Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Commentary

The Cracked Potential of Boron-containing Compounds in Alzheimer’s Disease

Author(s): Marvin Antonio Soriano-Ursúa* and Eunice Dalet Farfán-García

Volume 23, Issue 3, 2023

Published on: 27 September, 2023

Page: [213 - 221] Pages: 9

DOI: 10.2174/0118715249264888230920060941

Price: $65

conference banner
Abstract

Alzheimer’s disease (AD) is a relevant neurodegenerative disease worldwide. Its relevancy is mainly due to its high prevalence and high global burden. Metalloids have attracted attention as their serum levels seem to differ between affected patients and healthy individuals. On the other hand, atoms of some metalloids have been included in bioactive molecules, exerting some interesting effects, mainly due to their ameliorative effects in neurodegeneration. In this sense, boron-containing compounds (BCC) have been explored to regulate or prevent neurodegeneration. As an example, boric acid has been reported as a compound with antioxidant, anti-inflammatory and neurotrophic effects. Other natural BCCs have also shown amelioration of metabolic conditions often related to increased risk of neurodegenerative maladies. However, in recent years, additional organoboron compounds have been reported as active in several processes linked to neurodegeneration and especially attractive as regulators of the origin and progression of AD. In this mini-review, some data are collected suggesting that some natural BCC could be used as preventive agents, but also the potential of some BODIPYs as tools for diagnosis and some other BCC (particularly boronic acids and pinacol boronic esters) for acting as promising therapeutic agents for AD.

Graphical Abstract

[1]
Vernon, R.E. Which elements are metalloids? J. Chem. Educ., 2013, 90(12), 1703-1707.
[http://dx.doi.org/10.1021/ed3008457]
[2]
Sekhon, B.S. Metalloid compounds as drugs. Res. Pharm. Sci., 2013, 8(3), 145-158.
[PMID: 24019824]
[3]
Martin, K. R. Interrelat. between Essent. Met. ions Hum. Dis The health benefits of a metalloid., 2013, 451-47.
[4]
Kan, F.; Kucukkurt, I. (2023). The effects of boron on some biochemical parameters: A Review. J. Trace Elem. Med. Biol., 2023, 79, 127249.
[PMID: 37413926]
[5]
Tamás, M.; Sharma, S.; Ibstedt, S.; Jacobson, T.; Christen, P. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules, 2014, 4(1), 252-267.
[http://dx.doi.org/10.3390/biom4010252] [PMID: 24970215]
[6]
Bruckmann, F.S.; Nunes, F.B.; Salles, T.R.; Franco, C.; Cadoná, F.C.; Bohn Rhoden, C.R. Biological applications of silica-based nanoparticles. Magnetochemistry, 2022, 8(10), 131.
[http://dx.doi.org/10.3390/magnetochemistry8100131]
[7]
Barrón-González, M.; Montes-Aparicio, A.V.; Cuevas-Galindo, M.E.; Orozco-Suárez, S.; Barrientos, R.; Alatorre, A.; Querejeta, E.; Trujillo-Ferrara, J.G.; Farfán-García, E.D.; Soriano-Ursúa, M.A. Boron-containing compounds on neurons: Actions and potential applications for treating neurodegenerative diseases. J. Inorg. Biochem., 2023, 238, 112027.
[http://dx.doi.org/10.1016/j.jinorgbio.2022.112027] [PMID: 36345068]
[8]
Strumylaite, L.; Kregzdyte, R.; Kucikiene, O.; Baranauskiene, D.; Simakauskiene, V.; Naginiene, R.; Damuleviciene, G.; Lesauskaite, V.; Zemaitiene, R. Alzheimer’s disease association with metals and metalloids concentration in blood and urine. Int. J. Environ. Res. Public Health, 2022, 19(12), 7309.
[http://dx.doi.org/10.3390/ijerph19127309] [PMID: 35742553]
[9]
Turkez, H. Yıldırım, S.; Sahin, E.; Arslan, M.E.; Emsen, B.; Tozlu, O.O.; Alak, G.; Ucar, A.; Tatar, A.; Hacimuftuoglu, A.; Keles, M.S.; Geyikoglu, F.; Atamanalp, M.; Saruhan, F.; Mardinoglu, A. Boron compounds exhibit protective effects against aluminum-induced neurotoxicity and genotoxicity: In vitro and in vivo study. Toxics, 2022, 10(8), 428.
[http://dx.doi.org/10.3390/toxics10080428] [PMID: 36006107]
[10]
Gong, G.; O’Bryant, S.E. The arsenic exposure hypothesis for alzheimer disease. Alzheimer Dis. Assoc. Disord., 2010, 24(4), 311-316.
[http://dx.doi.org/10.1097/WAD.0b013e3181d71bc7] [PMID: 20473132]
[11]
Rahman, M.; Hannan, M.; Uddin, M.; Rahman, M.; Rashid, M.; Kim, B. Exposure to environmental arsenic and emerging risk of alzheimer’s disease: Perspective mechanisms, management strategy, and future directions. Toxics, 2021, 9(8), 188.
[http://dx.doi.org/10.3390/toxics9080188] [PMID: 34437506]
[12]
Koseoglu, E.; Kutuk, B.; Nalbantoglu, O.U.; Koseoglu, R.; Kendirci, M. Arsenic and selenium measurements in nail and hair show important relationships to alzheimer’s disease in the elderly. J. Trace Elem. Med. Biol., 2021, 64, 126684.
[http://dx.doi.org/10.1016/j.jtemb.2020.126684] [PMID: 33285443]
[13]
Widy-Tyszkiewicz, E. Piechal, A.; Gajkowska, B.; Śmiałek, M. Tellurium-induced cognitive deficits in rats are related to neuropathological changes in the central nervous system. Toxicol. Lett., 2002, 131(3), 203-214.
[http://dx.doi.org/10.1016/S0378-4274(02)00050-4] [PMID: 11992740]
[14]
Shakir, M.N.; Dugger, B.N. Advances in deep neuropathological phenotyping of alzheimer disease: Past, present, and future. J. Neuropathol. Exp. Neurol., 2022, 81(1), 2-15.
[http://dx.doi.org/10.1093/jnen/nlab122] [PMID: 34981115]
[15]
Cheong, S.L.; Tiew, J.K.; Fong, Y.H.; Leong, H.W.; Chan, Y.M.; Chan, Z.L.; Kong, E.W.J. Current pharmacotherapy and multi-target approaches for alzheimer’s disease. Pharmaceuticals, 2022, 15(12), 1560.
[http://dx.doi.org/10.3390/ph15121560] [PMID: 36559010]
[16]
Yildirim, C.; Yar Saglam, A.S.; Guney, S.; Turan, B.; Ebegil, M.; Coskun Cevher, S.; Balabanli, B. Investigation covering the effect of boron plus taurine application on protein carbonyl and advanced oxidation protein products levels in experimental alzheimer model. Biol. Trace Elem. Res., 2023, 201(4), 1905-1912.
[http://dx.doi.org/10.1007/s12011-022-03293-5] [PMID: 35618890]
[17]
Özdemir, Ç.; Arslan, M.; Küçük, A. Yığman, Z.; Dursun, A.D. Therapeutic efficacy of boric acid treatment on brain tissue and cognitive functions in rats with experimental alzheimer’s disease. Drug Des. Devel. Ther., 2023, 17, 1453-1462.
[http://dx.doi.org/10.2147/DDDT.S405963] [PMID: 37220543]
[18]
Sharifi-Rad, J.; Rapposelli, S.; Sestito, S.; Herrera-Bravo, J.; Arancibia-Diaz, A.; Salazar, L.A.; Yeskaliyeva, B.; Beyatli, A.; Leyva-Gómez, G.; González-Contreras, C.; Gürer, E.S.; Martorell, M.; Calina, D. Multi-target mechanisms of phytochemicals in alzheimer’s disease: Effects on oxidative stress, neuroinflammation and protein aggregation. J. Pers. Med., 2022, 12(9), 1515.
[http://dx.doi.org/10.3390/jpm12091515] [PMID: 36143299]
[19]
Kumar, N.; Kumar, V.; Anand, P.; Kumar, V.; Ranjan Dwivedi, A.; Kumar, V. Advancements in the development of multi-target directed ligands for the treatment of alzheimer’s disease. Bioorg. Med. Chem., 2022, 61, 116742.
[http://dx.doi.org/10.1016/j.bmc.2022.116742] [PMID: 35398739]
[20]
Ri, C.C.; Mf, C.R. D, R.V.; T, P.C.; F, T.C.; Ir, S.; A, A.G.; Ma, S.U. Boron-containing compounds for prevention, diagnosis, and treatment of human metabolic disorders. Biol. Trace Elem. Res., 2023, 201(5), 2222-2239.
[http://dx.doi.org/10.1007/s12011-022-03346-9] [PMID: 35771339]
[21]
Romero-Aguilar, K.S.; Arciniega-Martínez, I.M.; Farfán-García, E.D.; Campos-Rodríguez, R.; Reséndiz-Albor, A.A.; Soriano-Ursúa, M.A. Effects of boron-containing compounds on immune responses: Review and patenting trends. Expert Opin. Ther. Pat., 2019, 29(5), 339-351.
[http://dx.doi.org/10.1080/13543776.2019.1612368] [PMID: 31064237]
[22]
Hunter, J.M.; Nemzer, B.V.; Rangavajla, N. Biţă A.; Rogoveanu, O.C.; Neamţu, J.; Scorei, I.R.; Bejenaru, L.E.; Rău, G.; Bejenaru, C.; Mogoşanu, G.D. The fructoborates: Part of a family of naturally occurring sugar–borate complexes—biochemistry, physiology, and impact on human health: A review. Biol. Trace Elem. Res., 2019, 188(1), 11-25.
[http://dx.doi.org/10.1007/s12011-018-1550-4] [PMID: 30343480]
[23]
Weber, K.S.; Ratjen, I.; Enderle, J.; Seidel, U.; Rimbach, G.; Lieb, W. Plasma boron concentrations in the general population: A cross-sectional analysis of cardio-metabolic and dietary correlates. Eur. J. Nutr., 2022, 61(3), 1363-1375.
[http://dx.doi.org/10.1007/s00394-021-02730-w] [PMID: 34825958]
[24]
Kuru, R.; Yilmaz, S.; Balan, G.; Tuzuner, B.A.; Tasli, P.N.; Akyuz, S.; Yener Ozturk, F.; Altuntas, Y.; Yarat, A.; Sahin, F. Boron-rich diet may regulate blood lipid profile and prevent obesity: A non-drug and self-controlled clinical trial. J. Trace Elem. Med. Biol., 2019, 54(01), 191-198.
[http://dx.doi.org/10.1016/j.jtemb.2019.04.021] [PMID: 31109611]
[25]
Marín-Martínez, L.; Molino-Pagán, D.; López-Jornet, P. Trace elements in saliva and plasma of patients with type 2 diabetes: Association to metabolic control and complications. Diabetes Res. Clin. Pract., 2019, 157, 107871.
[http://dx.doi.org/10.1016/j.diabres.2019.107871] [PMID: 31604082]
[26]
Nasrolahi, A.; Javaherforooshzadeh, F.; Jafarzadeh-Gharehziaaddin, M.; Mahmoudi, J.; Asl, K.D.; Shabani, Z. Therapeutic potential of neurotrophic factors in alzheimer’s disease. Mol. Biol. Rep., 2022, 49(3), 2345-2357.
[http://dx.doi.org/10.1007/s11033-021-06968-9] [PMID: 34826049]
[27]
Ogunmokun, G.; Dewanjee, S.; Chakraborty, P.; Valupadas, C.; Chaudhary, A.; Kolli, V.; Anand, U.; Vallamkondu, J.; Goel, P.; Paluru, H.P.R.; Gill, K.D.; Reddy, P.H.; De Feo, V.; Kandimalla, R. The potential role of cytokines and growth factors in the pathogenesis of alzheimer’s disease. Cells, 2021, 10(10), 2790.
[http://dx.doi.org/10.3390/cells10102790] [PMID: 34685770]
[28]
Tang, J.; Zheng, X.; Xiao, K.; Wang, K.; Wang, J.; Wang, Y.; Wang, K.; Wang, W.; Lu, S.; Yang, K.; Sun, P.P.; Khaliq, H.; Zhong, J.; Peng, K.M. Effect of boric acid supplementation on the expression of bdnf in african ostrich chick brain. Biol. Trace Elem. Res., 2016, 170(1), 208-215.
[http://dx.doi.org/10.1007/s12011-015-0428-y] [PMID: 26226831]
[29]
Calabrese, E.; Pressman, P.; Agathokleous, E.; Dhawan, G.; Kapoor, R.; Calabrese, V. Boron enhances adaptive responses and biological performance via hormetic mechanisms. Chem. Biol. Interact., 2023, 376, 110432.
[http://dx.doi.org/10.1016/j.cbi.2023.110432] [PMID: 36878460]
[30]
Maiti, P.; Manna, J.; Burch, Z.N.; Flaherty, D.B.; Larkin, J.D.; Dunbar, G.L. Ameliorative properties of boronic compounds in in vitro and in vivo models of alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(18), 6664.
[http://dx.doi.org/10.3390/ijms21186664] [PMID: 32933008]
[31]
Lu, C.J.; Hu, J.; Wang, Z.; Xie, S.; Pan, T.; Huang, L.; Li, X. Discovery of boron-containing compounds as aβ aggregation inhibitors and antioxidants for the treatment of alzheimer’s disease. MedChemComm, 2018, 9(11), 1862-1870.
[http://dx.doi.org/10.1039/C8MD00315G] [PMID: 30568754]
[32]
Arciniega-Martínez, I.M.; Romero-Aguilar, K.S.; Farfán-García, E.D.; García-Machorro, J.; Reséndiz-Albor, A.A.; Soriano-Ursúa, M.A. Diversity of effects induced by boron-containing compounds on immune response cells and on antibodies in basal state. J. Trace Elem. Med. Biol., 2022, 69, 126901.
[http://dx.doi.org/10.1016/j.jtemb.2021.126901] [PMID: 34801850]
[33]
Lee, J.C.; Kim, S.J.; Hong, S.; Kim, Y. Diagnosis of alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp. Mol. Med., 2019, 51(5), 1-10.
[http://dx.doi.org/10.1038/s12276-019-0250-2] [PMID: 31073121]
[34]
Dubois, B.; Villain, N.; Frisoni, G.B.; Rabinovici, G.D.; Sabbagh, M.; Cappa, S.; Bejanin, A.; Bombois, S.; Epelbaum, S.; Teichmann, M.; Habert, M.O.; Nordberg, A.; Blennow, K.; Galasko, D.; Stern, Y.; Rowe, C.C.; Salloway, S.; Schneider, L.S.; Cummings, J.L.; Feldman, H.H. Clinical diagnosis of alzheimer’s disease: Recommendations of the international working group. Lancet Neurol., 2021, 20(6), 484-496.
[http://dx.doi.org/10.1016/S1474-4422(21)00066-1] [PMID: 33933186]
[35]
Hyman, B.T.; Trojanowski, J.Q. Consensus recommendations for the postmortem diagnosis of alzheimer disease from the national institute on aging and the reagan institute working group on diagnostic criteria for the neuropathological assessment of alzheimer disease. J. Neuropathol. Exp. Neurol., 1997, 56(10), 1095-1097.
[http://dx.doi.org/10.1097/00005072-199710000-00002] [PMID: 9329452]
[36]
Sangubotla, R.; Kim, J. Recent trends in analytical approaches for detecting neurotransmitters in alzheimer’s disease. Trends Analyt. Chem., 2018, 105, 240-250.
[http://dx.doi.org/10.1016/j.trac.2018.05.014]
[37]
Ausó, E.; Gómez-Vicente, V.; Esquiva, G. Biomarkers for alzheimer’s disease early diagnosis. J. Pers. Med., 2020, 10(3), 114.
[http://dx.doi.org/10.3390/jpm10030114] [PMID: 32899797]
[38]
Arora, H.; Ramesh, M.; Rajasekhar, K.; Govindaraju, T. Molecular tools to detect alloforms of aβ and tau: implications for multiplexing and multimodal diagnosis of alzheimer’s disease. Bull. Chem. Soc. Jpn., 2020, 93(4), 507-546.
[http://dx.doi.org/10.1246/bcsj.20190356]
[39]
Das, B.C.; Ojha, D.P.; Das, S.; Evans, T. Boron compounds in molecular imaging.Boron-based compounds: potential and emerging applications in medicine; John Wiley & Sons, 2018, pp. 205-231.
[http://dx.doi.org/10.1002/9781119275602.ch2.4]
[40]
Zhuang, M.; Joshi, S.; Sun, H.; Batabyal, T.; Fraser, C.L.; Kapur, J. Difluoroboron β-diketonate polylactic acid oxygen nanosensors for intracellular neuronal imaging. Sci. Rep., 2021, 11(1), 1076.
[http://dx.doi.org/10.1038/s41598-020-80172-w] [PMID: 33441771]
[41]
Shi, Y.; Meng, X.; Yang, H.; Song, L.; Liu, S.; Xu, A.; Chen, Z.; Huang, W.; Zhao, Q. Lysosome-specific sensing and imaging of ph variations in vitro and in vivo utilizing a near-infrared boron complex. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(22), 3569-3575.
[http://dx.doi.org/10.1039/C8TB03353F]
[42]
Li, H.; Wang, J.; Li, Y.; Chen, X.; Zhang, W.; Zhao, Y.; Liu, G.; Pan, J. Detection of aβ oligomers in early alzheimer’s disease diagnose by in vivo nir-ii fluorescence imaging. Sens. Actuators B Chem., 2022, 358, 131481.
[http://dx.doi.org/10.1016/j.snb.2022.131481]
[43]
Wu, J.; Shao, C.; Ye, X.; Di, X.; Li, D.; Zhao, H.; Zhang, B.; Chen, G.; Liu, H.K.; Qian, Y. In vivo brain imaging of amyloid-β aggregates in alzheimer’s disease with a near-infrared fluorescent probe. ACS Sens., 2021, 6(3), 863-870.
[http://dx.doi.org/10.1021/acssensors.0c01914] [PMID: 33438997]
[44]
Zhu, M.; Zhang, G.; Hu, Z.; Zhu, C.; Chen, Y.; James, T.D.; Ma, L.; Wang, Z. A BODIPY-based probe for amyloid-β imaging in vivo. Org. Chem. Front., 2023, 10(8), 1903-1909.
[http://dx.doi.org/10.1039/D2QO02032G]
[45]
Li, L.; Xiang, F.; Yao, L.; Zhang, C.; Jia, X.; Chen, A.; Liu, Y. Synthesis and evaluation of curcumin-based near-infrared fluorescent probes for detection of amyloid β peptide in alzheimer mouse models. Bioorg. Med. Chem., 2023, 92, 117410.
[http://dx.doi.org/10.1016/j.bmc.2023.117410] [PMID: 37506558]
[46]
Xie, T.; Li, Y.; Tian, C.; Yuan, C.; Dai, B.; Wang, S.; Zhou, K.; Liu, J.; Tan, H.; Liang, Y.; Dai, J.; Chen, B.; Cui, M. Fused cycloheptatriene–bodipy is a high-performance near-infrared probe to image tau tangles. J. Med. Chem., 2022, 65(21), 14527-14538.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00859] [PMID: 36283122]
[47]
Soloperto, A.; Quaglio, D.; Baiocco, P.; Romeo, I.; Mori, M.; Ardini, M.; Presutti, C.; Sannino, I.; Ghirga, S.; Iazzetti, A.; Ippoliti, R.; Ruocco, G.; Botta, B.; Ghirga, F.; Di Angelantonio, S.; Boffi, A. Rational design and synthesis of a novel bodipy-based probe for selective imaging of tau tangles in human ipsc-derived cortical neurons. Sci. Rep., 2022, 12(1), 5257.
[http://dx.doi.org/10.1038/s41598-022-09016-z] [PMID: 35347170]
[48]
Estevez-Fregoso, E.; Kilic, A.; Rodríguez-Vera, D.; Nicanor-Juárez, L.E.; Romero-Rizo, C.E.M.; Farfán-García, E.D.; Soriano-Ursúa, M.A. Effects of boron-containing compounds on liposoluble hormone functions. Inorganics, 2023, 11(2), 84.
[http://dx.doi.org/10.3390/inorganics11020084]
[49]
Kaneda, N.; Asano, M.; Nagatsu, T. Simple method for the simultaneous determination of acetylcholine, choline, noradrenaline, dopamine and serotonin in brain tissue by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A, 1986, 360(1), 211-218.
[http://dx.doi.org/10.1016/S0021-9673(00)91664-9] [PMID: 3733945]
[50]
Shen, H.; Shi, H.; Feng, B.; Ding, C.; Yu, S. A versatile biomimetic multienzyme cascade nanoplatform based on boronic acid-modified metal–organic framework for colorimetric biosensing. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(18), 3444-3451.
[http://dx.doi.org/10.1039/D2TB00158F] [PMID: 35394481]
[51]
Lee, E-S.; Choi, B-W.; Jung, D-I.; Hwang, H-J.; Han, J-T.; Lee, B-H. Design and synthesis of phenyl boronic acids and benzothiophenones as anticholinesterases. Bull. Korean Chem. Soc., 2003, 24(2), 243-245.
[http://dx.doi.org/10.5012/bkcs.2003.24.2.243]
[52]
Marfavi, A. Shifting Gears Towards the Red: Novel Boron-Based Fluorophores for Bioimaging Applications. 2023.
[53]
Javaheri, S.; Attry, S.; Saber Mahani, F.; Obaid, R.F.; Abdullaha, S.A.H.; Almashhadani, H.A.; Kadhim, M.M. Detection of nitrotyrosine (alzheimer’s agent) by b24n24 nano cluster: A comparative dft and qtaim insight. Inorg. Chem. Commun., 2023, 147, 110191.
[http://dx.doi.org/10.1016/j.inoche.2022.110191]
[54]
Marfavi, A.; Kavianpour, P.; Rendina, L.M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem., 2022, 6(7), 486-504.
[http://dx.doi.org/10.1038/s41570-022-00400-x] [PMID: 37117309]
[55]
Benek, O.; Korabecny, J.; Soukup, O. A Perspective on multi-target drugs for alzheimer’s disease. Trends Pharmacol. Sci., 2020, 41(7), 434-445.
[http://dx.doi.org/10.1016/j.tips.2020.04.008] [PMID: 32448557]
[56]
Hacioglu, C.; Kar, F.; Kar, E.; Kara, Y.; Kanbak, G. Effects of curcumin and boric acid against neurodegenerative damage induced by amyloid beta (1-42). Biol. Trace Elem. Res., 2021, 199(10), 3793-3800.
[http://dx.doi.org/10.1007/s12011-020-02511-2] [PMID: 33237490]
[57]
Romero-Aguilar, K.S.; Arciniega-Martínez, I.M.; Farfán-García, E.D.; Campos-Rodríguez, R.; Reséndiz-Albor, A.A.; Soriano-Ursúa, M.A. Effects of boron-containing compounds on immune responses: Review and patenting trends. Expert Opin. Ther. Pat., 2019, 29(5), 339-351.
[http://dx.doi.org/10.1080/13543776.2019.1612368] [PMID: 31064237]
[58]
Charkoudian, L.K.; Pham, D.M.; Kwon, A.M.; Vangeloff, A.D.; Franz, K.J. Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress. Dalton Trans., 2007, (43), 5031-5042.
[http://dx.doi.org/10.1039/b705199a] [PMID: 17992288]
[59]
Vaidya, B.; Kaur, H.; Thapak, P.; Sharma, S.S.; Singh, J.N. Pharmacological modulation of trpm2 channels via parp pathway leads to neuroprotection in mptp-induced parkinson’s disease in sprague dawley rats. Mol. Neurobiol., 2022, 59(3), 1528-1542.
[http://dx.doi.org/10.1007/s12035-021-02711-4] [PMID: 34997907]
[60]
Thapak, P.; Khare, P.; Bishnoi, M.; Sharma, S.S. Neuroprotective effect of 2-aminoethoxydiphenyl borate (2-apb) in amyloid β-induced memory dysfunction: A mechanistic study. Cell. Mol. Neurobiol., 2020, 1-13.
[PMID: 33219878]
[61]
Thapak, P.; Khare, P.; Bishnoi, M.; Sharma, S.S. Neuroprotective effects of 2‐aminoethoxydiphenyl borate (2‐apb) in β‐amyloid‐induced memory dysfunction is mediated through inhibition of transient receptor potential melastatin 2 (trpm2) channels. FASEB J., 2020, 34(S1), 1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.08850]
[62]
Hu, W.Y.; He, Z.Y.; Yang, L.J.; Zhang, M.; Xing, D.; Xiao, Z.C. The ca 2+ channel inhibitor 2-apb reverses β-amyloid-induced ltp deficit in hippocampus by blocking bax and caspase-3 hyperactivation. Br. J. Pharmacol., 2015, 172(9), 2273-2285.
[http://dx.doi.org/10.1111/bph.13048] [PMID: 25521332]
[63]
Rosalez, N. M.; Estevez-Fregoso, E.; Alatorre, A.; Abad-García, A.; A Soriano-Ursúa, M. 2-Aminoethyldiphenyl borinate: A multitarget compound with potential as a drug precursor. Curr. Mol. Pharmacol., 2020, 13(1), 57-75.
[http://dx.doi.org/10.2174/1874467212666191025145429] [PMID: 31654521]
[64]
Mesiti, F.; Chavarria, D.; Gaspar, A.; Alcaro, S.; Borges, F. The chemistry toolbox of multitarget-directed ligands for alzheimer’s disease. Eur. J. Med. Chem., 2019, 181, 111572.
[http://dx.doi.org/10.1016/j.ejmech.2019.111572] [PMID: 31404859]
[65]
Ritacca, A.G.; Ritacco, I.; Dabbish, E.; Russo, N.; Mazzone, G.; Sicilia, E. A Boron-containing compound acting on multiple targets against alzheimer’s disease. insights from ab initio and molecular dynamics simulations. J. Chem. Inf. Model., 2021, 61(7), 3397-3410.
[http://dx.doi.org/10.1021/acs.jcim.1c00262] [PMID: 34253017]
[66]
Barrón-González, M.; Rosales-Hernández, M.C.; Abad-García, A.; Ocampo-Néstor, A.L.; Santiago-Quintana, J.M.; Pérez-Capistran, T.; Trujillo-Ferrara, J.G.; Padilla-Martínez, I.I.; Farfán-García, E.D.; Soriano-Ursúa, M.A. Synthesis, in silico, and biological evaluation of a borinic tryptophan-derivative that induces melatonin-like amelioration of cognitive deficit in male rat. Int. J. Mol. Sci., 2022, 23(6), 3229.
[http://dx.doi.org/10.3390/ijms23063229] [PMID: 35328650]
[67]
Ozansoy, M. Altintaş M.Ö.; Ozansoy, M.B.; Günay, N.; Kiliç, E.; Kiliç, Ü. Two boron-containing compounds affect the cellular viability of sh-sy5y cells in an in vitro amyloid-beta toxicity model. Turk. J. Biol., 2020, 44(4), 208-214.
[http://dx.doi.org/10.3906/biy-2001-22] [PMID: 32922128]
[68]
Jiménez-Aligaga, K.; Bermejo-Bescós, P.; Martín-Aragón, S.; Csákÿ, A.G. Discovery of alkenylboronic acids as neuroprotective agents affecting multiple biological targets involved in alzheimer’s disease. Bioorg. Med. Chem. Lett., 2013, 23(2), 426-429.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.068] [PMID: 23219701]
[69]
Farfán-García, E.D.; Rosales-Hernández, M.C.; Castillo-García, E.L.; Abad-García, A.; Ruiz-Maciel, O.; Velasco-Silveyra, L.M.; González-Muñiz, A.Y.; Andrade-Jorge, E.; Soriano-Ursúa, M.A. Identification and evaluation of boronic compounds ameliorating cognitive deficit in orchiectomized rats. J. Trace Elem. Med. Biol., 2022, 72, 126979.
[http://dx.doi.org/10.1016/j.jtemb.2022.126979] [PMID: 35364473]
[70]
Cacciatore, I. TURKEZ, H.; DI RIENZO, A.; CIULLA, M.; Mardinoğlu, A.; DI STEFANO, A. Boron-based hybrids as novel scaffolds for the development of drugs with neuroprotective properties. RSC Med. Chem., 2021, 12(11), 1944-1949.
[http://dx.doi.org/10.1039/D1MD00177A]
[71]
Das, S.; Shareef, M.A.; Das, B.C. Design and synthesis of new boron-based benzo[c][1,2,5]oxadiazoles and benzo[c][1,2,5]thiadiazoles as potential hypoxia inhibitors. Inorganics, 2023, 11(1), 34.
[http://dx.doi.org/10.3390/inorganics11010034]
[72]
Zhang, X.; Subbanna, S.; Williams, C.R.O.; Canals-Baker, S.; Smiley, J.F.; Wilson, D.A.; Das, B.C.; Saito, M. Anti-inflammatory action of bt75, a novel rarα agonist, in cultured microglia and in an experimental mouse model of alzheimer’s disease. Neurochem. Res., 2023, 48(6), 1958-1970.
[http://dx.doi.org/10.1007/s11064-023-03888-x]
[73]
dos Santos, E.M.; Silva, N.A. Do, a.; gonçalves, k. g.; vale, a. a. m.; de azevedo-santos, a. p. s.; frança, t. c. c.; laplante, s. r.; resende, j. a. l. c.; romeiro, n. c.; lima, j. a. Arylboronic acids as safe and specific human butyrylcholinesterase inhibitors. J. Mol. Struct., 2023, 1290, 135932.
[http://dx.doi.org/10.1016/j.molstruc.2023.135932]
[74]
Aydin, N.; Turkez, H.; Tozlu, O.O.; Arslan, M.E.; Yavuz, M.; Sonmez, E.; Ozpolat, O.F.; Cacciatore, I.; Di Stefano, A.; Mardinoglu, A. Ameliorative effects by hexagonal boron nitride nanoparticles against beta amyloid induced neurotoxicity. Nanomaterials, 2022, 12(15), 2690.
[http://dx.doi.org/10.3390/nano12152690] [PMID: 35957121]
[75]
Sorout, N.; Chandra, A. Effects of boron nitride nanotube on the secondary structure of aβ(1–42) trimer: Possible inhibitory effect on amyloid formation. J. Phys. Chem. B, 2020, 124(10), 1928-1940.
[http://dx.doi.org/10.1021/acs.jpcb.9b11986] [PMID: 32053372]
[76]
Sorout, N.; Chandra, A. Interactions of the aβ(1–42) peptide with boron nitride nanoparticles of varying curvature in an aqueous medium: Different pathways to inhibit β-sheet formation. J. Phys. Chem. B, 2021, 125(40), 11159-11178.
[http://dx.doi.org/10.1021/acs.jpcb.1c05805] [PMID: 34605235]
[77]
Yıldırım, Ö.Ç.; Arslan, M.E.; Öner, S.; Cacciatore, I.; Di Stefano, A.; Mardinoglu, A.; Turkez, H. Boron nitride nanoparticles loaded with a boron-based hybrid as a promising drug carrier system for alzheimer’s disease treatment. Int. J. Mol. Sci., 2022, 23(15), 8249.
[http://dx.doi.org/10.3390/ijms23158249] [PMID: 35897815]
[78]
Smida, K.; Albedah, M.A.; Rashid, R.F.; Al-Qawasmi, A.R. Molecular dynamics method for targeting α-synuclein aggregation induced parkinson’s disease using boron nitride nanostructures. Eng. Anal. Bound. Elem., 2023, 146, 89-95.
[http://dx.doi.org/10.1016/j.enganabound.2022.10.016]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy