines utilizing copper oxide quantum dot-modified core-shell magnetic mesoporous silica nanoparticles as high throughput and reusable nanocatalysts. RSC Adv., 2022, 12(39), 25194-25203.
[http://dx.doi.org/10.1039/D2RA03887K] [PMID: 36199302]
[78]
Daraie, M.; Tamoradi, T.; Heravi, M.M.; Karmakar, B. Ce immobilized 1H-pyrazole-3,5-dicarboxylic acid (PDA) modified CoFe2O4: A potential magnetic nanocomposite catalyst towards the synthesis of diverse benzo[a]pyrano[2,3-c]phenazine derivatives. J. Mol. Struct., 2021, 1245, 131089.
[http://dx.doi.org/10.1016/j.molstruc.2021.131089]
[79]
Nazeef, M.; Saquib, M.; Tiwari, S.K.; Yadav, V.; Ansari, S.; Sagir, H.; Hussain, M.K.; Siddiqui, I.R. Catalyst free, multicomponent green approach to benzo[a]chromeno[2,3-c]phenazines using glycerol as a recyclable and biodegradable promoting medium. ChemistrySelect, 2020, 5(45), 14447-14454.
[http://dx.doi.org/10.1002/slct.202003732]
[80]
Yazdani-Elah-Abadi, A.; Lashkari, M.; Mohebat, R. DABCO-catalyzed five-component domino protocol for the synthesis of novel benzo[a]pyrazolo[4′,3′:5,6]pyrano[2,3-c]phenazines in PEG-400 as an efficient green reaction medium. Org. Prep. Proced. Int., 2020, 52(4), 261-273.
[http://dx.doi.org/10.1080/00304948.2020.1765297]
[81]
Mohammadrezaei, M.; Mohebat, R.; Tabatabaee, M. Microwave-assisted multi-component domino reaction for the green synthesis of novel benzo[a]pyrano[3′,4′:5,6]pyrano[2,3-c]phenazines using H3PW12O40 as efficient, cost-effective and recyclable catalyst. Org. Prep. Proced. Int., 2019, 51(5), 477-485.
[http://dx.doi.org/10.1080/00304948.2019.1653128]
[82]
Kokel, A. Development of Environmentally Benign Sustainable Synthetic Methods for Biologically Active Compounds and Synthetic Building Blocks Doctoral dissertation, University of Massachusetts Boston, 2019.
[83]
Kshatriya, R.; Jejurkar, V.P.; Saha, S. Advances in the catalytic synthesis of triarylmethanes (TRAMs). Eur. J. Org. Chem., 2019, 2019(24), 3818-3841.
[http://dx.doi.org/10.1002/ejoc.201900465]
[84]
Pfeiffer, F.R.; Case, F.H. The preparation of some pyrido and pyridyl derivatives of phenazine and quinoxaline. J. Org. Chem., 1966, 31(10), 3384-3390.
[http://dx.doi.org/10.1021/jo01348a063]
[85]
Kumar, S.; Manickam, M. Synthesis of phenanthro[b] phenazine, a novel heterocyclic ring structure for discotic liquid crystals. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2000, 338(1), 175-179.
[http://dx.doi.org/10.1080/10587250008024428]
[86]
Zhang, D.; Lu, Y.; Liu, K.; Liu, B.; Wang, J.; Zhang, G.; Zhang, H.; Liu, Y.; Wang, B.; Zheng, M.; Fu, L.; Hou, Y.; Gong, N.; Lv, Y.; Li, C.; Cooper, C.B.; Upton, A.M.; Yin, D.; Ma, Z.; Huang, H. Identification of less lipophilic riminophenazine derivatives for the treatment of drug-resistant tuberculosis. J. Med. Chem., 2012, 55(19), 8409-8417.
[http://dx.doi.org/10.1021/jm300828h] [PMID: 22931472]
[87]
Kumar, S.; Manickam, M. Synthesis of phenanthro[a] phenazine derivatives: a novel ring structure forming discotic liquid crystals. Liq. Cryst., 1999, 26(7), 1097-1099.
[http://dx.doi.org/10.1080/026782999204453]
[88]
Conda-Sheridan, M.; Marler, L.; Park, E.J.; Kondratyuk, T.P.; Jermihov, K.; Mesecar, A.D.; Pezzuto, J.M.; Asolkar, R.N.; Fenical, W.; Cushman, M. Potential chemopreventive agents based on the structure of the lead compound 2-bromo-1-hydroxyphenazine, isolated from Streptomyces species, strain CNS284. J. Med. Chem., 2010, 53(24), 8688-8699.
[http://dx.doi.org/10.1021/jm1011066] [PMID: 21105712]
[89]
Hahn, S.; Biegger, P.; Bender, M.; Rominger, F.; Bunz, U.H.F. Synthesis of alkynylated benzo[a]naphtho[2,3-i]phenazine derivatives. Chemistry, 2016, 22(3), 869-873.
[http://dx.doi.org/10.1002/chem.201503856] [PMID: 26572688]
[90]
Hao, Z.S.; Li, M.J.; Lin, H.X.; Gu, Z.B.; Cui, Y.M. Synthesis, optical, and electrochemical properties of 2,3-diphenyl-10H-indeno[1,2-g]quinoxaline, 15H-dibenzo[a,c]indeno[1,2-i]phenazine, and 15H-indeno[1,2-i]phenanthro [4,5-abc]phenazine derivatives. Dyes Pigments, 2014, 109, 54-66.
[http://dx.doi.org/10.1016/j.dyepig.2014.04.042]
[91]
Hussain, H.; Specht, S.; Sarite, S.R.; Saeftel, M.; Hoerauf, A.; Schulz, B.; Krohn, K. A new class of phenazines with activity against a chloroquine resistant Plasmodium falciparum strain and antimicrobial activity. J. Med. Chem., 2011, 54(13), 4913-4917.
[http://dx.doi.org/10.1021/jm200302d] [PMID: 21591758]
[92]
China Raju, B.; Veera Prasad, K.; Saidachary, G.; Sridhar, B. A novel approach for C-C, C-N, and C-O bond formation reactions: A facile synthesis of benzophenazine, quinoxaline, and phenoxazine derivatives via ring opening of benzoxepines. Org. Lett., 2014, 16(2), 420-423.
[http://dx.doi.org/10.1021/ol4033122] [PMID: 24328679]
[93]
Römer, A.; Budzikiewicz, H.; Korth, H.; Pulverer, G. Neue phenazinderivate aus pseudomonas aureofaciens. Tetrahedron Lett., 1979, 20(6), 509-512.
[http://dx.doi.org/10.1016/S0040-4039(01)85986-4]
[94]
Pozzo, J.L.; Clavier, G.M.; Desvergne, J.P. Rational design of new acid-sensitive organogelators. J. Mater. Chem., 1998, 8(12), 2575-2577.
[http://dx.doi.org/10.1039/a807237j]
[95]
Seillan, C.; Brisset, H.; Siri, O. Novel angular benzophenazines: Dual topoisomerase I and topoisomerase II inhibitors as potential anticancer agents. Org. Lett., 2008, 10(18), 4013-4016.
[http://dx.doi.org/10.1021/ol801509v] [PMID: 18729370]
[96]
Jain, R.; Agarwal, O.P.; Jain, S.C. Synthesis of tetracyclic phenazine derivatives by reactions of lawsone with diamines. Asian J. Chem., 2013, 25(4), 1842-1844.
[http://dx.doi.org/10.14233/ajchem.2013.13188]
[97]
Eckert, A.; Steiner, K. Eine neue synthese des phenazins. Monatsh. Chem., 1914, 35(9), 1153-1155.
[http://dx.doi.org/10.1007/BF01518036]
[98]
Cross, B.; Williams, P.J.; Woodall, R.E. The preparation of phenazines by the cyclisation of 2-nitrodiphenylamines. J. Chem. Soc., 1971, 11, 2085-2090.
[99]
Laha, J.K.; Tummalapalli, K.S.S.; Gupta, A. Transition-metal-free tandem oxidative removal of benzylic methylene group by C-C and C-N bond cleavage followed by intramolecular new aryl C-N bond formation under radical conditions. Org. Lett., 2014, 16(17), 4392-4395.
[http://dx.doi.org/10.1021/ol501766m] [PMID: 25119523]
[100]
Bazgir, A.; Amanpour, T.; Mirzaei, P. Isocyanide-based four-component synthesis of benzo[a]pyrano[2,3-c]phenazines. Synthesis, 2012, 2012(2), 235-240.
[http://dx.doi.org/10.1055/s-0031-1289968]
[101]
Khanna, G.; Chaudhary, A.; Khurana, J.M. An efficient catalyst-free synthesis of novel benzo[a][1,3]oxazino[6,5-c]phenazine derivatives via one pot four-component domino protocol in water. Tetrahedron Lett., 2014, 55(49), 6652-6654.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.067]
[102]
Zangade, S.; Patil, P. A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2020, 23(21), 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532]
[103]
Cintas, P.; Tabasso, S.; Veselov, V.V.; Cravotto, G. Alternative reaction conditions: Enabling technologies in solvent-free protocols. Curr. Opin. Green Sustain. Chem., 2020, 21, 44-49.
[http://dx.doi.org/10.1016/j.cogsc.2019.11.007]
[104]
Oliveira, P.F.M.; Baron, M.; Chamayou, A.; André-Barrès, C.; Guidetti, B.; Baltas, M. Solvent-free mechanochemical route for green synthesis of pharmaceutically attractive phenol-hydrazones. RSC Adv., 2014, 4(100), 56736-56742.
[http://dx.doi.org/10.1039/C4RA10489G]
[105]
Sahoo, B.M.; Banik, B.K. Solvent-less reactions: Green and sustainable approaches in medicinal chemistry. Green Approaches in Medicinal Chemistry for Sustainable Drug Design; Elsevier, 2020, pp. 523-548.
[http://dx.doi.org/10.1016/B978-0-12-817592-7.00014-9]
[106]
Mithu, M.S.H.; Ross, S.A.; Alexander, B.D.; Douroumis, D. Solid state thermomechanical engineering of high-quality pharmaceutical salts via solvent free continuous processing. Green Chem., 2020, 22(2), 540-549.
[http://dx.doi.org/10.1039/C9GC03528A]
[107]
Shahid, A.; Ahmed, N.; Saleh, T.; Al-Thabaiti, S.; Basahel, S.; Schwieger, W.; Mokhtar, M. Solvent-free biginelli reactions catalyzed by hierarchical zeolite utilizing a ball mill technique: A green sustainable process. Catalysts, 2017, 7(12), 84-100.
[http://dx.doi.org/10.3390/catal7030084]
[108]
Roschangar, F.; Sheldon, R.A.; Senanayake, C.H. Overcoming barriers to green chemistry in the pharmaceutical industry - The Green Aspiration Level™ concept. Green Chem., 2015, 17(2), 752-768.
[http://dx.doi.org/10.1039/C4GC01563K]
[109]
Dey, N.; Mandal, A.; Jana, R.; Bera, A.; Azad, S.A.; Giri, S.; Ikbal, M.; Samanta, S. Recent development of solvent-free synthesis of heterocycles. New J. Chem., 2023.
[110]
Krishnakumar, B.; Swaminathan, M. Solvent free synthesis of quinoxalines, dipyridophenazines and chalcones under microwave irradiation with sulfated Degussa titania as a novel solid acid catalyst. J. Mol. Catal. Chem., 2011, 350(1-2), 16-25.
[http://dx.doi.org/10.1016/j.molcata.2011.08.026]
[111]
Krishnakumar, B.; Velmurugan, R.; Jothivel, S.; Swaminathan, M. An efficient protocol for the green synthesis of quinoxaline and dipyridophenazine derivatives at room temperature using sulfated titania. Catal. Commun., 2010, 11(12), 997-1002.
[http://dx.doi.org/10.1016/j.catcom.2010.04.021]
[112]
Shaterian, H.R.; Moradi, F.; Mohammadnia, M. Nano copper(II) oxide catalyzed four-component synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine derivatives. C. R. Chim., 2012, 15(11-12), 1055-1059.
[http://dx.doi.org/10.1016/j.crci.2012.09.012]
[113]
Saluja, P.; Chaudhary, A.; Khurana, J.M. Synthesis of novel fluorescent benzo[a]pyrano[2,3-c]phenazine and benzo[a]chromeno[2,3-c]phenazine derivatives via facile four-component domino protocol. Tetrahedron Lett., 2014, 55(23), 3431-3435.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.072]
[114]
Naeimi, H.; Zarabi, M.F. Multisulfonate hyperbranched polyglycerol functionalized graphene oxide as an efficient reusable catalyst for green synthesis of benzo[a]pyrano-[2,3-c]phenazines under solvent-free conditions. RSC Adv., 2019, 9(13), 7400-7410.
[http://dx.doi.org/10.1039/C8RA10180A] [PMID: 35519942]
[115]
Taheri, M.; Jawhar, Z.H. Microwave-assisted multi-component reaction for the green synthesis of novel 4-(5-hydroxybenzo[a]phenazin-6-yl)-5-phenyl-1, 3-dihydro-2H-imidazol-2-one using H3PW12O40@nano-TiO2 as recyclable catalyst. Green Chem. Lett. Rev., 2022, 15(3), 813-824.
[http://dx.doi.org/10.1080/17518253.2022.2138562]
[116]
Taheri, M.; Mohebat, R.; Moslemin, M.H. Synthesis of benzo[a]furo[2, 3- c]phenazine derivatives through an efficient, rapid and via microwave irradiation under solvent-free conditions catalyzed by H3PW12O40@Fe3O4-ZnO for high-performance removal of methylene blue. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 250-260.
[http://dx.doi.org/10.1080/21691401.2021.1894163] [PMID: 33703965]
[117]
Taheri, M.; Mohebat, R.; Moslemin, M.H. Microwave-assisted multi-component green synthesis of benzo[α]furo[2, 3-C]phenazine derivatives via a magnetically-separable Fe3O4@rgo@zno-hpa nanocatalyst under solvent-free conditions. Polycycl. Aromat. Compd., 2021, 43(2), 1-11.
[118]
Kwast, A.; Stachowska, K. Trawczyński, A.; Wróbel, Z. N-Aryl-2-nitrosoanilines as intermediates in the synthesis of substituted phenazines from nitroarenes. Tetrahedron Lett., 2011, 52(48), 6484-6488.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.113]
[119]
Wróbel, Z. Więcł;aw, M.; Bujok, R.; Wojciechowski, K. Synthesis of pyrrolo[3,2-a]phenazines from 5-nitroindoles and anilines. Monatsh. Chem., 2013, 144(12), 1847-1853.
[http://dx.doi.org/10.1007/s00706-013-1087-3] [PMID: 26166877]
[120]
Spicer, J.A.; Gamage, S.A.; Rewcastle, G.W.; Finlay, G.J.; Bridewell, D.J.A.; Baguley, B.C.; Denny, W.A. Bis(phenazine-1-carboxamides): structure-activity relationships for a new class of dual topoisomerase I/II-directed anticancer drugs. J. Med. Chem., 2000, 43(7), 1350-1358.
[http://dx.doi.org/10.1021/jm990423f] [PMID: 10753472]
[121]
Zefirov, N.S.; Sereda, G.A.; Volkov, V.P.; Tkachenko, S.E.; Zyk, N.V. Solid-phase synthesis of 1,2-benzophenazine and some fused imidazole derivatives. Chem. Heterocycl. Compd., 1996, 32(5), 577-579.
[http://dx.doi.org/10.1007/BF01164789]
[122]
Singh, P.; Baheti, A.; Thomas, K.R.J. Synthesis and optical properties of acidochromic amine-substituted benzo[a]phenazines. J. Org. Chem., 2011, 76(15), 6134-6145.
[http://dx.doi.org/10.1021/jo200857p] [PMID: 21644579]
[123]
Go, A.; Lee, G.; Kim, J.; Bae, S.; Lee, B.M.; Kim, B.H. One-pot synthesis of quinoxalines from reductive coupling of 2-nitroanilines and 1,2-diketones using indium. Tetrahedron, 2015, 71(8), 1215-1226.
[http://dx.doi.org/10.1016/j.tet.2015.01.007]
[124]
Herbert, R.B.; Holliman, F.G. Phenazines-VI. Tetrahedron, 1965, 21(2), 663-675.
[http://dx.doi.org/10.1016/S0040-4020(01)82238-9]
[125]
Chaudhary, A.; Khurana, J.M. Synthetic routes for phenazines: An overview. Res. Chem. Intermed., 2018, 44(2), 1045-1083.
[http://dx.doi.org/ 10.1007/s11164-017-3152-8]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy