Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nano-drug-based Targeted Therapy Alleviates Ferroptosis-induced Liver Toxicity

Author(s): Santhi Latha Pandrangi*, Hamad Sharif Shaik, Sungey Naynee Sánchez Llaguno, Juan Alejandro Neira Mosquera, Gooty Jaffer Mohiddin and Prasanthi Chittineedi

Volume 20, Issue 4, 2024

Published on: 27 September, 2023

Page: [530 - 542] Pages: 13

DOI: 10.2174/0115734137243766230919062151

Price: $65

conference banner
Abstract

Iron is an essential inorganic element for an organism, with several metabolic activities. The glycoproteins ferritin and transferrin, which assist in carrying iron to various body parts, are used to store iron. In terms of iron uptake, storage, and excretion, equilibrium should be preserved. Ferroptosis is an iron-dependent form of cell death with traits like lipid peroxidation buildup and ROS generation. It is distinct from other forms of cell death visually and biochemically. Many cancer cells block ferroptosis by controlling different cell survival pathways. Compared to healthy, normal cells, cancer cells are more dependent on iron. A subgroup of tumor cells known as cancer stem cells has stem-like characteristics. These are in charge of metastasis and recurrence. The liver plays a significant part in the body's detoxifying process and is the primary iron storage organ. Numerous liver disorders are frequently accompanied by excessive iron accumulation. Due to excessive iron deposits, the liver is more vulnerable to oxidative damage, which can occasionally result in liver failure. Chemotherapy, which involves administering several medications to treat cancer, may be hazardous to the body's other cells. The ferroptosis condition and high iron accumulation can potentially impair liver function. A tailored drug delivery method may ameliorate the impact of excessive iron accumulation and favorably correlate with liver damage, consequently enhancing liver function.

Graphical Abstract

[1]
Zhang, C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 2014, 5(10), 750-760.
[http://dx.doi.org/10.1007/s13238-014-0083-7] [PMID: 25000876]
[2]
Manis, J.G.; Schachter, D. Active transport of iron by intestine: Effects of oral iron and pregnancy. Am. J. Physiol., 1962, 203(1), 81-86.
[http://dx.doi.org/10.1152/ajplegacy.1962.203.1.81] [PMID: 14469302]
[3]
Frazer, D.M.; Anderson, G.J. The regulation of iron transport. Biofactors, 2014, 40(2), 206-214.
[http://dx.doi.org/10.1002/biof.1148] [PMID: 24132807]
[4]
Spangler, B.; Morgan, C.W.; Fontaine, S.D.; Vander Wal, M.N.; Chang, C.J.; Wells, J.A.; Renslo, A.R. A reactivity-based probe of the intracellular labile ferrous iron pool. Nat. Chem. Biol., 2016, 12(9), 680-685.
[http://dx.doi.org/10.1038/nchembio.2116] [PMID: 27376690]
[5]
Pandrangi, S.L.; Chittineedi, P.; Chalumuri, S.S.; Meena, A.S.; Mosquera, J.A.N.; Llaguno, S.N.S. Role of intracellular iron in switching apoptosis to ferroptosis to target therapy-Resistant cancer stem cells. Molecules, 2022, 27(9), 3011.
[http://dx.doi.org/10.3390/molecules27093011]
[6]
Pandrangi, S.L.; Chittineedi, P.; Chikati, R.; Lingareddy, J.R. Role of dietary iron revisited  In metabolism, ferroptosis and pathophysiology of cancer. Am. J. Cancer Res., 2022, 12(3), 974-985.
[7]
Hyun, K. Nanoparticles; Elsevier Inc.: Amsterdam, 2014.
[http://dx.doi.org/10.1016/B978-0-12-407722-5.00024-4]
[8]
Katmıs, A.; Fide, S.; Karaismailoglu, S.; Derman, S. Synthesis and characterization methods of polymeric nanoparticles 2. Prepar. Methods Polymeric Nanopart., 2018, 1, 1-7.
[http://dx.doi.org/10.24294/can.v1i4.791]
[9]
Kasuya, T.; Kuroda, S. Nanoparticles for human liver-specific drug and gene delivery systems: In vitro and in vivo advances. Expert Opin. Drug Deliv., 2009, 6(1), 39-52.
[http://dx.doi.org/10.1517/17425240802622096]
[10]
Yamada, T.; Iwasaki, Y.; Tada, H.; Iwabuki, H.; Chuah, M.K.L.; VandenDriessche, T.; Fukuda, H.; Kondo, A.; Ueda, M.; Seno, M.; Tanizawa, K.; Kuroda, S. Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat. Biotechnol., 2003, 21(8), 885-890.
[http://dx.doi.org/10.1038/nbt843] [PMID: 12833071]
[11]
Moreno, M.; Gonzalo, T.; Kok, R.J.; Sancho-Bru, P.; van Beuge, M.; Swart, J.; Prakash, J.; Temming, K.; Fondevila, C.; Beljaars, L.; Lacombe, M.; van der Hoeven, P.; Arroyo, V.; Poelstra, K.; Brenner, D.A.; Ginès, P.; Bataller, R. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology, 2010, 51(3), 942-952.
[http://dx.doi.org/10.1002/hep.23419] [PMID: 20044807]
[12]
Greupink, R.; Bakker, H.I.; Bouma, W.; Reker-Smit, C.; Meijer, D.K.F.; Beljaars, L.; Poelstra, K. The antiproliferative drug doxorubicin inhibits liver fibrosis in bile duct-ligated rats and can be selectively delivered to hepatic stellate cells in vivo. J. Pharmacol. Exp. Ther., 2006, 317(2), 514-521.
[http://dx.doi.org/10.1124/jpet.105.099499] [PMID: 16439617]
[13]
Di Stefano, G.; Fiume, L.; Domenicali, M.; Busi, C.; Chieco, P.; Kratz, F.; Lanza, M.; Mattioli, A.; Pariali, M.; Bernardi, M. Doxorubicin coupled to lactosaminated albumin: Effects on rats with liver fibrosis and cirrhosis. Dig. Liver Dis., 2006, 38(6), 404-408.
[http://dx.doi.org/10.1016/j.dld.2006.02.010] [PMID: 16595196]
[14]
Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132(3), 171-183.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.010] [PMID: 18582981]
[15]
Rohilla, R.; Garg, T.; Goyal, A.K.; Rath, G. Herbal and polymeric approaches for liver-targeting drug delivery: Novel strategies and their significance. Drug Deliv., 2014, 23(5), 1-17.
[http://dx.doi.org/10.3109/10717544.2014.945018] [PMID: 25101832]
[16]
Yang, K.W.; Li, X.R.; Yang, Z.L.; Li, P.Z.; Wang, F.; Liu, Y. Novel polyion complex micelles for liver-targeted delivery of diammonium glycyrrhizinate: In vitro and in vivo characterization. J. Biomed. Mater. Res. A, 2009, 88A(1), 140-148.
[http://dx.doi.org/10.1002/jbm.a.31866] [PMID: 18260143]
[17]
Wang, Q.; Zhang, L.; Hu, W.; Hu, Z.H.; Bei, Y.Y.; Xu, J.Y.; Wang, W.J.; Zhang, X.N.; Zhang, Q. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery. Nanomedicine, 2010, 6(2), 371-381.
[http://dx.doi.org/10.1016/j.nano.2009.07.006] [PMID: 19699319]
[18]
Pandrangi, S.L.; Chittineedi, P.; Mohiddin, G.J.; Mosquera, J.A.N.; Llaguno, S.N.S. Cell–cell communications: New insights into targeting efficacy of phytochemical adjuvants on tight junctions and pathophysiology of various malignancies. J. Cell Commun. Signal., 2023, 17(3), 457-467.
[http://dx.doi.org/10.1007/s12079-022-00706-x] [PMID: 36427132]
[19]
Chittineedi, P.; Pandrangi, S.L.; Bellala, R.S.; Naynee, S.; Llaguno, S. Analyzing the drivers of cancer relapse  Hypocalcemia and iron absorption in hormone-dependent female cancers. Am. J. Transl. Res., 2022, 14(9), 6563-6573.
[20]
Ryu, M.S.; Duck, K.A.; Philpott, C.C. Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells. Blood Cells Mol. Dis., 2018, 69, 75-81.
[http://dx.doi.org/10.1016/j.bcmd.2017.09.009] [PMID: 29032941]
[21]
Jagust, P.; Alcalá, S.; Jr, B.S.; Heeschen, C.; Sancho, P. Glutathione metabolism is essential for self-renewal and chemoresistance of pancreatic cancer stem cells. World J. Stem Cells, 2020, 12(11), 1410-1428.
[http://dx.doi.org/10.4252/wjsc.v12.i11.1410] [PMID: 33312407]
[22]
Chang, L.C.; Chiang, S.K.; Chen, S.E.; Yu, Y.L.; Chou, R.H.; Chang, W.C. Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett., 2018, 416, 124-137.
[http://dx.doi.org/10.1016/j.canlet.2017.12.025] [PMID: 29274359]
[23]
Nurtjahja-Tjendraputra, E.; Fu, D.; Phang, J.M.; Richardson, D.R. Iron chelation regulates cyclin D1 expression via the proteasome: A link to iron deficiency-mediated growth suppression. Blood, 2007, 109(9), 4045-4054.
[http://dx.doi.org/10.1182/blood-2006-10-047753] [PMID: 17197429]
[24]
Wang, Y.; Yu, L.; Ding, J.; Chen, Y. Iron metabolism in cancer. Int. J. Mol. Sci., 2018, 20(1), 95.
[http://dx.doi.org/10.3390/ijms20010095] [PMID: 30591630]
[25]
Chen, Y.; Fan, Z.; Yang, Y.; Gu, C. Iron metabolism and its contribution to cancer (Review). Int. J. Oncol., 2019, 54(4), 1143-1154.
[http://dx.doi.org/10.3892/ijo.2019.4720] [PMID: 30968149]
[26]
Pandrangi, S.L.; Chalumuri, S.S.; Garimella, S. Emerging therapeutic efficacy of alkaloids as anticancer agents. Ann. Rom. Soc. Cell Biol., 2022, 26, 64-74.
[27]
Torti, S.V.; Torti, F.M. Iron and cancer: More ore to be mined. Nat. Rev. Cancer, 2013, 13(5), 342-355.
[http://dx.doi.org/10.1038/nrc3495] [PMID: 23594855]
[28]
Bourseau-Guilmain, E.; Griveau, A.; Benoit, J.P.; Garcion, E. The importance of the stem cell marker prominin-1/CD133 in the uptake of transferrin and in iron metabolism in human colon cancer Caco-2 cells. PLoS One, 2011, 6(9), e25515.
[http://dx.doi.org/10.1371/journal.pone.0025515] [PMID: 21966538]
[29]
Latha Pandrangi, S.; Shree Chalumuri, S.; Chittineedi, P.; Garimella, S.V. Therapeutic potential of nyctanthes arbor-tristis on cancer and various diseases. Annals of R.S.C.B., 2022, 26(1), 1690-1701.
[30]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.F.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[31]
Geng, N.; Shi, B.J.; Li, S.L.; Zhong, Z.Y.; Li, Y.C.; Xua, W.L.; Zhou, H.; Cai, J.H. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3826-3836.
[http://dx.doi.org/10.26355/EURREV_201806_15267] [PMID: 29949159]
[32]
Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307.
[http://dx.doi.org/10.1038/cddis.2016.208] [PMID: 27441659]
[33]
Kaplan, J.; Ward, D.M. The essential nature of iron usage and regulation. Curr. Biol., 2013, 23(15), R642-R646.
[http://dx.doi.org/10.1016/j.cub.2013.05.033] [PMID: 23928078]
[34]
Santiago-Sánchez, G.S.; Pita-Grisanti, V.; Quiñones-Díaz, B.; Gumpper, K.; Cruz-Monserrate, Z.; Vivas-Mejía, P.E. Biological functions and therapeutic potential of lipocalin 2 in cancer. Int. J. Mol. Sci., 2020, 21(12), 4365.
[http://dx.doi.org/10.3390/ijms21124365]
[35]
Ding, G.; Fang, J.; Tong, S.; Qu, L.; Jiang, H.; Ding, Q.; Liu, J. Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer. Prostate, 2015, 75(9), 957-968.
[http://dx.doi.org/10.1002/pros.22978] [PMID: 25728945]
[36]
Rehwald, C.; Schnetz, M.; Urbschat, A.; Mertens, C.; Meier, J.K.; Bauer, R.; Baer, P.; Winslow, S.; Roos, F.C.; Zwicker, K.; Huard, A.; Weigert, A.; Brüne, B.; Jung, M. The iron load of lipocalin-2 (LCN-2) defines its pro-tumour function in clear-cell renal cell carcinoma. Br. J. Cancer, 2020, 122(3), 421-433.
[http://dx.doi.org/10.1038/s41416-019-0655-7] [PMID: 31772326]
[37]
Wang, Q.; Li, S.; Tang, X.; Liang, L.; Wang, F.; Du, H. Lipocalin 2 protects against Escherichia coli infection by modulating neutrophil and macrophage function. Front. Immunol., 2019, 10, 2594.
[http://dx.doi.org/10.3389/fimmu.2019.02594] [PMID: 31781104]
[38]
Bandiera, S.; Pfeffer, S.; Baumert, T.F.; Zeisel, M.B. miR-122-A key factor and therapeutic target in liver disease. J. Hepatol., 2015, 62(2), 448-457.
[http://dx.doi.org/10.1016/j.jhep.2014.10.004] [PMID: 25308172]
[39]
Yu, Y.; Kovacevic, Z.; Richardson, D.R. Tuning cell cycle regulation with an iron key. Cell Cycle, 2007, 6(16), 1982-1994.
[http://dx.doi.org/10.4161/cc.6.16.4603] [PMID: 17721086]
[40]
Hentze, M.W.; Muckenthaler, M.U.; Galy, B.; Camaschella, C. Two to tango: Regulation of Mammalian iron metabolism. Cell, 2010, 142(1), 24-38.
[http://dx.doi.org/10.1016/j.cell.2010.06.028] [PMID: 20603012]
[41]
Xu, J.; Zhu, X.; Wu, L.; Yang, R.; Yang, Z.; Wang, Q.; Wu, F. MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway. Liver Int., 2012, 32(5), 752-760.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02750.x] [PMID: 22276989]
[42]
Roy, R.; Garimella, S.V.; Pandrangi, S.L. Targeting the key players of dna repair pathways as cancer therapeutics. Res. J. Biotechnol., 2022, 17.
[43]
Savic, L.J.; Chapiro, J.; Duwe, G.; Geschwind, J.F. Targeting glucose metabolism in cancer: A new class of agents for loco-regional and systemic therapy of liver cancer and beyond? Hepat. Oncol., 2016, 3(1), 19-28.
[http://dx.doi.org/10.2217/hep.15.36] [PMID: 26989470]
[44]
Basuli, D.; Tesfay, L.; Deng, Z.; Paul, B.; Yamamoto, Y.; Ning, G.; Xian, W.; McKeon, F.; Lynch, M.; Crum, C.P.; Hegde, P.; Brewer, M.; Wang, X.; Miller, L.D.; Dyment, N.; Torti, F.M.; Torti, S.V. Iron addiction: A novel therapeutic target in ovarian cancer. Oncogene, 2017, 36(29), 4089-4099.
[http://dx.doi.org/10.1038/onc.2017.11] [PMID: 28319068]
[45]
Li, R-J.; Xu, J.; Fu, C.; Zhang, J.; Zheng, Y.G. Jia, H Regulation of mTORC1 by lysosomal calcium and calmodulin. eLife, 2016, 5, e19360.
[http://dx.doi.org/10.7554/eLife.19360]
[46]
Raggi, C.; Gammella, E.; Correnti, M.; Buratti, P.; Forti, E.; Andersen, J.B.; Alpini, G.; Glaser, S.; Alvaro, D.; Invernizzi, P.; Cairo, G.; Recalcati, S. Dysregulation of iron metabolism in cholangiocarcinoma stem-like cells. Sci. Rep., 2017, 7(1), 17667.
[http://dx.doi.org/10.1038/s41598-017-17804-1] [PMID: 29247214]
[47]
WHO. WHO guideline on Use of ferritin concentrations to assess iron status in individuals and populations. 2017. Available From: https://www.who.int/publications/i/item/9789240000124
[48]
Coulouarn, C.; Factor, V.M.; Andersen, J.B.; Durkin, M.E.; Thorgeirsson, S.S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene, 2009, 28(40), 3526-3536.
[http://dx.doi.org/10.1038/onc.2009.211] [PMID: 19617899]
[49]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[50]
Dixon, S.J.; Stockwell, B.R. The hallmarks of ferroptosis. Annu. Rev. Cancer Biol., 2019, 3(1), 35-54.
[http://dx.doi.org/10.1146/annurev-cancerbio-030518-055844]
[51]
Qiao, B.; Sugianto, P.; Fung, E.; del-Castillo-Rueda, A.; Moran-Jimenez, M.J.; Ganz, T.; Nemeth, E. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab., 2012, 15(6), 918-924.
[http://dx.doi.org/10.1016/j.cmet.2012.03.018] [PMID: 22682227]
[52]
Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 2020.
[http://dx.doi.org/10.1007/s13238-020-00789-5] [PMID: 33000412]
[53]
Yang, W.S. SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; Brown, L.M.; Girotti, A.W.; Cornish, V.W.; Schreiber, S.L.; Stockwell, B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156(1-2), 317-331.
[http://dx.doi.org/10.1016/j.cell.2013.12.010] [PMID: 24439385]
[54]
Liu, J.; Hinkhouse, M.M.; Sun, W.; Weydert, C.J.; Ritchie, J.M.; Oberley, L.W.; Cullen, J.J. Redox regulation of pancreatic cancer cell growth: Role of glutathione peroxidase in the suppression of the malignant phenotype. Hum. Gene Ther., 2004, 15(3), 239-250.
[http://dx.doi.org/10.1089/104303404322886093] [PMID: 15018733]
[55]
Meng, Q.; Shi, S.; Liang, C.; Liang, D.; Hua, J.; Zhang, B.; Xu, J.; Yu, X. Abrogation of glutathione peroxidase-1 drives EMT and chemoresistance in pancreatic cancer by activating ROS-mediated Akt/GSK3β/Snail signaling. Oncogene, 2018, 37(44), 5843-5857.
[http://dx.doi.org/10.1038/s41388-018-0392-z] [PMID: 29980787]
[56]
Peng, G.; Tang, Z.; Xiang, Y.; Chen, W. Glutathione peroxidase 4 maintains a stemness phenotype, oxidative homeostasis and regulates biological processes in Panc 1 cancer stem like cells. Oncol. Rep., 2018, 41(2), 1264-1274.
[http://dx.doi.org/10.3892/or.2018.6905] [PMID: 30535490]
[57]
Anne, J.; Krümmel, B.; Pl, T. The central role of glutathione peroxidase 4 in the regulation of ferroptosis and its implications for pro-inflammatory cytokine-mediated beta-cell death. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(6), 166114.
[http://dx.doi.org/10.1016/j.bbadis.2021.166114]
[58]
Colins, A.; Gerdtzen, Z.P.; Nuñez, M.T.; Salgado, J.C. Mathematical modeling of intestinal iron absorption using genetic programming. PLoS One, 2017, 12(1), e0169601.
[http://dx.doi.org/10.1371/journal.pone.0169601] [PMID: 28072870]
[59]
Sokolov, A.V.; Voynova, I.V.; Kostevich, V.A.; Vlasenko, A.Y.; Zakharova, E.T.; Vasilyev, V.B. Comparison of interaction between ceruloplasmin and lactoferrin/transferrin: To bind or not to bind. Biochemistry (Mosc.), 2017, 82(9), 1073-1078.
[http://dx.doi.org/10.1134/S0006297917090115]
[60]
Yang, J.; Hu, S.; Bian, Y.; Yao, J.; Wang, D.; Liu, X.; Guo, Z.; Zhang, S.; Peng, L. Targeting cell death: Pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front. Cell Dev. Biol., 2022, 9, 789948.
[http://dx.doi.org/10.3389/fcell.2021.789948] [PMID: 35118075]
[61]
Recalcati, S.; Gammella, E.; Cairo, G. Dysregulation of iron metabolism in cancer stem cells. Free Radic. Biol. Med., 2019, 133, 216-220.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.07.015] [PMID: 30040994]
[62]
Zhang, X.; Zhao, W.; Li, Y. Stemness-related markers in cancer. Cancer Transl. Med., 2017, 3(3), 87-95.
[http://dx.doi.org/10.4103/ctm.ctm_69_16] [PMID: 29276782]
[63]
Wang, Y.H.; Scadden, D.T. Harnessing the apoptotic programs in cancer stem‐like cells. EMBO Rep., 2015, 16(9), 1084-1098.
[http://dx.doi.org/10.15252/embr.201439675] [PMID: 26253117]
[64]
Ju, H.Q.; Lu, Y.X.; Chen, D.L.; Tian, T.; Mo, H.Y.; Wei, X.L.; Liao, J.W.; Wang, F.; Zeng, Z.L.; Pelicano, H.; Aguilar, M.; Jia, W.H.; Xu, R.H. Redox regulation of stem-like cells though the CD44v-xCT axis in colorectal cancer: Mechanisms and therapeutic implications. Theranostics, 2016, 6(8), 1160-1175.
[http://dx.doi.org/10.7150/thno.14848] [PMID: 27279909]
[65]
Glumac, P.M.; LeBeau, A.M. The role of CD133 in cancer: A concise review. Clin. Transl. Med., 2018, 7(1), 18.
[http://dx.doi.org/10.1186/s40169-018-0198-1] [PMID: 29984391]
[66]
Chen, C.; Lu, M.; Pan, Q.; Fichna, J.; Zheng, L.; Wang, K.; Yu, Z.; Li, Y.; Li, K.; Song, A.; Liu, Z.; Song, Z.; Kreis, M. Berberine improves intestinal motility and visceral pain in the mouse models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D) symptoms in an opioid-receptor dependent manner. PLoS One, 2015, 10(12), e0145556.
[http://dx.doi.org/10.1371/journal.pone.0145556] [PMID: 26700862]
[67]
West, N.R.; Murray, J.I.; Watson, P.H. Oncostatin-M promotes phenotypic changes associated with mesenchymal and stem cell-like differentiation in breast cancer. Oncogene, 2014, 33(12), 1485-1494.
[http://dx.doi.org/10.1038/onc.2013.105] [PMID: 23584474]
[68]
Yuan, Y.; Yao, Q.; Liu, Y.; Du, S.; Liu, A.; Guo, Z.; Sun, A.; Ruan, J.; Chen, L.; Ye, C.; Yuan, Y. IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int. J. Oncol., 2011, 40(4), 1171-1179.
[http://dx.doi.org/10.3892/ijo.2011.1275] [PMID: 22134360]
[69]
Samimi, A.; Khodayar, M.J.; Alidadi, H.; Khodadi, E. The dual role of ROS in hematological malignancies: Stem cell protection and cancer cell metastasis. Stem Cell Rev. Rep., 2020, 16(2), 262-275.
[http://dx.doi.org/10.1007/s12015-019-09949-5] [PMID: 31912368]
[70]
Hermanns, H.M. Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev., 2015, 26(5), 545-558.
[http://dx.doi.org/10.1016/j.cytogfr.2015.07.006] [PMID: 26198770]
[71]
Alkhateeb, A.A.; Connor, J.R. The significance of ferritin in cancer: Anti-oxidation, inflammation and tumorigenesis. Biochim. Biophys. Acta Rev. Cancer, 2013, 1836(2), 245-254.
[http://dx.doi.org/10.1016/j.bbcan.2013.07.002] [PMID: 23891969]
[72]
Capper, D.; Gaiser, T.; Hartmann, C.; Habel, A.; Mueller, W.; Herold-Mende, C.; von Deimling, A.; Siegelin, M.D. Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation. Acta Neuropathol., 2009, 117(4), 445-456.
[http://dx.doi.org/10.1007/s00401-009-0494-3] [PMID: 19214542]
[73]
Pandrangi, S.L.; Chikati, R.; Chauhan, P.S.; Kumar, C.S.; Banarji, A.; Saxena, S. Effects of ellipticine on ALDH1A1-expressing breast cancer stem cells-An in vitro and in silico study. Tumour Biol., 2014, 35(1), 723-737.
[http://dx.doi.org/10.1007/s13277-013-1099-y] [PMID: 23982874]
[74]
Meng, E.; Mitra, A.; Tripathi, K.; Finan, M.A.; Scalici, J.; Mcclellan, S. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One, 2014, 9(9), e107142.
[http://dx.doi.org/10.1371/journal.pone.0107142]
[75]
Elgendy, S.M.; Alyammahi, S.K.; Alhamad, D.W.; Abdin, S.M.; Omar, H.A. Ferroptosis: An emerging approach for targeting cancer stem cells and drug resistance. Crit. Rev. Oncol. Hematol., 2020, 155, 103095.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103095] [PMID: 32927333]
[76]
Dorweiler, B.; Pruefer, D.; Andrasi, T.B.; Maksan, S.M.; Schmiedt, W.; Neufang, A.; Vahl, C.F. Ischemia-reperfusion injury. Eur. J. Trauma Emerg. Surg., 2007, 33(6), 600-612.
[http://dx.doi.org/10.1007/s00068-007-7152-z] [PMID: 26815087]
[77]
Luo, L.; Mo, G.; Huang, D. Ferroptosis in hepatic ischemia reperfusion injury: Regulatory mechanisms and new methods for therapy (Review). Mol. Med. Rep., 2021, 23(3), 225.
[http://dx.doi.org/10.3892/mmr.2021.11864] [PMID: 33495834]
[78]
Yamada, N.; Karasawa, T.; Wakiya, T.; Sadatomo, A.; Ito, H.; Kamata, R.; Watanabe, S.; Komada, T.; Kimura, H.; Sanada, Y.; Sakuma, Y.; Mizuta, K.; Ohno, N.; Sata, N.; Takahashi, M. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: Potential role of ferroptosis. Am. J. Transplant., 2020, 20(6), 1606-1618.
[http://dx.doi.org/10.1111/ajt.15773] [PMID: 31909544]
[79]
Habib, S.; Shaikh, O.S. Drug-Induced Acute Liver Failure. Clin. Liver Dis., 2017, 21(1), 151-162.
[http://dx.doi.org/10.1016/j.cld.2016.08.003] [PMID: 27842769]
[80]
Mossanen, J.C.; Tacke, F. Acetaminophen-induced acute liver injury in mice. Lab. Anim., 2015, 49(1)(Suppl.), 30-36.
[http://dx.doi.org/10.1177/0023677215570992]
[81]
Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA, 2016, 113(34), E4966-E4975.
[http://dx.doi.org/10.1073/pnas.1603244113] [PMID: 27506793]
[82]
Antoine, D.J.; Williams, D.P.; Park, B.K. Understanding the role of reactive metabolites in drug-induced hepatotoxicity: State of the science. Expert Opin. Drug Metab. Toxicol., 2008, 4(11), 1415-1427.
[http://dx.doi.org/10.1517/17425255.4.11.1415] [PMID: 18950283]
[83]
Park, B.K.; Kitteringham, N.R.; Maggs, J.L.; Pirmohamed, M.; Williams, D.P. The role of metabolic activation in drug-induced hepatotoxicity. Annu. Rev. Pharmacol. Toxicol., 2005, 45(1), 177-202.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100058] [PMID: 15822174]
[84]
Leist, M.; Single, B.; Castoldi, A.F.; Kühnle, S.; Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J. Exp. Med., 1997, 185(8), 1481-1486.
[http://dx.doi.org/10.1084/jem.185.8.1481] [PMID: 9126928]
[85]
Seeff, L.B.; Cuccherini, B.A.; Zimmerman, H.J.; Adler, E.; Benjamin, S.B. Acetaminophen hepatotoxicity in alcoholics. A therapeutic misadventure. Ann. Intern. Med., 1986, 104(3), 399-404.
[http://dx.doi.org/10.7326/0003-4819-104-3-399] [PMID: 3511825]
[86]
Wu, J.; Meng, Q.H. Current understanding of the metabolism of micronutrients in chronic alcoholic liver disease. World J. Gastroenterol., 2020, 26(31), 4567-4578.
[http://dx.doi.org/10.3748/wjg.v26.i31.4567] [PMID: 32884217]
[87]
Zhang, Y.; Zhao, S.; Fu, Y.; Yan, L.; Feng, Y.; Chen, Y.; Wu, Y.; Deng, Y.; Zhang, G.; Chen, Z.; Chen, Y.; Liu, T. Computational repositioning of dimethyl fumarate for treating alcoholic liver disease. Cell Death Dis., 2020, 11(8), 641.
[http://dx.doi.org/10.1038/s41419-020-02890-3] [PMID: 32811823]
[88]
Zhou, Z.; Ye, T.J.; DeCaro, E.; Buehler, B.; Stahl, Z.; Bonavita, G.; Daniels, M.; You, M. Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis. Am. J. Pathol., 2020, 190(1), 82-92.
[http://dx.doi.org/10.1016/j.ajpath.2019.09.012] [PMID: 31610175]
[89]
Zhou, Z.; Ye, T.J.; Bonavita, G.; Daniels, M.; Kainrad, N.; Jogasuria, A.; You, M. Adipose‐specific lipin‐1 overexpression renders hepatic ferroptosis and exacerbates alcoholic steatohepatitis in mice. Hepatol. Commun., 2019, 3(5), 656-669.
[http://dx.doi.org/10.1002/hep4.1333] [PMID: 31061954]
[90]
Courselaud, B.; Pigeon, C.; Inoue, Y.; Inoue, J.; Gonzalez, F.J.; Leroyer, P.; Gilot, D.; Boudjema, K.; Guguen-Guillouzo, C.; Brissot, P.; Loréal, O.; Ilyin, G. C/EBPα regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. J. Biol. Chem., 2002, 277(43), 41163-41170.
[http://dx.doi.org/10.1074/jbc.M202653200] [PMID: 12183449]
[91]
Pietrangelo, A. Hereditary hemochromatosis--a new look at an old disease. N. Engl. J. Med., 2004, 350(23), 2383-2397.
[http://dx.doi.org/10.1056/NEJMra031573] [PMID: 15175440]
[92]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[93]
Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res., 2018, 137, 115-170.
[http://dx.doi.org/10.1016/bs.acr.2017.11.003] [PMID: 29405974]
[94]
Rodrigues, F.C.; Devi, N.G.; Thakur, G. Role of targeted drug delivery in cancer therapeutics. In: Advances and Challenges in Pharmaceutical Technology; Academic Press: Massachusetts, 2021.
[http://dx.doi.org/10.1016/B978-0-12-820043-8.00008-6]
[95]
Fan, Y.; Marioli, M.; Zhang, K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal., 2021, 192, 113642.
[http://dx.doi.org/10.1016/j.jpba.2020.113642] [PMID: 33011580]
[96]
Yang, J.; Jia, C.; Yang, J. Designing nanoparticle-based drug delivery systems for precision medicine. Int. J. Med. Sci., 2021, 18(13), 2943-2949.
[http://dx.doi.org/10.7150/ijms.60874] [PMID: 34220321]
[97]
Chen, B.; Liu, R. liu; Xia, G.; Bao, W.; Chen, W.; Cheng, J.; Xu, Y.; Guo, L.; Li, X. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin. Drug Des. Devel. Ther., 2015, 9, 2705-2719.
[http://dx.doi.org/10.2147/DDDT.S80948] [PMID: 26045659]
[98]
Ventura, A.; Kirsch, D.G.; McLaughlin, M.E.; Tuveson, D.A.; Grimm, J.; Lintault, L.; Newman, J.; Reczek, E.E.; Weissleder, R.; Jacks, T. Restoration of p53 function leads to tumour regression in vivo. Nature, 2007, 445(7128), 661-665.
[http://dx.doi.org/10.1038/nature05541] [PMID: 17251932]
[99]
Bykov, V.J.N.; Wiman, K.G.; Baksh, S.; Blandino, G.; Just, W. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett., 2014, 588(16), 2622-2627.
[http://dx.doi.org/10.1016/j.febslet.2014.04.017] [PMID: 24768524]
[100]
Mele, L.; del Vecchio, V.; Liccardo, D.; Prisco, C.; Schwerdtfeger, M.; Robinson, N.; Desiderio, V.; Tirino, V.; Papaccio, G.; La Noce, M. The role of autophagy in resistance to targeted therapies. Cancer Treat. Rev., 2020, 88, 102043.
[http://dx.doi.org/10.1016/j.ctrv.2020.102043] [PMID: 32505806]
[101]
Bartneck, M.; Scheyda, K.M.; Warzecha, K.T.; Rizzo, L.Y.; Hittatiya, K.; Luedde, T.; Storm, G.; Trautwein, C.; Lammers, T.; Tacke, F. Fluorescent cell-traceable dexamethasone-loaded liposomes for the treatment of inflammatory liver diseases. Biomaterials, 2015, 37, 367-382.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.030] [PMID: 25453965]
[102]
Yang, D.; Gao, Y-H.; Tan, K-B.; Zuo, Z-X.; Yang, W-X.; Hua, X.; Li, P-J.; Zhang, Y.; Wang, G. Inhibition of hepatic fibrosis with artificial microRNA using ultrasound and cationic liposome-bearing microbubbles. Gene Ther., 2013, 20(12), 1140-1148.
[http://dx.doi.org/10.1038/gt.2013.41] [PMID: 23966015]
[103]
Bansal, R.; Nagórniewicz, B.; Prakash, J. Clinical advancements in the targeted therapies against liver fibrosis. Mediators Inflamm., 2016, 2016, 1-16.
[http://dx.doi.org/10.1155/2016/7629724] [PMID: 27999454]
[104]
Zhang, F.; Kong, D.; Lu, Y.; Zheng, S. Peroxisome proliferator-activated receptor-γ as a therapeutic target for hepatic fibrosis: From bench to bedside. Cell. Mol. Life Sci., 2013, 70(2), 259-276.
[http://dx.doi.org/10.1007/s00018-012-1046-x] [PMID: 22699820]
[105]
Thomas, R.G.; Moon, M.J.; Kim, J.H.; Lee, J.H.; Jeong, Y.Y. Effectiveness of losartan-loaded hyaluronic acid (ha) micelles for the reduction of advanced hepatic fibrosis in C3H/HeN mice model. PLoS One, 2015, 10(12), e0145512.
[http://dx.doi.org/10.1371/journal.pone.0145512] [PMID: 26714035]
[106]
Liu, J.Y.; Chiang, T.; Liu, C.H.; Chern, G.G.; Lin, T.T.; Gao, D.Y.; Chen, Y. Delivery of siRNA using CXCR4-targeted nanoparticles modulates tumor microenvironment and achieves a potent antitumor response in liver cancer. Mol. Ther., 2015, 23(11), 1772-1782.
[http://dx.doi.org/10.1038/mt.2015.147] [PMID: 26278330]
[107]
Üner, M. Yene r, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[PMID: 18019829]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy