Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Kukoamine A Activates Akt/GSK-3β Pathway to Repress Oxidative Stress and Inflammation to Alleviate Myocardial Ischemia-reperfusion Injury

Author(s): Jianmao Hong, Yanqiong Ye, Dingwen Zheng and Ximing Qian*

Volume 21, Issue 12, 2024

Published on: 03 October, 2023

Page: [2374 - 2383] Pages: 10

DOI: 10.2174/0115701808235958230923042422

Price: $65

Abstract

Background: Myocardial ischemia-reperfusion injury (MI/RI) is a serious complication after revascularization of myocardial infarction, which causes myocardium damage. Kukoamine A (KuA) can repress oxidative stress and neuronal apoptosis in cerebral ischemia animal models.

Objective: In the present study, our objective was to explore the role of KuA in MI/RI and the underlying mechanism of KuA in oxidative stress and inflammation of MI/RI.

Methods: H9c2 cells’ cytotoxicity was detected using the lactate dehydrogenase (LDH) assay kit. ROS level was measured by immunofluorescence. Male C57BL/6 mice were used to establish MI/RI mice by ligating the left anterior descending coronary artery (LAD).

Results: KuA treatment decreased the apoptosis and the cytotoxicity, increased the viability, and reduced the activities of myocardial infarction markers (CKMB, MYO, and cTnI) in hypoxia/ reoxygenation (H/R)-induced H9c2 cells. KuA reduced the levels of ROS, MDA, and inflammatory factors (IL-6, IL-1β, and TNF-α), and facilitated MMP and SOD levels in H/R-induced H9c2 cells. Besides, KuA activated Akt/GSK-3β axis, which was repressed by PI3K inhibitor LY294002. Moreover, KuA improved survival times, decreased the infarct size of mice, and recovered cardiac function in MI/RI mice. Finally, KuA alleviated MI/RI through Akt/GSK-3β pathway in vivo.

Conclusion: Thus, KuA exerts a protective function in MI/RI through the Akt/GSK-3β axis to repress oxidative stress and inflammation.

[1]
Sun, M.S.; Jin, H.; Sun, X.; Huang, S.; Zhang, F.L.; Guo, Z.N.; Yang, Y. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. Oxid. Med. Cell. Longev., 2018, 2018, 1-17.
[http://dx.doi.org/10.1155/2018/3804979] [PMID: 29770166]
[2]
Wallert, M.; Ziegler, M.; Wang, X.; Maluenda, A.; Xu, X.; Yap, M.L.; Witt, R.; Giles, C.; Kluge, S.; Hortmann, M.; Zhang, J.; Meikle, P.; Lorkowski, S.; Peter, K. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol., 2019, 26, 101292.
[http://dx.doi.org/10.1016/j.redox.2019.101292] [PMID: 31419755]
[3]
Hausenloy, D.J.; Botker, H.E.; Engstrom, T.; Erlinge, D.; Heusch, G.; Ibanez, B.; Kloner, R.A.; Ovize, M.; Yellon, D.M.; Garcia-Dorado, D. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: Trials and tribulations. Eur. Heart J., 2017, 38(13), 935-941.
[PMID: 27118196]
[4]
Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; Eyassu, F.; Shirley, R.; Hu, C.H.; Dare, A.J.; James, A.M.; Rogatti, S.; Hartley, R.C.; Eaton, S.; Costa, A.S.H.; Brookes, P.S.; Davidson, S.M.; Duchen, M.R.; Saeb-Parsy, K.; Shattock, M.J.; Robinson, A.J.; Work, L.M.; Frezza, C.; Krieg, T.; Murphy, M.P. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014, 515(7527), 431-435.
[http://dx.doi.org/10.1038/nature13909] [PMID: 25383517]
[5]
Santos, C.X.C.; Anilkumar, N.; Zhang, M.; Brewer, A.C.; Shah, A.M. Redox signaling in cardiac myocytes. Free Radic. Biol. Med., 2011, 50(7), 777-793.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.003] [PMID: 21236334]
[6]
Peng, K.; Liu, H.; Yan, B.; Meng, X.W.; Song, S.Y.; Ji, F.H.; Xia, Z. Inhibition of cathepsin S attenuates myocardial ischemia/reperfusion injury by suppressing inflammation and apoptosis. J. Cell. Physiol., 2021, 236(2), 1309-1320.
[http://dx.doi.org/10.1002/jcp.29938] [PMID: 32657442]
[7]
Hu, X.L.; Gao, L.Y.; Niu, Y.X.; Tian, X.; Wang, J.; Meng, W.H.; Zhang, Q.; Cui, C.; Han, L.; Zhao, Q.C. Neuroprotection by Kukoamine A against oxidative stress may involve N-methyl-d-aspartate receptors. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(2), 287-298.
[http://dx.doi.org/10.1016/j.bbagen.2014.11.006] [PMID: 25445711]
[8]
Zhang, Y.; Cheng, Z.; Wang, C.; Ma, H.; Meng, W.; Zhao, Q. Neuroprotective Effects of Kukoamine a against Radiation-induced Rat Brain Injury through Inhibition of Oxidative Stress and Neuronal Apoptosis. Neurochem. Res., 2016, 41(10), 2549-2558.
[http://dx.doi.org/10.1007/s11064-016-1967-0] [PMID: 27241194]
[9]
Mao, Q.; Liang, X.; Wu, Y.; Lu, Y. Nobiletin protects against myocardial injury and myocardial apoptosis following coronary microembolization via activating PI3K/Akt pathway in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(9), 1121-1130.
[http://dx.doi.org/10.1007/s00210-019-01661-y] [PMID: 31073648]
[10]
Zhang, X.; Lu, Z.; Abdul, K.S.M.; Changping, M.A.; Tan, K.S.; Jovanovi, A.; Tan, W. Isosteviol sodium protects heart embryonic H9c2 cells against oxidative stress by activating Akt/GSK-3β signaling pathway. Pharmazie, 2020, 75(1), 36-40.
[PMID: 32033632]
[11]
Xie, F.; Wu, Y.Y.; Duan, G.J.; Wang, B.; Gao, F.; Wei, P.F.; Chen, L.; Liu, A.P.; Li, M. Anti-Myocardial Ischemia Reperfusion Injury Mechanism of Dried Ginger-Aconite Decoction Based on Network Pharmacology. Front. Pharmacol., 2021, 12, 609702.
[http://dx.doi.org/10.3389/fphar.2021.609702] [PMID: 34025396]
[12]
Dong, G.; Chen, T.; Ren, X.; Zhang, Z.; Huang, W.; Liu, L.; Luo, P.; Zhou, H. Rg1 prevents myocardial hypoxia/reoxygenation injury by regulating mitochondrial dynamics imbalance via modulation of glutamate dehydrogenase and mitofusin 2. Mitochondrion, 2016, 26, 7-18.
[http://dx.doi.org/10.1016/j.mito.2015.11.003] [PMID: 26593335]
[13]
Li, G. Kukoamine A attenuates insulin resistance and fatty liver through downregulation of Srebp-1c. Biomed. Pharmacother., 2017, 89, 536-543.
[http://dx.doi.org/10.1016/j.biopha.2017.02.024]
[14]
He, F.; Wu, Q.; Xu, B.; Wang, X.; Wu, J.; Huang, L.; Cheng, J. Suppression of Stim1 reduced intracellular calcium concentration and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cells. Biosci. Rep., 2017, 37(6), BSR20171249.
[http://dx.doi.org/10.1042/BSR20171249] [PMID: 29089467]
[15]
Zhao, X.; Liu, L.; Li, R.; Wei, X.; Luan, W.; Liu, P.; Zhao, J. Hypoxia-Inducible Factor 1-α (HIF-1α) Induces Apoptosis of Human Uterosacral Ligament Fibroblasts Through the Death Receptor and Mitochondrial Pathways. Med. Sci. Monit., 2018, 24, 8722-8733.
[http://dx.doi.org/10.12659/MSM.913384] [PMID: 30504760]
[16]
He, F.; Xu, B.; Chen, C.; Jia, H.; Wu, J.; Wang, X.; Sheng, J.; Huang, L.; Cheng, J. Methylophiopogonanone A suppresses ischemia/reperfusion-induced myocardial apoptosis in mice via activating PI3K/Akt/eNOS signaling pathway. Acta Pharmacol. Sin., 2016, 37(6), 763-771.
[http://dx.doi.org/10.1038/aps.2016.14] [PMID: 27063216]
[17]
Liu, J.; Jiang, X.; Zhang, Q.; Lin, S.; Zhu, J.; Zhang, Y.; Du, J.; Hu, X.; Meng, W.; Zhao, Q. Neuroprotective effects of Kukoamine A against cerebral ischemia via antioxidant and inactivation of apoptosis pathway. Neurochem. Int., 2017, 107, 191-197.
[http://dx.doi.org/10.1016/j.neuint.2016.12.024] [PMID: 28088348]
[18]
Yaoita, H.; Ogawa, K.; Maehara, K.; Maruyama, Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation, 1998, 97(3), 276-281.
[http://dx.doi.org/10.1161/01.CIR.97.3.276] [PMID: 9462530]
[19]
Mocanu, M.M.; Baxter, G.F.; Yellon, D.M. Caspase inhibition and limitation of myocardial infarct size: Protection against lethal reperfusion injury. Br. J. Pharmacol., 2000, 130(2), 197-200.
[http://dx.doi.org/10.1038/sj.bjp.0703336] [PMID: 10807653]
[20]
Kovacs, P.; Bak, I.; Szendrei, L.; Vecsernyes, M.; Varga, E.; Blasig, I.E.; Tosaki, A. Non-specific caspase inhibition reduces infarct size and improves post-ischaemic recovery in isolated ischaemic/reperfused rat hearts. Naunyn Schmiedebergs Arch. Pharmacol., 2001, 364(6), 501-507.
[http://dx.doi.org/10.1007/s002100100483] [PMID: 11770004]
[21]
Lazou, A.; Iliodromitis, E.K.; Cieslak, D.; Voskarides, K.; Mousikos, S.; Bofilis, E.; Kremastinos, D.T. Ischemic but not mechanical preconditioning attenuates ischemia/reperfusion induced myocardial apoptosis in anaesthetized rabbits: The role of Bcl-2 family proteins and ERK1/2. Apoptosis, 2006, 11(12), 2195-2204.
[http://dx.doi.org/10.1007/s10495-006-0292-5] [PMID: 17051325]
[22]
Haines, D.D.; Juhasz, B.; Tosaki, A. Management of multicellular senescence and oxidative stress. J. Cell. Mol. Med., 2013, 17(8), 936-957.
[http://dx.doi.org/10.1111/jcmm.12074] [PMID: 23789967]
[23]
Yao, E.; Luo, L.; Lin, C.; Wen, J.; Li, Y.; Ren, T.; Chen, Y.; Huang, J.; Jin, X. OEA alleviates apoptosis in diabetic rats with myocardial ischemia/reperfusion injury by regulating the PI3K/Akt signaling pathway through activation of TRPV1. Front. Pharmacol., 2022, 13, 964475.
[http://dx.doi.org/10.3389/fphar.2022.964475] [PMID: 36452230]
[24]
Tan, X.; Chen, Y.; Zou, S.; Wang, W.; Zhang, N.; Sun, Z.Y.; Xian, W.; Li, X.; Tang, B.; Wang, H.; Gao, Q.; Kang, P. ALDH2 attenuates ischemia and reperfusion injury through regulation of mitochondrial fusion and fission by PI3K/AKT/mTOR pathway in diabetic cardiomyopathy. Free Radic. Biol. Med., 2023, 195, 219-230.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.12.097] [PMID: 36587924]
[25]
Cong, L.; Su, Y.; Wei, D.; Qian, L.; Xing, D.; Pan, J.; Chen, Y.; Huang, M. Catechin relieves hypoxia/reoxygenation-induced myocardial cell apoptosis via down-regulating lncRNA MIAT. J. Cell. Mol. Med., 2020, 24(3), 2356-2368.
[http://dx.doi.org/10.1111/jcmm.14919] [PMID: 31955523]
[26]
Zhu, P.; Yang, M.; He, H.; Kuang, Z.; Liang, M.; Lin, A.; Liang, S.; Wen, Q.; Cheng, Z.; Sun, C. Curcumin attenuates hypoxia/reoxygenation induced cardiomyocyte injury by downregulating Notch signaling. Mol. Med. Rep., 2019, 20(2), 1541-1550.
[http://dx.doi.org/10.3892/mmr.2019.10371] [PMID: 31257466]
[27]
Zhao, W.; Wu, Y.; Ye, F.; Huang, S.; Chen, H.; Zhou, R.; Jiang, W. Tetrandrine Ameliorates Myocardial Ischemia Reperfusion Injury through miR-202-5p/TRPV2. BioMed Res. Int., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/8870674] [PMID: 33763489]
[28]
Hadjipavlou-Litina, D.; Garnelis, T.; Athanassopoulos, C.M.; Papaioannou, D. Kukoamine A analogs with lipoxygenase inhibitory activity. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1188-1193.
[http://dx.doi.org/10.1080/14756360902779193] [PMID: 19772491]
[29]
Hu, C.; Yuan, Y.V.; Kitts, D.D. Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem. Toxicol., 2007, 45(11), 2219-2227.
[http://dx.doi.org/10.1016/j.fct.2007.05.017] [PMID: 17624649]
[30]
Liu, P.; Huang, J.; Mei, W.; Zeng, X.; Wang, C.; Wen, C.; Xu, J. Epigallocatechin-3-gallate protects cardiomyocytes from hypoxia-reoxygenation damage via raising autophagy related 4C expression. Bioengineered, 2021, 12(2), 9496-9506.
[http://dx.doi.org/10.1080/21655979.2021.1996018] [PMID: 34699312]
[31]
Liu, X.; Bian, H.; Dou, Q.L.; Huang, X.W.; Tao, W.Y.; Liu, W.H.; Li, N.; Zhang, W.W. Ginkgetin Alleviates Inflammation, Oxidative Stress, and Apoptosis Induced by Hypoxia/Reoxygenation in H9C2 Cells via Caspase-3 Dependent Pathway. BioMed Res. Int., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/1928410] [PMID: 33204684]
[32]
Wen, L.; Yang, Q.H.; Ma, X.L.; Li, T.; Xiao, S.; Sun, C.F. Inhibition of TNFAIP1 ameliorates the oxidative stress and inflammatory injury in myocardial ischemia/reperfusion injury through modulation of Akt/GSK-3β/Nrf2 pathway. Int. Immunopharmacol., 2021, 99, 107993.
[http://dx.doi.org/10.1016/j.intimp.2021.107993] [PMID: 34330059]
[33]
Wei, D.; Xu, H.; Gai, X.; Jiang, Y. Astragaloside IV alleviates myocardial ischemia-reperfusion injury in rats through regulating PI3K/AKT/GSK-3β signaling pathways. Acta Cir. Bras., 2019, 34(7), e201900708.
[http://dx.doi.org/10.1590/s0102-865020190070000008] [PMID: 31531541]
[34]
Wang, D.; Zhang, X.; Li, D.; Hao, W.; Meng, F.; Wang, B.; Han, J.; Zheng, Q. Kaempferide Protects against Myocardial Ischemia/Reperfusion Injury through Activation of the PI3K/Akt/GSK-3 β Pathway. Mediators Inflamm., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/5278218] [PMID: 28928604]
[35]
Liu, G.; Zhang, B.; Hu, Q.; Liu, X.; Chen, J. Syringic acid mitigates myocardial ischemia reperfusion injury by activating the PI3K/Akt/GSK-3β signaling pathway. Biochem. Biophys. Res. Commun., 2020, 531(2), 242-249.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.047] [PMID: 32798018]
[36]
Wang, Y.; Li, X.; Wang, X.; Lau, W.; Wang, Y.; Xing, Y.; Zhang, X.; Ma, X.; Gao, F. Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway. PLoS One, 2013, 8(8), e70956.
[http://dx.doi.org/10.1371/journal.pone.0070956] [PMID: 23976968]
[37]
Yang, Y.; Gao, L.; Niu, Y.; Li, X.; Liu, W.; Jiang, X.; Liu, Y.; Zhao, Q.; Kukoamine, A. Protects against NMDA-Induced Neurotoxicity Accompanied with Down-Regulation of GluN2B-Containing NMDA Receptors and Phosphorylation of PI3K/Akt/GSK-3β Signaling Pathway in Cultured Primary Cortical Neurons. Neurochem. Res., 2020, 45(11), 2703-2711.
[http://dx.doi.org/10.1007/s11064-020-03114-y] [PMID: 32892226]
[38]
Garlick, P.B.; Davies, M.J.; Hearse, D.J.; Slater, T.F. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ. Res., 1987, 61(5), 757-760.
[http://dx.doi.org/10.1161/01.RES.61.5.757] [PMID: 2822281]
[39]
Zweier, J.L.; Flaherty, J.T.; Weisfeldt, M.L. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc. Natl. Acad. Sci. USA, 1987, 84(5), 1404-1407.
[http://dx.doi.org/10.1073/pnas.84.5.1404] [PMID: 3029779]
[40]
Tosaki, A.; Braquet, P. DMPO and reperfusion injury: Arrhythmia, heart function, electron spin resonance, and nuclear magnetic resonance studies in isolated working guinea pig hearts. Am. Heart J., 1990, 120(4), 819-830.
[http://dx.doi.org/10.1016/0002-8703(90)90197-6] [PMID: 2171311]
[41]
Arpad, T.; Bagchi, D.; Pali, T.; Cordis, G.A.; Das, D.K. Comparisons of ESR and HPLC methods for the detection of OH. radicals in ischemic/reperfused hearts. Biochem. Pharmacol., 1993, 45(4), 961-969.
[http://dx.doi.org/10.1016/0006-2952(93)90182-V] [PMID: 8383970]
[42]
Komarov, D.A.; Samouilov, A.; Hirata, H.; Zweier, J.L. High fidelity triangular sweep of the magnetic field for millisecond scan EPR imaging. J. Magn. Reson., 2021, 329, 107024.
[http://dx.doi.org/10.1016/j.jmr.2021.107024] [PMID: 34198184]

© 2025 Bentham Science Publishers | Privacy Policy