Abstract
Tetrazoles are important heterocycles in diverse branches of chemistry. Among the 5-substituted tetrazoles, the 5-amino derivatives are the most important by far as they show high chemical versatility and relevant applications in material chemistry, catalysis, agrochemistry, etc. Particularly in medicinal chemistry, they present a wide range of pharmacological properties. In the present review, we focus on the synthesis of 5- aminotetrazol from the desulfurization processes of thioureas using metal salts, hypervalent iodine compounds and halogenated reagents.
Graphical Abstract
[http://dx.doi.org/10.3390/molecules26154617] [PMID: 34361770];
(b) Obaid, R.J.; Mughal, E.U.; Naeem, N.; Al-Rooqi, M.M.; Sadiq, A.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem., 2022, 120, 250-259.
[http://dx.doi.org/10.1016/j.procbio.2022.06.009];
(c) Wang, F.; Yao, Y.; Zhu, H.; Zhang, Y. Nitrogen-containing heterocycle: A privileged scaffold for marketed drugs. Curr. Top. Med. Chem., 2021, 21(6), 439-441.
[http://dx.doi.org/10.2174/156802662106210304105631];
(d) de Andrade, V.; de Mattos, M. N-Halo reagents: Modern synthetic approaches for heterocyclic synthesis. Synthesis, 2019, 51(9), 1841-1870.
[http://dx.doi.org/10.1055/s-0037-1611746]
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843];
(b) Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204];
(c) Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859.
[http://dx.doi.org/10.1021/jm4017625] [PMID: 24471928]
[http://dx.doi.org/10.2174/1385272826666220822124705];
(b) Nishanth Rao, R.; Jena, S.; Mukherjee, M.; Maiti, B.; Chanda, K. Green synthesis of biologically active heterocycles of medicinal importance: A review. Environ. Chem. Lett., 2021, 19(4), 3315-3358.
[http://dx.doi.org/10.1007/s10311-021-01232-9];
(c) de Andrade, V.S.C.; de Mattos, M.C.S. N-Halo reagents-mediated greener protocols for heterocyclic synthesis: Safe chemistry and pot-economy approaches to azoles and quinoxalines. Curr. Green Chem., 2018, 5(2), 68-85.
[http://dx.doi.org/10.2174/2452273202666180719124023]
[http://dx.doi.org/10.1002/cber.188501801335]
[http://dx.doi.org/10.1002/cber.188601902220]
[http://dx.doi.org/10.1002/cber.189202501212]
(b) Davison, E.K.; Sperry, J. Natural products with heteroatom-rich ring systems. J. Nat. Prod., 2017, 80(11), 3060-3079.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00575] [PMID: 29135244]
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567];
(b) Sarvary, A.; Maleki, A. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol. Divers., 2015, 19(1), 189-212.
[http://dx.doi.org/10.1007/s11030-014-9553-3] [PMID: 25273563]
[http://dx.doi.org/10.1021/jf00085a044]
[http://dx.doi.org/10.1021/acsaem.0c00229]
[http://dx.doi.org/10.1080/00397911.2020.1811872]
[http://dx.doi.org/10.1016/j.ccr.2017.11.017]
[http://dx.doi.org/10.1134/S1070428022120090];
(b) Myznikov, L.V.; Vorona, S.V.; Zevatskii, Y.E. Biologically active compounds and drugs in the tetrazole series. Chem. Heterocycl. Compd., 2021, 57(3), 224-233.
[http://dx.doi.org/10.1007/s10593-021-02897-4]
[http://dx.doi.org/10.1111/cbdd.14103] [PMID: 35713482]
[http://dx.doi.org/10.1070/RCR4864]
[http://dx.doi.org/10.1016/j.ejmech.2018.12.001] [PMID: 30530192]
[http://dx.doi.org/10.1016/j.ejmech.2019.03.023] [PMID: 30904780]
[http://dx.doi.org/10.2174/138955709788681618] [PMID: 19601897]
[http://dx.doi.org/10.1016/j.bmc.2020.115599] [PMID: 32631569];
(b) Malik, M.A.; Wani, M.Y.; Al-Thabaiti, S.A.; Shiekh, R.A. Tetrazoles as carboxylic acid isosteres: Chemistry and biology. J. Incl. Phenom. Macrocycl. Chem., 2014, 78(1-4), 15-37.
[http://dx.doi.org/10.1007/s10847-013-0334-x]
[http://dx.doi.org/10.1016/j.ejmech.2010.01.025] [PMID: 20133027]
[http://dx.doi.org/10.1016/S0968-0896(02)00239-0] [PMID: 12213451]
[http://dx.doi.org/10.1016/S0040-4039(01)01101-7]
[http://dx.doi.org/10.1021/jo2022235] [PMID: 22171684]
[http://dx.doi.org/10.1021/jm00068a011] [PMID: 8360879]
[http://dx.doi.org/10.1021/jm00314a004] [PMID: 6034054];
(b) Figdor, S.K.; von Wittenau, M.S. Metabolism of 5-(3-Pyridyl)tetrazole. J. Med. Chem., 1967, 10(6), 1158-1159.
[http://dx.doi.org/10.1021/jm00318a038] [PMID: 6056047]
[http://dx.doi.org/10.1055/s-0037-1611863]
[http://dx.doi.org/10.1039/C8NJ01786G]
[http://dx.doi.org/10.1039/C7RA01607G]
(b) Aromí, G.; Barrios, L.A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coord. Chem. Rev., 2011, 255(5-6), 485-546.
[http://dx.doi.org/10.1016/j.ccr.2010.10.038]
[http://dx.doi.org/10.1016/j.mcat.2021.111788]
[http://dx.doi.org/10.1039/C4RA01029A]
[http://dx.doi.org/10.1021/jp900285y] [PMID: 19323480]
[http://dx.doi.org/10.1016/j.ejmech.2019.05.071] [PMID: 31200236]
[http://dx.doi.org/10.3390/ijms22031164] [PMID: 33503880]
[http://dx.doi.org/10.1016/j.ejmech.2019.111744] [PMID: 31605865]
[http://dx.doi.org/10.1016/j.ejmech.2019.111882] [PMID: 31753514]
[http://dx.doi.org/10.1016/j.ejmech.2022.114137] [PMID: 35077918]
[http://dx.doi.org/10.1055/s-1992-26107]
[http://dx.doi.org/10.1021/jm00154a019] [PMID: 2870188]
[http://dx.doi.org/10.1021/jm9506736] [PMID: 8632408]
[http://dx.doi.org/10.1002/jlac.18922700102];
(b) Thicle, J.; Ingle, H. Ueber einige derivate des tetrazols. Justus Liebigs Ann. Chem., 1895, 287(3), 233-265.
[http://dx.doi.org/10.1002/jlac.18952870302];
(c) Kurzer, F.; Godfrey, L.E.A. Syntheses of heterocyclic compounds from aminoguanidine. Angew. Chem. Int. Ed. Engl., 1963, 2(8), 459-476.
[http://dx.doi.org/10.1002/anie.196304591]
[http://dx.doi.org/10.1016/j.jorganchem.2018.11.007]
[http://dx.doi.org/10.1016/j.jorganchem.2018.04.027]
[http://dx.doi.org/10.1021/acs.joc.9b00555] [PMID: 30945854]
[http://dx.doi.org/10.1021/ol8019742] [PMID: 18816126]
[http://dx.doi.org/10.1135/cccc19792982];
(b) Vorona, S.V.; Zevatskii, Y.E.; Myznikov, L.V. Zinc (II) chloride as phase transfer catalyst and as catalyst of cycloaddition azide ion to heterocumulenes and terminal alkynes in organic solvents. ChemistrySelect, 2019, 4(36), 10846-10850.
[http://dx.doi.org/10.1002/slct.201903162]
[http://dx.doi.org/10.1007/s10593-005-0267-4];
(b) Habibi, D.; Nasrollahzadeh, M.; Sahebekhtiari, H.; Sajadi, S. Ultrasound-promoted regioselective synthesis of 1-aryl-5-amino-1H-tetrazoles. Synlett, 2012, 23(19), 2795-2798.
[http://dx.doi.org/10.1055/s-0032-1317513];
(c) Khalili, B.; Darabi, F.S.; Eftekhari-Sis, B.; Rimaz, M. Green chemistry: ZrOCl2•8H2O catalyzed regioselective synthesis of 5-amino-1-aryl-1H-tetrazoles from second-ary arylcyanamides in water. Monatsh. Chem., 2013, 144(10), 1569-1572.
[http://dx.doi.org/10.1007/s00706-013-1038-z];
(d) Telvekar, V.; Bhagat, S. l-Proline: An efficient organocatalyst for the synthesis of 5-Substituted 1H-tetrazoles via [3+2] cycloaddition of nitriles and sodium azide. Synlett, 2018, 29(7), 874-879.
[http://dx.doi.org/10.1055/s-0036-1591534]
[http://dx.doi.org/10.1021/acs.joc.8b01261] [PMID: 30037227]
[http://dx.doi.org/10.2174/1570193X14666170518125219]
[http://dx.doi.org/10.1021/cr00046a004]
[http://dx.doi.org/10.1002/slct.202200706];
(b) Verma, N.; Bera, S.; Mondal, D. Synthesis of tetrazole derivatives through conversion of amide and thioamide functionalities. Chem. Heterocycl. Compd., 2022, 58(2-3), 73-83.
[http://dx.doi.org/10.1007/s10593-022-03059-w];
(c) Leyva-Ramos, S.; Cardoso-Ortiz, J. Recent developments in the synthesis of tetrazoles and their pharmacological relevance. Curr. Org. Chem., 2021, 25(3), 388-403.
[http://dx.doi.org/10.2174/18755348MTEyoMzEFz];
(d) Sathishkumar, S.; Gayathri, K. Synthesis of tetrazole derivatives. Russ. J. Org. Chem., 2021, 57(3), 402-416.
[http://dx.doi.org/10.1134/S107042802103012X];
(e) Mohammadkhani, L.; Heravi, M.M. Synthesis of N-heterocycles containing 1,5-disubstituted-1H-tetrazole via post-Ugi-azide reaction. Mol. Divers., 2020, 24(3), 841-853.
[http://dx.doi.org/10.1007/s11030-019-09972-1] [PMID: 31222498];
(f) Gouda, M.A.; Al-Ghorbani, M.; Helal, M.H.; Salem, M.A.; Hanashalshahaby, E.H.A. A review: Recent progress on the synthetic routes to 1(5)-substituted 1H-Tetrazoles and its analogs. Synth. Commun., 2020, 50(20), 3017-3043.
[http://dx.doi.org/10.1080/00397911.2020.1792499];
(g) Ostrovskii, V.A.; Popova, E.A.; Trifonov, R.E. Developments in tetrazole chemistry (2009–16). Adv. Heterocycl. Chem., 2017, 123, 1-62.
[http://dx.doi.org/10.1016/bs.aihch.2016.12.003];
(h) Benson, F.R. The chemistry of the tetrazoles. Chem. Rev., 1947, 41(1), 1-61.
[http://dx.doi.org/10.1021/cr60128a001] [PMID: 20257066]
[http://dx.doi.org/10.1002/prac.19321340902]
[http://dx.doi.org/10.1021/jo01359a019]
[http://dx.doi.org/10.1016/S0040-4039(00)61537-X]
[http://dx.doi.org/10.1021/ol006465b] [PMID: 11009390]
[http://dx.doi.org/10.1016/B978-008096519-2.00081-3]
[http://dx.doi.org/10.1039/C2NJ40733G]
[http://dx.doi.org/10.1002/adsc.201200408]
[http://dx.doi.org/10.1007/s10593-018-2303-1]
[http://dx.doi.org/10.1007/s12039-018-1453-0]
[http://dx.doi.org/10.1016/j.jics.2021.100103]
[http://dx.doi.org/10.1080/17415993.2021.1909589]
[http://dx.doi.org/10.1039/c0ob01007c] [PMID: 21431153]
[http://dx.doi.org/10.1016/j.tetlet.2012.10.114]
[http://dx.doi.org/10.1021/jo302375m] [PMID: 23176018]
[http://dx.doi.org/10.1021/jo2025509] [PMID: 22423599]
[http://dx.doi.org/10.1016/j.tetlet.2015.03.128]
[http://dx.doi.org/10.1002/jhet.4667]
[http://dx.doi.org/10.1002/ejoc.201900449];
(b) Mendonça, G.; Mattos, M. Green chlorination of organic compounds using trichloroisocyanuric acid (TCCA). Curr. Org. Synth., 2014, 10(6), 820-836.
[http://dx.doi.org/10.2174/157017941006140206102255];
(c) Tilstam, U.; Weinmann, H. Trichloroisocyanuric acid: A safe and efficient oxidant. Org. Process Res. Dev., 2002, 6(4), 384-393.
[http://dx.doi.org/10.1021/op010103h]
[http://dx.doi.org/10.1055/s-0031-1290687]
[http://dx.doi.org/10.1039/C9GC03872H]
[http://dx.doi.org/10.1016/j.tetlet.2004.07.160]
[http://dx.doi.org/10.1021/cc060119p] [PMID: 17580974]
[http://dx.doi.org/10.1021/acscombsci.9b00120] [PMID: 31437394]