Abstract
Background: Alzheimer's disease (AD) is an overwhelming neurodegenerative disease with progressive loss of memory. AD is characterized by the deposition of the senile plaques mainly composed of β-amyloid (Aβ) fragment, BDNF decline, Cholinergic system overactivity and neuroinflammation. Montelukast (MTK), a leukotriene receptor antagonist, showed astounding neuroprotective effects in a variety of neurodegenerative disorders.
Objective: This study aims to investigate the ameliorative effects of Montelukast in the scopolamineinduced Alzheimer’s disease (AD) model in rats and evaluate its activity against neuroinflammation.
Methods: Thirty rats were split into five groups: Control group (1 mL/kg normal saline, i.p.), Montelukast perse (10 mg/kg, i.p.), Disease group treated with Scopolamine (3 mg/kg, i.p.), Donepezil group (3 mg/kg, i.p.), Montelukast treatment group (10 mg/kg, i.p.) and behavioural and biochemical tests were carried out to assess the neuro protective effect.
Results: Scopolamine treatment led to a significant reduction in learning and memory and an elevation in cholinesterase levels when compared with the control group (p < 0.01). Additionally, elevated oxidative stress and Amyloid-β levels were associated with enhanced neuroinflammation (p < 0.05, p < 0.01). Furthermore, the decline in neurotrophic factor BDNF is also observed when compared with the normal control group (p < 0.01). Montelukast pre-treatment significantly attenuated learning and memory impairment and cholinesterase levels. Besides, Montelukast and standard drug donepezil administration significantly suppressed the oxidative stress markers (p < 0.01), Amyloid-β levels, neuroinflammatory mediators (p < 0.05) and caused a significant increase in BDNF levels (p < 0.05).
Conclusion: Montelukast bestowed ameliorative effects in scopolamine-induced AD animal models as per the previous studies via attenuation of memory impairment, cholinesterase neurotransmission, oxidative stress, Amyloid-β levels, neuroinflammatory mediators and enhanced BDNF levels.
Graphical Abstract
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[http://dx.doi.org/10.1016/j.drudis.2018.09.008] [PMID: 30240876]
[http://dx.doi.org/10.1007/s12035-015-9384-y] [PMID: 26298663]
[http://dx.doi.org/10.3390/molecules27061816]
[http://dx.doi.org/10.1097/NEN.0b013e318288a8dd] [PMID: 23481704]
[http://dx.doi.org/10.2147/IJN.S200490]
[http://dx.doi.org/10.1515/revneuro-2019-0089] [PMID: 32017704]
[http://dx.doi.org/10.1186/s40035-022-00279-0] [PMID: 35090576]
[http://dx.doi.org/10.3390/ijms22052782] [PMID: 33803482]
[http://dx.doi.org/10.3390/ijms22115606] [PMID: 34070609]
[http://dx.doi.org/10.1111/bph.12665] [PMID: 24588652]
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.12.013] [PMID: 31986345]
[http://dx.doi.org/10.1038/ncomms9466] [PMID: 26506265]
[http://dx.doi.org/10.1186/s13195-021-00892-7] [PMID: 34479635]
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.151] [PMID: 34051251]
[http://dx.doi.org/10.3390/pharmaceutics13010012] [PMID: 33374646]
[http://dx.doi.org/10.1016/j.neuro.2016.09.022] [PMID: 27702591]
[http://dx.doi.org/10.1016/j.neuroscience.2010.08.039] [PMID: 20813166]
[http://dx.doi.org/10.1097/WNR.0000000000000740] [PMID: 28178069]
[http://dx.doi.org/10.1016/j.taap.2018.09.012] [PMID: 30222980]
[http://dx.doi.org/10.1111/j.2042-7158.2010.01238.x] [PMID: 21401607]
[http://dx.doi.org/10.1016/j.neuint.2014.05.006] [PMID: 24879954]
[http://dx.doi.org/10.1016/j.pbb.2012.07.015] [PMID: 22878042]
[http://dx.doi.org/10.1007/s13311-020-00836-3] [PMID: 32072462]
[http://dx.doi.org/10.1016/j.neuroscience.2014.07.058] [PMID: 25090924]
[http://dx.doi.org/10.1007/s11011-016-9902-2] [PMID: 27631100]
[http://dx.doi.org/10.1016/j.biopha.2018.09.127] [PMID: 30372840]
[http://dx.doi.org/10.1007/978-1-4939-8994-2_10] [PMID: 30535688]
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[http://dx.doi.org/10.1016/j.biopha.2018.03.115] [PMID: 29710552]
[http://dx.doi.org/10.1016/j.brainres.2018.12.014] [PMID: 30552898]
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[http://dx.doi.org/10.1016/j.biopha.2016.03.017] [PMID: 27261577]
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[http://dx.doi.org/10.1007/BF02712155]
[http://dx.doi.org/10.1016/j.lfs.2019.116695] [PMID: 31351082]
[http://dx.doi.org/10.1007/s11011-019-00409-0] [PMID: 30949953]
[http://dx.doi.org/10.1007/s10339-011-0430-z] [PMID: 22160349]
[http://dx.doi.org/10.3390/brainsci11020259] [PMID: 33669503]
[http://dx.doi.org/10.1155/2021/8884243]
[http://dx.doi.org/10.1016/j.pbb.2020.172858] [PMID: 31981560]
[http://dx.doi.org/10.3390/molecules27061816]
[http://dx.doi.org/10.1016/j.neuropsychologia.2012.07.022] [PMID: 22884957]
[http://dx.doi.org/10.1586/14737175.8.11.1703]
[http://dx.doi.org/10.3390/antiox10091353] [PMID: 34572985]
[http://dx.doi.org/10.1016/j.ntt.2006.11.002] [PMID: 17197156]
[http://dx.doi.org/10.1007/s00221-007-1050-9] [PMID: 17665180]
[http://dx.doi.org/10.1016/j.pathophys.2006.05.004] [PMID: 16781128]
[http://dx.doi.org/10.3109/13880209.2013.767360] [PMID: 23627469]
[http://dx.doi.org/10.1055/s-0042-109391] [PMID: 27403576]
[http://dx.doi.org/10.1007/s00702-003-0091-x] [PMID: 14991458]
[http://dx.doi.org/10.1007/s12035-020-02009-x] [PMID: 32638218]
[http://dx.doi.org/10.3390/antiox9070620] [PMID: 32679768]
[http://dx.doi.org/10.5114/aoms.2015.56342]
[http://dx.doi.org/10.3389/neuro.02.001.2010] [PMID: 20162032]
[http://dx.doi.org/10.4196/kjpp.2012.16.2.79] [PMID: 22563252]
[http://dx.doi.org/10.1038/srep09651] [PMID: 25974329]
[http://dx.doi.org/10.1038/srep22405] [PMID: 26939918]
[http://dx.doi.org/10.1021/acsomega.2c00231] [PMID: 35559146]
[http://dx.doi.org/10.1007/s11064-016-2064-0] [PMID: 27677871]
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[http://dx.doi.org/10.1159/000049025] [PMID: 11847480]
[http://dx.doi.org/10.1016/j.biopha.2022.113073] [PMID: 35658216]
[http://dx.doi.org/10.3390/molecules27144513] [PMID: 35889382]