Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

CAR-T Therapy in Relapsed Refractory Multiple Myeloma

Author(s): Hong Ding and Yu Wu*

Volume 31, Issue 27, 2024

Published on: 27 September, 2023

Page: [4362 - 4382] Pages: 21

DOI: 10.2174/0109298673268932230920063933

Price: $65

Abstract

Multiple myeloma is a plasma cell neoplasm. The emergence of proteasome inhibitors, immunomodulatory drugs, and anti-CD38 monoclonal antibodies has improved the prognosis of multiple myeloma patients. However, some patients are still insensitive to conventional therapy or frequently relapse after remission. Chemotherapy based on proteasome inhibitors or immunomodulatory drugs is ineffective in controlling the progression of relapsed refractory multiple myeloma. No consensus has been reached on treating relapsed refractory multiple myeloma to date. Recently chimeric antigen receptor T cells therapy has shown promising results that could achieve rapid remissions of patients and improve their prognoses. Additionally, most patients in chimeric antigen receptor T cell clinical trials were triple-refractory multiple myeloma patients, indicating that chimeric antigen receptor T cell immunotherapy could overcome drug resistance to new drugs. Since single immunotherapies are prone to acquired resistance, combination immunotherapies based on emerging immunotherapies may solve this issue. Achieving complete remission and minimal residual disease negative status as soon as possible is beneficial to patients. This paper reviewed the main chimeric antigen receptor T cell products in relapsed refractory multiple myeloma, and it explained the drug resistance mechanism and improvement methods of chimeric antigen receptor T cells therapy. This review summarized the best beneficiaries of chimeric antigen receptor T cell therapy and the salvage treatment of disease recurrence after chimeric antigen receptor T cell therapy, providing some ideas for the clinical application of chimeric antigen receptor T cells.

[1]
Bailur, J.K.; McCachren, S.S.; Doxie, D.B.; Shrestha, M.; Pendleton, K.; Nooka, A.K.; Neparidze, N.; Parker, T.L.; Bar, N.; Kaufman, J.L.; Hofmeister, C.C.; Boise, L.H.; Lonial, S.; Kemp, M.L.; Dhodapkar, K.M.; Dhodapkar, M.V. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. JCI Insight, 2019, 5(11), e127807.
[http://dx.doi.org/10.1172/jci.insight.127807] [PMID: 31013254]
[2]
Dosani, T.; Carlsten, M.; Maric, I.; Landgren, O. Erratum: The cellular immune system in myelomagenesis: NK cells and T cells in the development of MM and their uses in immunotherapies. Blood Cancer J., 2015, 5(7), e321.
[http://dx.doi.org/10.1038/bcj.2015.49] [PMID: 26140429]
[3]
Michels, T.C.; Petersen, K.E. Multiple myeloma: Diagnosis and treatment. Am. Fam. Physician, 2017, 95(6), 373-383.
[PMID: 28318212]
[4]
Greipp, P.R.; Miguel, J.S.; Durie, B.G.M.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; Lahuerta, J.J.; Ludwig, H.; Morgan, G.; Powles, R.; Shimizu, K.; Shustik, C.; Sonneveld, P.; Tosi, P.; Turesson, I.; Westin, J. International staging system for multiple myeloma. J. Clin. Oncol., 2005, 23(15), 3412-3420.
[http://dx.doi.org/10.1200/JCO.2005.04.242] [PMID: 15809451]
[5]
Rajkumar, S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol., 2020, 95(5), 548-567.
[http://dx.doi.org/10.1002/ajh.25791] [PMID: 32212178]
[6]
Sonneveld, P.; Avet-Loiseau, H.; Lonial, S.; Usmani, S.; Siegel, D.; Anderson, K.C.; Chng, W.J.; Moreau, P.; Attal, M.; Kyle, R.A.; Caers, J.; Hillengass, J.; San Miguel, J.; van de Donk, N.W.C.J.; Einsele, H.; Bladé, J.; Durie, B.G.M.; Goldschmidt, H.; Mateos, M.V.; Palumbo, A.; Orlowski, R. Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood, 2016, 127(24), 2955-2962.
[http://dx.doi.org/10.1182/blood-2016-01-631200] [PMID: 27002115]
[7]
Zhang, M.; Zhou, L.; Zhao, H.; Zhang, Y.; Wei, G.; Hong, R.; Wu, W.; Xu, H.; Wang, L.; Ni, F.; Cui, J.; Peng, S.; Huang, C.H.; Chang, A.H.; Hu, Y.; Huang, H. Risk factors associated with durable progression-free survival in patients with relapsed or refractory multiple myeloma treated with anti-BCMA CAR T-cell therapy. Clin. Cancer Res., 2021, 27(23), 6384-6392.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2031] [PMID: 34548316]
[8]
Zhang, L.; Shen, X.; Yu, W.; Li, J.; Zhang, J.; Zhang, R.; Li, J.; Chen, L. Comprehensive meta-analysis of anti-BCMA chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma. Ann. Med., 2021, 53(1), 1547-1559.
[http://dx.doi.org/10.1080/07853890.2021.1970218] [PMID: 34459681]
[9]
Mina, R.; Joseph, N.S.; Gay, F.; Kastritis, E.; Petrucci, M.T.; Kaufman, J.L.; Montefusco, V.; Gavriatopoulou, M.; Patriarca, F.; Omedé, P.; Boise, L.H.; Roussou, M.; Giuliani, N.; Oliva, S.; Offidani, M.; Belotti, A.; Jaye, D.L.; De Paoli, L.; Terpos, E.; Lonial, S.; Boccadoro, M.; Nooka, A.K.; Dimopoulos, M.A. Clinical features and survival of multiple myeloma patients harboring t(14;16) in the era of novel agents. Blood Cancer J., 2020, 10(4), 40.
[http://dx.doi.org/10.1038/s41408-020-0307-4] [PMID: 32286263]
[10]
Morgan, G.J.; Walker, B.A.; Davies, F.E. The genetic architecture of multiple myeloma. Nat. Rev. Cancer, 2012, 12(5), 335-348.
[http://dx.doi.org/10.1038/nrc3257] [PMID: 22495321]
[11]
Anderson, K.; Lutz, C.; van Delft, F.W.; Bateman, C.M.; Guo, Y.; Colman, S.M.; Kempski, H.; Moorman, A.V.; Titley, I.; Swansbury, J.; Kearney, L.; Enver, T.; Greaves, M. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature, 2011, 469(7330), 356-361.
[http://dx.doi.org/10.1038/nature09650] [PMID: 21160474]
[12]
Misund, K.; Hofste op Bruinink, D.; Coward, E.; Hoogenboezem, R.M.; Rustad, E.H.; Sanders, M.A.; Rye, M.; Sponaas, A.M.; van der Holt, B.; Zweegman, S.; Hovig, E.; Meza-Zepeda, L.A.; Sundan, A.; Myklebost, O.; Sonneveld, P.; Waage, A. Clonal evolution after treatment pressure in multiple myeloma: Heterogenous genomic aberrations and transcriptomic convergence. Leukemia, 2022, 36(7), 1887-1897.
[http://dx.doi.org/10.1038/s41375-022-01597-y] [PMID: 35643867]
[13]
Hernández-Rivas, J.Á.; Ríos-Tamayo, R.; Encinas, C.; Alonso, R.; Lahuerta, J.J. The changing landscape of relapsed and/or refractory multiple myeloma (MM): Fundamentals and controversies. Biomark. Res., 2022, 10(1), 1.
[http://dx.doi.org/10.1186/s40364-021-00344-2] [PMID: 35000618]
[14]
Lakshman, A.; Kumar, S.K. Chimeric antigen receptor T-cells, bispecific antibodies, and antibody-drug conjugates for multiple myeloma: An update. Am. J. Hematol., 2022, 97(1), 99-118.
[http://dx.doi.org/10.1002/ajh.26379] [PMID: 34661922]
[15]
Kegyes, D.; Constantinescu, C.; Vrancken, L.; Rasche, L.; Gregoire, C.; Tigu, B.; Gulei, D.; Dima, D.; Tanase, A.; Einsele, H.; Ciurea, S.; Tomuleasa, C.; Caers, J. Patient selection for CAR T or BiTE therapy in multiple myeloma: Which treatment for each patient? J. Hematol. Oncol., 2022, 15(1), 78.
[http://dx.doi.org/10.1186/s13045-022-01296-2] [PMID: 35672793]
[16]
Dima, D.; Jiang, D.; Singh, D.J.; Hasipek, M.; Shah, H.S.; Ullah, F.; Khouri, J.; Maciejewski, J.P.; Jha, B.K. Multiple myeloma therapy: Emerging trends and challenges. Cancers, 2022, 14(17), 4082.
[http://dx.doi.org/10.3390/cancers14174082] [PMID: 36077618]
[17]
Costa, L.J.; Usmani, S.Z. Defining and managing high-risk multiple myeloma: Current concepts. J. Natl. Compr. Canc. Netw., 2020, 18(12), 1730-1737.
[http://dx.doi.org/10.6004/jnccn.2020.7673] [PMID: 33285523]
[18]
Mikkilineni, L.; Kochenderfer, J.N. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood, 2017, 130(24), 2594-2602.
[http://dx.doi.org/10.1182/blood-2017-06-793869] [PMID: 28928126]
[19]
Manier, S.; Ingegnere, T.; Escure, G.; Prodhomme, C.; Nudel, M.; Mitra, S.; Facon, T. Current state and next-generation CAR-T cells in multiple myeloma. Blood Rev., 2022, 54, 100929.
[http://dx.doi.org/10.1016/j.blre.2022.100929] [PMID: 35131139]
[20]
Munshi, N.C.; Anderson, L.D., Jr; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; Moreau, P.; Yakoub-Agha, I.; Delforge, M.; Cavo, M.; Einsele, H.; Goldschmidt, H.; Weisel, K.; Rambaldi, A.; Reece, D.; Petrocca, F.; Massaro, M.; Connarn, J.N.; Kaiser, S.; Patel, P.; Huang, L.; Campbell, T.B.; Hege, K.; San-Miguel, J. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med., 2021, 384(8), 705-716.
[http://dx.doi.org/10.1056/NEJMoa2024850] [PMID: 33626253]
[21]
Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; Deol, A.; Munshi, N.C.; O’Donnell, E.; Avigan, D.; Singh, I.; Zudaire, E.; Yeh, T.M.; Allred, A.J.; Olyslager, Y.; Banerjee, A.; Jackson, C.C.; Goldberg, J.D.; Schecter, J.M.; Deraedt, W.; Zhuang, S.H.; Infante, J.; Geng, D.; Wu, X.; Carrasco-Alfonso, M.J.; Akram, M.; Hossain, F.; Rizvi, S.; Fan, F.; Lin, Y.; Martin, T.; Jagannath, S. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet, 2021, 398(10297), 314-324.
[http://dx.doi.org/10.1016/S0140-6736(21)00933-8] [PMID: 34175021]
[22]
Caraccio, C.; Krishna, S.; Phillips, D.J.; Schürch, C.M. Bispecific antibodies for multiple myeloma: A review of targets, drugs, clinical trials, and future directions. Front. Immunol., 2020, 11, 501.
[http://dx.doi.org/10.3389/fimmu.2020.00501] [PMID: 32391000]
[23]
Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; Qayed, M.; De Moerloose, B.; Hiramatsu, H.; Schlis, K.; Davis, K.L.; Martin, P.L.; Nemecek, E.R.; Yanik, G.A.; Peters, C.; Baruchel, A.; Boissel, N.; Mechinaud, F.; Balduzzi, A.; Krueger, J.; June, C.H.; Levine, B.L.; Wood, P.; Taran, T.; Leung, M.; Mueller, K.T.; Zhang, Y.; Sen, K.; Lebwohl, D.; Pulsipher, M.A.; Grupp, S.A. Tisagenlecleucel in children and young adults with b-cell lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 439-448.
[http://dx.doi.org/10.1056/NEJMoa1709866] [PMID: 29385370]
[24]
Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, Ö.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; Wasik, M.; Levine, B.L.; Lacey, S.F.; Melenhorst, J.J.; Porter, D.L.; June, C.H. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med., 2017, 377(26), 2545-2554.
[http://dx.doi.org/10.1056/NEJMoa1708566] [PMID: 29226764]
[25]
Cohen, A.D.; Raje, N.; Fowler, J.A.; Mezzi, K.; Scott, E.C.; Dhodapkar, M.V. How to train your T cells: Overcoming immune dysfunction in multiple myeloma. Clin. Cancer Res., 2020, 26(7), 1541-1554.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2111] [PMID: 31672768]
[26]
Holzinger, A.; Abken, H. CAR T cells: A snapshot on the growing options to design a CAR. HemaSphere, 2019, 3(1), e172.
[http://dx.doi.org/10.1097/HS9.0000000000000172] [PMID: 31723811]
[27]
Sadelain, M.; Brentjens, R.; Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discov., 2013, 3(4), 388-398.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0548] [PMID: 23550147]
[28]
Savoldo, B.; Ramos, C.A.; Liu, E.; Mims, M.P.; Keating, M.J.; Carrum, G.; Kamble, R.T.; Bollard, C.M.; Gee, A.P.; Mei, Z.; Liu, H.; Grilley, B.; Rooney, C.M.; Heslop, H.E.; Brenner, M.K.; Dotti, G. CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. J. Clin. Invest., 2011, 121(5), 1822-1826.
[http://dx.doi.org/10.1172/JCI46110] [PMID: 21540550]
[29]
Abate-Daga, D.; Davila, M.L. CAR models: Next-generation CAR modifications for enhanced T-cell function. Mol. Ther. Oncolytics, 2016, 3, 16014.
[http://dx.doi.org/10.1038/mto.2016.14] [PMID: 27231717]
[30]
Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am. J. Hematol., 2019, 94(S1), S3-S9.
[http://dx.doi.org/10.1002/ajh.25418] [PMID: 30680780]
[31]
Maus, M.V.; Grupp, S.A.; Porter, D.L.; June, C.H. Antibody-modified T cells: cARs take the front seat for hematologic malignancies. Blood, 2014, 123(17), 2625-2635.
[http://dx.doi.org/10.1182/blood-2013-11-492231] [PMID: 24578504]
[32]
Brudno, J.N.; Kochenderfer, J.N. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood, 2016, 127(26), 3321-3330.
[http://dx.doi.org/10.1182/blood-2016-04-703751] [PMID: 27207799]
[33]
Bonifant, C.L.; Jackson, H.J.; Brentjens, R.J.; Curran, K.J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics, 2016, 3, 16011.
[http://dx.doi.org/10.1038/mto.2016.11] [PMID: 27626062]
[34]
Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 2014, 124(2), 188-195.
[http://dx.doi.org/10.1182/blood-2014-05-552729] [PMID: 24876563]
[35]
Carpenter, R.O.; Evbuomwan, M.O.; Pittaluga, S.; Rose, J.J.; Raffeld, M.; Yang, S.; Gress, R.E.; Hakim, F.T.; Kochenderfer, J.N. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res., 2013, 19(8), 2048-2060.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2422] [PMID: 23344265]
[36]
Novak, A.J.; Darce, J.R.; Arendt, B.K.; Harder, B.; Henderson, K.; Kindsvogel, W.; Gross, J.A.; Greipp, P.R.; Jelinek, D.F. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: A mechanism for growth and survival. Blood, 2004, 103(2), 689-694.
[http://dx.doi.org/10.1182/blood-2003-06-2043] [PMID: 14512299]
[37]
Moreaux, J.; Legouffe, E.; Jourdan, E.; Quittet, P.; Rème, T.; Lugagne, C.; Moine, P.; Rossi, J.F.; Klein, B.; Tarte, K. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood, 2004, 103(8), 3148-3157.
[http://dx.doi.org/10.1182/blood-2003-06-1984] [PMID: 15070697]
[38]
Lin, Y.; Raje, N.S.; Berdeja, J.G.; Siegel, D.S.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Massaro, M.; Petrocca, F.; Caia, A.; Yang, Z.; Campbell, T.B.; Hege, K.; Munshi, N.C.; Kochenderfer, J.N. Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-Directed CAR T cell therapy, in patients with relapsed and refractory multiple myeloma: Updated results from phase 1 CRB-401 study. Blood, 2020, 136(Suppl. 1), 26-27.
[http://dx.doi.org/10.1182/blood-2020-134324]
[39]
Zhao, W.H.; Liu, J.; Wang, B.Y.; Chen, Y.X.; Cao, X.M.; Yang, Y.; Zhang, Y.L.; Wang, F.X.; Zhang, P.Y.; Lei, B.; Gu, L.F.; Wang, J.L.; Yang, N.; Zhang, R.; Zhang, H.; Shen, Y.; Bai, J.; Xu, Y.; Wang, X.G.; Zhang, R.L.; Wei, L.L.; Li, Z.F.; Li, Z.Z.; Geng, Y.; He, Q.; Zhuang, Q.C.; Fan, X.H.; He, A.L.; Zhang, W.G. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol., 2018, 11(1), 141.
[http://dx.doi.org/10.1186/s13045-018-0681-6] [PMID: 30572922]
[40]
Minnie, S.A.; Hill, G.R. Immunotherapy of multiple myeloma. J. Clin. Invest., 2020, 130(4), 1565-1575.
[http://dx.doi.org/10.1172/JCI129205] [PMID: 32149732]
[41]
Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; Roshal, M.; Maslak, P.; Davila, M.; Brentjens, R.J.; Sadelain, M. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 449-459.
[http://dx.doi.org/10.1056/NEJMoa1709919] [PMID: 29385376]
[42]
Garfall, A.L.; Maus, M.V.; Hwang, W.T.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Zheng, Z.; Vogl, D.T.; Cohen, A.D.; Weiss, B.M.; Dengel, K.; Kerr, N.D.S.; Bagg, A.; Levine, B.L.; June, C.H.; Stadtmauer, E.A. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N. Engl. J. Med., 2015, 373(11), 1040-1047.
[http://dx.doi.org/10.1056/NEJMoa1504542] [PMID: 26352815]
[43]
Jiang, H.; Dong, B.; Gao, L.; Liu, L.; Ge, J.; He, A.; Li, L.; Lu, J.; Chen, X.; Sersch, M.A.; Shen, L.; Ye, X.; Zhang, H.; Zhao, Y.; Liu, J.; Fu, W. Long-term follow-up results of a multicenter first-in-human study of the dual BCMA/CD19 Targeted FasT CAR-T GC012F for patients with relapsed/refractory multiple myeloma. J. Clin. Oncol., 2021, 39(15_suppl)(Suppl.), 8014.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.8014]
[44]
Chu, J.; He, S.; Deng, Y.; Zhang, J.; Peng, Y.; Hughes, T.; Yi, L.; Kwon, C.H.; Wang, Q.E.; Devine, S.M.; He, X.; Bai, X.F.; Hofmeister, C.C.; Yu, J. Genetic modification of T cells redirected toward CS1 enhances eradication of myeloma cells. Clin. Cancer Res., 2014, 20(15), 3989-4000.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2510] [PMID: 24677374]
[45]
Cannons, J.L.; Tangye, S.G.; Schwartzberg, P.L. SLAM family receptors and SAP adaptors in immunity. Annu. Rev. Immunol., 2011, 29(1), 665-705.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101302] [PMID: 21219180]
[46]
Richardson, P.G.; Jagannath, S.; Moreau, P.; Jakubowiak, A.J.; Raab, M.S.; Facon, T.; Vij, R.; White, D.; Reece, D.E.; Benboubker, L.; Zonder, J.; Tsao, L.C.; Anderson, K.C.; Bleickardt, E.; Singhal, A.K.; Lonial, S. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: Final phase 2 results from the randomised, open-label, phase 1b–2 dose-escalation study. Lancet Haematol., 2015, 2(12), e516-e527.
[http://dx.doi.org/10.1016/S2352-3026(15)00197-0] [PMID: 26686406]
[47]
O’Connell, F.P.; Pinkus, J.L.; Pinkus, G.S. CD138 (syndecan-1), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am. J. Clin. Pathol., 2004, 121(2), 254-263.
[http://dx.doi.org/10.1309/617DWB5GNFWXHW4L] [PMID: 14983940]
[48]
Sidana, S.; Shah, N. CAR T-cell therapy: Is it prime time in myeloma? Hematology (Am. Soc. Hematol. Educ. Program), 2019, 2019(1), 260-265.
[http://dx.doi.org/10.1182/hematology.2019000370] [PMID: 31808895]
[49]
Mei, H.; Li, C.; Jiang, H.; Zhao, X.; Huang, Z.; Jin, D.; Guo, T.; Kou, H.; Liu, L.; Tang, L.; Yin, P.; Wang, Z.; Ai, L.; Ke, S.; Xia, Y.; Deng, J.; Chen, L.; Cai, L.; Sun, C.; Xia, L.; Hua, G.; Hu, Y. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J. Hematol. Oncol., 2021, 14(1), 161.
[http://dx.doi.org/10.1186/s13045-021-01170-7] [PMID: 34627333]
[50]
Yan, Z.; Cao, J.; Cheng, H.; Qiao, J.; Zhang, H.; Wang, Y.; Shi, M.; Lan, J.; Fei, X.; Jin, L.; Jing, G.; Sang, W.; Zhu, F.; Chen, W.; Wu, Q.; Yao, Y.; Wang, G.; Zhao, J.; Zheng, J.; Li, Z.; Xu, K. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: A single-arm, phase 2 trial. Lancet Haematol., 2019, 6(10), e521-e529.
[http://dx.doi.org/10.1016/S2352-3026(19)30115-2] [PMID: 31378662]
[51]
Shi, X.; Yan, L.; Shang, J.; Kang, L.; Yan, Z.; Jin, S.; Zhu, M.; Chang, H.; Gong, F.; Zhou, J.; Chen, G.; Pan, J.; Liu, D.; Zhu, X.; Tang, F.; Liu, M.; Liu, W.; Yao, F.; Yu, L.; Wu, D.; Fu, C. Anti-CD19 and anti-BCMA CAR T cell therapy followed by lenalidomide maintenance after autologous stem-cell transplantation for high-risk newly diagnosed multiple myeloma. Am. J. Hematol., 2022, 97(5), 537-547.
[http://dx.doi.org/10.1002/ajh.26486] [PMID: 35114022]
[52]
Chen, W.; Fu, C.; Cai, Z.; Li, Z.; Wang, H.; Yan, L.; Wu, Y.; Shi, X.; Gao, W.; Yan, S.; Wang, W.; Han, X.; Zheng, G.; Wen, Y.; Xiao, J.; Wang, H.; Ma, H. Results from lummicar-1: A phase 1 study of fully human B-cell maturation antigen-specific CAR T Cells (CT053) in Chinese subjects with relapsed and/or refractory multiple myeloma. Blood, 2020, 136(Suppl. 1), 49-50.
[http://dx.doi.org/10.1182/blood-2020-140727]
[53]
Kumar, S.K.; Baz, R.C.; Orlowski, R.Z.; Anderson, L.D., Jr; Ma, H.; Shrewsbury, A.; Croghan, K.A.; Bilgi, M.; Kansagra, A.; Kapoor, P.; Li, Z.; Brayer, J. Results from lummicar-2: A phase 1b/2 study of fully human B-cell maturation antigen-specific CAR T cells (CT053) in patients with relapsed and/or refractory multiple myeloma. Blood, 2020, 136(Suppl. 1), 28-29.
[http://dx.doi.org/10.1182/blood-2020-139802]
[54]
Costello, C.L.; Cohen, A.D.; Patel, K.K.; Ali, S.S.; Berdeja, J.G.; Shah, N.; Ganguly, S.; Kocoglu, M.H.; Abedi, M.; Ostertag, E.M.; Martin, C.E.; Ghoddussi, M.; Shedlock, D.J.; McCaigue, J.; Namini, H.; Yalamanchili, S.; Spear, M.A.; Gregory, T.K. Phase 1/2 study of the safety and response of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) (PRIME) with novel therapeutic strategies. Blood, 2020, 136(Suppl. 1), 29-30.
[http://dx.doi.org/10.1182/blood-2020-142695]
[55]
Alsina, M.; Shah, N.; Raje, N.S.; Jagannath, S.; Madduri, D.; Kaufman, J.L.; Siegel, D.S.; Munshi, N.C.; Rosenblatt, J.; Lin, Y.; Jakubowiak, A.; Jasielec, J.; Timm, A.; Turka, A.; Mao, P.; Martin, N.; Campbell, T.B.; Hege, K.; Bitter, H.; Petrocca, F.; Berdeja, J.G. Updated results from the phase I CRB-402 study of anti-bcma CAR-T cell therapy bb21217 in patients with relapsed and refractory multiple myeloma: Correlation of expansion and duration of response with T cell phenotypes. Blood, 2020, 136(Suppl. 1), 25-26.
[http://dx.doi.org/10.1182/blood-2020-140410]
[56]
Mailankody, S.; Liedtke, M.; Sidana, S.; Matous, J.V.; Chhabra, S.; Oluwole, O.O.; Malik, S.A.; Kumar, S.; Nath, R.; Anwer, F.; Cruz, J.C.; Jagannath, S.; Htut, M.; Raje, N.S.; Siegel, D.S.; Karski, E.E.; Lovelace, W.; Lourbakos, A.; Ponnathapura Nandakumar, S.; Balakumaran, A.; Hari, P. Universal updated phase 1 data validates the feasibility of allogeneic anti-BCMA ALLO-715 therapy for relapsed/refractory multiple myeloma. Blood, 2021, 138(Suppl. 1), 651.
[http://dx.doi.org/10.1182/blood-2021-145572]
[57]
Quarona, V.; Zaccarello, G.; Chillemi, A.; Brunetti, E.; Singh, V.K.; Ferrero, E.; Funaro, A.; Horenstein, A.L.; Malavasi, F. CD38 and CD157: A long journey from activation markers to multifunctional molecules. Cytometry B Clin. Cytom., 2013, 84B(4), 207-217.
[http://dx.doi.org/10.1002/cyto.b.21092] [PMID: 23576305]
[58]
Drent, E.; Themeli, M.; Poels, R.; de Jong-Korlaar, R.; Yuan, H.; de Bruijn, J.; Martens, A.C.M.; Zweegman, S.; van de Donk, N.W.C.J.; Groen, R.W.J.; Lokhorst, H.M.; Mutis, T. A rational strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization. Mol. Ther., 2017, 25(8), 1946-1958.
[http://dx.doi.org/10.1016/j.ymthe.2017.04.024] [PMID: 28506593]
[59]
Straathof, K.C.; Pulè, M.A.; Yotnda, P.; Dotti, G.; Vanin, E.F.; Brenner, M.K.; Heslop, H.E.; Spencer, D.M.; Rooney, C.M. An inducible caspase 9 safety switch for T-cell therapy. Blood, 2005, 105(11), 4247-4254.
[http://dx.doi.org/10.1182/blood-2004-11-4564] [PMID: 15728125]
[60]
Attal, M.; Richardson, P.G.; Rajkumar, S.V.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; Huang, J.S.Y.; Minarik, J.; Cavo, M.; Prince, H.M.; Macé, S.; Corzo, K.P.; Campana, F.; Le-Guennec, S.; Dubin, F.; Anderson, K.C.; Attal, M.; Richardson, P.G.; Rajkumar, V.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; Huang, J.S-Y.; Minarik, J.; Cavo, M.; Prince, H.M.; Macé, S.; Corzo, K.P.; Campana, F.; Le-Guennec, S.; Dubin, F.; Anderson, K.C.; Harrison, S.; Janowski, W.; Kerridge, I.; Spencer, A.; Delforge, M.; Fostier, K.; Vlummens, P.; Wu, K.L.; Leblanc, R.; Pavic, M.; Sebag, M.; Hajek, R.; Maisnar, V.; Pour, L.; Gregersen, H.; Benbouker, L.; Caillot, D.; Escoffre-Barbe, M.; Facon, T.; Frenzel, L.; Hulin, C.; Karlin, L.; Kolb, B.; Pegourie, B.; Perrot, A.; Tiab, M.; Vincent, L.; Niederwieser, D.; Anagnostopoulos, A.; Delimpasi, S.; Kyrtsonis, M-C.; Symeonidis, A.; Illes, A.; Mikala, G.; Nagy, Z.; Bringen, S.; Corradini, P.; Fabio, C.; Lemoli, R.; Liberati, A.; Nozzoli, C.; Zambello, R.; Iida, S.; Ikeda, T.; Iyama, S.; Matsumoto, M.; Shimazaki, C.; Sunami, K.; Suzuki, K.; Uchiyama, M.; Koh, Y.; Kim, K.; Lee, J.H.; Min, C-K.; Blacklock, H.; Goodman, H.; Neylon, A.; Simpson, D.; Grosicki, S.; Jurczyszyn, A.; Walter-Croneck, A.; Warzocha, K.; Araujo, L.; Moreira, C.; Doronin, V.; Mendeleeva, L.; Vorobyev, V.; Vranovsky, A.; Alegre, A.; Gironella, M.; Gonzalez Perez, M.S.; Montes, C.; Ocio, E.; Rodriguez, P.; Hardling, M.; Lauri, B.; Wang, M-C.; Yeh, S-P.; Arat, M.; Demirkan, F.; Gulbas, Z.; Besisik, S.K.; Karadogan, I.; Tuglular, T.; Unal, A.; Vural, F.; Sive, J.; Streetly, M.; Yong, K.; Tache, J. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): A randomised, multicentre, open-label, phase 3 study. Lancet, 2019, 394(10214), 2096-2107.
[http://dx.doi.org/10.1016/S0140-6736(19)32556-5] [PMID: 31735560]
[61]
Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; Mark, T.M.; Qi, M.; Schecter, J.; Amin, H.; Qin, X.; Deraedt, W.; Ahmadi, T.; Spencer, A.; Sonneveld, P. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med., 2016, 375(8), 754-766.
[http://dx.doi.org/10.1056/NEJMoa1606038] [PMID: 27557302]
[62]
Syed, Y.Y. Daratumumab: A review in combination therapy for transplant-ineligible newly diagnosed multiple myeloma. Drugs, 2019, 79(4), 447-454.
[http://dx.doi.org/10.1007/s40265-019-01080-6] [PMID: 30830601]
[63]
Drent, E.; Groen, R.W.J.; Noort, W.A.; Themeli, M.; Lammerts van Bueren, J.J.; Parren, P.W.H.I.; Kuball, J.; Sebestyen, Z.; Yuan, H.; de Bruijn, J.; van de Donk, N.W.C.J.; Martens, A.C.M.; Lokhorst, H.M.; Mutis, T. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica, 2016, 101(5), 616-625.
[http://dx.doi.org/10.3324/haematol.2015.137620] [PMID: 26858358]
[64]
Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; Do, T.; Pham, M.T.; Brown, J.M.; De Larrea, C.F.; Olson, E.; Peguero, E.; Wang, P.; Liu, H.; Xu, Y.; Garrett-Thomson, S.C.; Almo, S.C.; Wendel, H.G.; Riviere, I.; Liu, C.; Sather, B.; Brentjens, R.J. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med., 2019, 11(485), eaau7746.
[http://dx.doi.org/10.1126/scitranslmed.aau7746] [PMID: 30918115]
[65]
Atamaniuk, J.; Gleiss, A.; Porpaczy, E.; Kainz, B.; Grunt, T.W.; Raderer, M.; Hilgarth, B.; Drach, J.; Ludwig, H.; Gisslinger, H.; Jaeger, U.; Gaiger, A. Overexpression of G protein-coupled receptor 5D in the bone marrow is associated with poor prognosis in patients with multiple myeloma. Eur. J. Clin. Invest., 2012, 42(9), 953-960.
[http://dx.doi.org/10.1111/j.1365-2362.2012.02679.x] [PMID: 22591013]
[66]
Smith, E.L.; Staehr, M.; Masakayan, R.; Tatake, I.J.; Purdon, T.J.; Wang, X.; Wang, P.; Liu, H.; Xu, Y.; Garrett-Thomson, S.C.; Almo, S.C.; Riviere, I.; Liu, C.; Brentjens, R.J. Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector. Mol. Ther., 2018, 26(6), 1447-1456.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.016] [PMID: 29678657]
[67]
Gagelmann, N.; Riecken, K.; Wolschke, C.; Berger, C.; Ayuk, F.A.; Fehse, B.; Kröger, N. Development of CAR-T cell therapies for multiple myeloma. Leukemia, 2020, 34(9), 2317-2332.
[http://dx.doi.org/10.1038/s41375-020-0930-x] [PMID: 32572190]
[68]
Mailankody, S.; Devlin, S.M.; Landa, J.; Nath, K.; Diamonte, C.; Carstens, E.J.; Russo, D.; Auclair, R.; Fitzgerald, L.; Cadzin, B.; Wang, X.; Sikder, D.; Senechal, B.; Bermudez, V.P.; Purdon, T.J.; Hosszu, K.; McAvoy, D.P.; Farzana, T.; Mead, E.; Wilcox, J.A.; Santomasso, B.D.; Shah, G.L.; Shah, U.A.; Korde, N.; Lesokhin, A.; Tan, C.R.; Hultcrantz, M.; Hassoun, H.; Roshal, M.; Sen, F.; Dogan, A.; Landgren, O.; Giralt, S.A.; Park, J.H.; Usmani, S.Z.; Rivière, I.; Brentjens, R.J.; Smith, E.L. GPRC5D-targeted CAR T cells for myeloma. N. Engl. J. Med., 2022, 387(13), 1196-1206.
[http://dx.doi.org/10.1056/NEJMoa2209900] [PMID: 36170501]
[69]
Zhang, M.; Wei, G.; Zhou, L.; Zhou, J.; Chen, S.; Zhang, W.; Wang, D.; Luo, X.; Cui, J.; Huang, S.; Fu, S.; Zhou, X.; Tang, Y.; Ding, X.; Kuang, J.; He, X.P.; Hu, Y.; Huang, H. GPRC5D CAR T cells (OriCAR-017) in patients with relapsed or refractory multiple myeloma (POLARIS): A first-in-human, single-centre, single-arm, phase 1 trial. Lancet Haematol., 2023, 10(2), e107-e116.
[http://dx.doi.org/10.1016/S2352-3026(22)00372-6] [PMID: 36725117]
[70]
Bal, S.; Kocoglu, M.H.; Nadeem, O.; Htut, M.; Gregory, T.; Anderson, L.D., Jr; Costa, L.J.; Buchholz, T.J.; Ziyad, S.; Li, M.; Chen, Y.; Kaeding, A.J.; Burgess, M.R.; Hege, K.; Berdeja, J. Clinical activity of BMS-986393 (CC-95266), a G protein-coupled receptor class C group 5 member D (GPRC5D)-targeted chimeric antigen receptor (CAR) T cell therapy, in patients with relapsed and/or refractory (R/R) multiple myeloma (MM): First results from a phase 1, multicenter, open-label study. Blood, 2022, 140(Suppl. 1), 883-885.
[http://dx.doi.org/10.1182/blood-2022-162395]
[71]
Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; Lam, L.P.; Morgan, R.A.; Friedman, K.; Massaro, M.; Wang, J.; Russotti, G.; Yang, Z.; Campbell, T.; Hege, K.; Petrocca, F.; Quigley, M.T.; Munshi, N.; Kochenderfer, J.N. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med., 2019, 380(18), 1726-1737.
[http://dx.doi.org/10.1056/NEJMoa1817226] [PMID: 31042825]
[72]
Samur, M.K.; Fulciniti, M.; Aktas Samur, A.; Bazarbachi, A.H.; Tai, Y.T.; Prabhala, R.; Alonso, A.; Sperling, A.S.; Campbell, T.; Petrocca, F.; Hege, K.; Kaiser, S.; Loiseau, H.A.; Anderson, K.C.; Munshi, N.C. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun., 2021, 12(1), 868.
[http://dx.doi.org/10.1038/s41467-021-21177-5] [PMID: 33558511]
[73]
Li, C.; Wang, Q.; Zhu, H.; Mao, X.; Wang, Y.; Zhang, Y.; Zhou, J. T cells expressing anti B-cell maturation antigen chimeric antigen receptors for plasma cell malignancies. Blood, 2018, 132(Suppl. 1), 1013.
[http://dx.doi.org/10.1182/blood-2018-99-116898]
[74]
Pont, M.J.; Hill, T.; Cole, G.O.; Abbott, J.J.; Kelliher, J.; Salter, A.I.; Hudecek, M.; Comstock, M.L.; Rajan, A.; Patel, B.K.R.; Voutsinas, J.M.; Wu, Q.; Liu, L.; Cowan, A.J.; Wood, B.L.; Green, D.J.; Riddell, S.R. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood, 2019, 134(19), 1585-1597.
[http://dx.doi.org/10.1182/blood.2019000050] [PMID: 31558469]
[75]
Green, D.J.; Pont, M.; Sather, B.D.; Cowan, A.J.; Turtle, C.J.; Till, B.G.; Nagengast, A.M.; Libby, E.N., III; Becker, P.S.; Coffey, D.G.; Tuazon, S.A.; Wood, B.; Blake, M.; Works, M.; Thompson, B.S.; Gooley, T.; Appelbaum, F.R.; Maloney, D.G.; Riddell, S.R. Fully human bcma targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Blood, 2018, 132(Suppl. 1), 1011.
[http://dx.doi.org/10.1182/blood-2018-99-117729]
[76]
Chen, C.I.; Bahlis, N.; Gasparetto, C.; Tuchman, S.A.; Lipe, B.C.; Baljevic, M.; Kotb, R.; Sutherland, H.J.; Bensinger, W.I.; Sebag, M.; Leblanc, R.; Venner, C.P.; Schiller, G.J.; Lentzsch, S.; Callander, N.S.; Sheehan, H.; Chai, Y.; Kai, K.; Shah, J.; Shacham, S.; Kauffman, M.G.; White, D.J. Selinexor, pomalidomide, and dexamethasone (SPd) in patients with relapsed or refractory multiple myeloma. Blood, 2019, 134(Suppl. 1), 141.
[http://dx.doi.org/10.1182/blood-2019-122907]
[77]
Cohen, A.D.; Garfall, A.L.; Stadtmauer, E.A.; Melenhorst, J.J.; Lacey, S.F.; Lancaster, E.; Vogl, D.T.; Weiss, B.M.; Dengel, K.; Nelson, A.; Plesa, G.; Chen, F.; Davis, M.M.; Hwang, W.T.; Young, R.M.; Brogdon, J.L.; Isaacs, R.; Pruteanu-Malinici, I.; Siegel, D.L.; Levine, B.L.; June, C.H.; Milone, M.C. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest., 2019, 129(6), 2210-2221.
[http://dx.doi.org/10.1172/JCI126397] [PMID: 30896447]
[78]
Brudno, J.N.; Maric, I.; Hartman, S.D.; Rose, J.J.; Wang, M.; Lam, N.; Stetler-Stevenson, M.; Salem, D.; Yuan, C.; Pavletic, S.; Kanakry, J.A.; Ali, S.A.; Mikkilineni, L.; Feldman, S.A.; Stroncek, D.F.; Hansen, B.G.; Lawrence, J.; Patel, R.; Hakim, F.; Gress, R.E.; Kochenderfer, J.N. T cells genetically modified to express an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol., 2018, 36(22), 2267-2280.
[http://dx.doi.org/10.1200/JCO.2018.77.8084] [PMID: 29812997]
[79]
Wang, M.; Pruteanu, I.; Cohen, A.D.; Garfall, A.L.; Milone, M.C.; Tian, L.; Gonzalez, V.E.; Gill, S.; Frey, N.V.; Barrett, D.M.; Ruella, M.; Lacey, S.F.; Svoboda, J.; Chong, E.A.; Fraietta, J.A.; Davis, M.; Nasta, S.D.; Levine, B.L.; Siegel, D.L.; Maude, S.L.; Schuster, S.J.; Stadtmauer, E.A.; Grupp, S.; Porter, D.L.; June, C.H.; Melenhorst, J.J. Identification and validation of predictive biomarkers to CD19- and BCMA-specific CAR T-cell responses in CAR T-cell precursors. Blood, 2019, 134(Suppl. 1), 622.
[http://dx.doi.org/10.1182/blood-2019-122513]
[80]
Leblay, N.; Maity, R.; Barakat, E.; McCulloch, S.; Duggan, P.; Jimenez-Zepeda, V.; Bahlis, N.J.; Neri, P. Cite-Seq profiling of T cells in multiple myeloma patients undergoing BCMA targeting CAR-T or bites immunotherapy. Blood, 2020, 136(Suppl. 1), 11-12.
[http://dx.doi.org/10.1182/blood-2020-137650]
[81]
Sommermeyer, D.; Hudecek, M.; Kosasih, P.L.; Gogishvili, T.; Maloney, D.G.; Turtle, C.J.; Riddell, S.R. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia, 2016, 30(2), 492-500.
[http://dx.doi.org/10.1038/leu.2015.247] [PMID: 26369987]
[82]
Garfall, A.L.; Dancy, E.K.; Cohen, A.D.; Hwang, W.T.; Fraietta, J.A.; Davis, M.M.; Levine, B.L.; Siegel, D.L.; Stadtmauer, E.A.; Vogl, D.T.; Waxman, A.; Rapoport, A.P.; Milone, M.C.; June, C.H.; Melenhorst, J.J. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv., 2019, 3(19), 2812-2815.
[http://dx.doi.org/10.1182/bloodadvances.2019000600] [PMID: 31575532]
[83]
Dhodapkar, M.V.; Krasovsky, J.; Osman, K.; Geller, M.D. Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J. Exp. Med., 2003, 198(11), 1753-1757.
[http://dx.doi.org/10.1084/jem.20031030] [PMID: 14638846]
[84]
Zelle-Rieser, C.; Thangavadivel, S.; Biedermann, R.; Brunner, A.; Stoitzner, P.; Willenbacher, E.; Greil, R.; Jöhrer, K. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J. Hematol. Oncol., 2016, 9(1), 116.
[http://dx.doi.org/10.1186/s13045-016-0345-3] [PMID: 27809856]
[85]
Long, A.H.; Haso, W.M.; Shern, J.F.; Wanhainen, K.M.; Murgai, M.; Ingaramo, M.; Smith, J.P.; Walker, A.J.; Kohler, M.E.; Venkateshwara, V.R.; Kaplan, R.N.; Patterson, G.H.; Fry, T.J.; Orentas, R.J.; Mackall, C.L. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med., 2015, 21(6), 581-590.
[http://dx.doi.org/10.1038/nm.3838] [PMID: 25939063]
[86]
Franssen, L.E.; Mutis, T.; Lokhorst, H.M.; van de Donk, N.W.C.J. Immunotherapy in myeloma: How far have we come? Ther. Adv. Hematol., 2019, 10
[http://dx.doi.org/10.1177/2040620718822660] [PMID: 30719268]
[87]
Salik, B.; Smyth, M.J.; Nakamura, K. Targeting immune checkpoints in hematological malignancies. J. Hematol. Oncol., 2020, 13(1), 111.
[http://dx.doi.org/10.1186/s13045-020-00947-6] [PMID: 32787882]
[88]
Vignali, D.A.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol., 2008, 8(7), 523-532.
[http://dx.doi.org/10.1038/nri2343] [PMID: 18566595]
[89]
Rosser, E.C.; Mauri, C. Regulatory B cells: Origin, phenotype, and function. Immunity, 2015, 42(4), 607-612.
[http://dx.doi.org/10.1016/j.immuni.2015.04.005] [PMID: 25902480]
[90]
Zah, E.; Nam, E.; Bhuvan, V.; Tran, U.; Ji, B.Y.; Gosliner, S.B.; Wang, X.; Brown, C.E.; Chen, Y.Y. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat. Commun., 2020, 11(1), 2283.
[http://dx.doi.org/10.1038/s41467-020-16160-5] [PMID: 32385241]
[91]
Park, J.J.; Omiya, R.; Matsumura, Y.; Sakoda, Y.; Kuramasu, A.; Augustine, M.M.; Yao, S.; Tsushima, F.; Narazaki, H.; Anand, S.; Liu, Y.; Strome, S.E.; Chen, L.; Tamada, K. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood, 2010, 116(8), 1291-1298.
[http://dx.doi.org/10.1182/blood-2010-01-265975] [PMID: 20472828]
[92]
Liu, J.; Hamrouni, A.; Wolowiec, D.; Coiteux, V.; Kuliczkowski, K.; Hetuin, D.; Saudemont, A.; Quesnel, B. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood, 2007, 110(1), 296-304.
[http://dx.doi.org/10.1182/blood-2006-10-051482] [PMID: 17363736]
[93]
Chen, K.H.; Wada, M.; Pinz, K.G.; Liu, H.; Shuai, X.; Chen, X.; Yan, L.E.; Petrov, J.C.; Salman, H.; Senzel, L.; Leung, E.L.H.; Jiang, X.; Ma, Y. A compound chimeric antigen receptor strategy for targeting multiple myeloma. Leukemia, 2018, 32(2), 402-412.
[http://dx.doi.org/10.1038/leu.2017.302] [PMID: 28951562]
[94]
Shah, N.N.; Maatman, T.; Hari, P.; Johnson, B. Multi targeted CAR-T cell therapies for b-cell malignancies. Front. Oncol., 2019, 9, 146.
[http://dx.doi.org/10.3389/fonc.2019.00146] [PMID: 30915277]
[95]
Mailankody, S.; Jakubowiak, A.J.; Htut, M.; Costa, L.J.; Lee, K.; Ganguly, S.; Kaufman, J.L.; Siegel, D.S.D.; Bensinger, W.; Cota, M.; Doerr, T.; DeVries, T.; Wong, S.W.K. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): Update of the phase 1/2 EVOLVE study (NCT03430011). J. Clin. Oncol., 2020, 38(15_suppl)(Suppl.), 8504.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.8504]
[96]
Li C, Zhou J, Wang J, Hu G, Du A, Zhou X, Meng L, Hong Z, Chen L, Mao X. Clinical responses and pharmacokinetics of fully human BCMA targeting CAR T-cell therapy in relapsed/refractory multiple myeloma. J. Clin. Oncol., 2019, 37(15)(Suppl.), 8013.
[97]
Mikkilineni, L.; Manasanch, E.E.; Vanasse, D.; Brudno, J.N.; Mann, J.; Sherry, R.; Goff, S.L.; Yang, J.C.; Lam, N.; Maric, I.; Stetler-Stevenson, M.; Wang, H.W.; Yuan, C.M.; Stroncek, D.F.; Highfill, S.L.; Fellowes, V.; Ganadan, M.; Patel, R.; Rosenberg, S.A.; Kochenderfer, J.N. Deep and durable remissions of relapsed multiple myeloma on a first-in-humans clinical trial of T cells expressing an anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) with a fully-human heavy-chain-only antigen recognition domain. Blood, 2020, 136(Suppl. 1), 50-51.
[http://dx.doi.org/10.1182/blood-2020-138839]
[98]
Ivics, Z. Potent CAR-T cells engineered with sleeping beauty transposon vectors display a central memory phenotype. Gene Ther., 2021, 28(1-2), 3-5.
[http://dx.doi.org/10.1038/s41434-020-0138-8] [PMID: 32139891]
[99]
McLellan, A.D.; Ali Hosseini Rad, S.M. Chimeric antigen receptor T cell persistence and memory cell formation. Immunol. Cell Biol., 2019, 97(7), 664-674.
[http://dx.doi.org/10.1111/imcb.12254] [PMID: 31009109]
[100]
Shah, N.; Alsina, M.; Siegel, D.S.; Jagannath, S.; Madduri, D.; Kaufman, J.L.; Turka, A.; Lam, L.P.; Massaro, M.; Hege, K.; Petrocca, F.; Berdeja, J.G.; Raje, N. Initial results from a phase 1 clinical study of bb21217, a next-generation anti bcma CAR T therapy. Blood, 2018, 132(Suppl. 1), 488.
[http://dx.doi.org/10.1182/blood-2018-99-116953]
[101]
Duan, D.; Wang, K.; Wei, C.; Feng, D.; Liu, Y.; He, Q.; Xu, X.; Wang, C.; Zhao, S.; Lv, L.; Long, J.; Lin, D.; Zhao, A.; Fang, B.; Jiang, J.; Tang, S.; Gao, J. The BCMA-targeted fourth-generation CAR-T cells secreting IL-7 and CCL19 for therapy of refractory/recurrent multiple myeloma. Front. Immunol., 2021, 12, 609421.
[http://dx.doi.org/10.3389/fimmu.2021.609421] [PMID: 33767695]
[102]
Hu, B.; Ren, J.; Luo, Y.; Keith, B.; Young, R.M.; Scholler, J.; Zhao, Y.; June, C.H. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep., 2017, 20(13), 3025-3033.
[http://dx.doi.org/10.1016/j.celrep.2017.09.002] [PMID: 28954221]
[103]
Lanitis, E.; Rota, G.; Kosti, P.; Ronet, C.; Spill, A.; Seijo, B.; Romero, P.; Dangaj, D.; Coukos, G.; Irving, M. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. J. Exp. Med., 2021, 218(2), e20192203.
[http://dx.doi.org/10.1084/jem.20192203] [PMID: 33156338]
[104]
Das, R.K.; Vernau, L.; Grupp, S.A.; Barrett, D.M. Naïve T-cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers. Cancer Discov., 2019, 9(4), 492-499.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1314] [PMID: 30630850]
[105]
Dancy, E.; Garfall, A.L.; Cohen, A.D.; Fraietta, J.A.; Davis, M.; Levine, B.L.; Siegel, D.L.; Stadtmauer, E.A.; Vogl, D.T.; Waxman, A.; Rapoport, A.P.; Milone, M.C.; June, C.H.; Melenhorst, J.J. Clinical predictors of T cell fitness for CAR T cell manufacturing and efficacy in multiple myeloma. Blood, 2018, 132(Suppl. 1), 1886.
[http://dx.doi.org/10.1182/blood-2018-99-115319]
[106]
Swan, D.; Routledge, D.; Harrison, S. The evolving status of immunotherapies in multiple myeloma: The future role of bispecific antibodies. Br. J. Haematol., 2022, 196(3), 488-506.
[http://dx.doi.org/10.1111/bjh.17805] [PMID: 34472091]
[107]
Kwon, M.; Kim, C.G.; Lee, H.; Cho, H.; Kim, Y.; Lee, E.C.; Choi, S.J.; Park, J.; Seo, I.H.; Bogen, B.; Song, I.C.; Jo, D.Y.; Kim, J.S.; Park, S.H.; Choi, I.; Choi, Y.S.; Shin, E.C. PD-1 blockade reinvigorates bone marrow CD8+ T cells from patients with multiple myeloma in the presence of TGFβ inhibitors. Clin. Cancer Res., 2020, 26(7), 1644-1655.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0267] [PMID: 31941832]
[108]
Benson, D.M., Jr; Bakan, C.E.; Mishra, A.; Hofmeister, C.C.; Efebera, Y.; Becknell, B.; Baiocchi, R.A.; Zhang, J.; Yu, J.; Smith, M.K.; Greenfield, C.N.; Porcu, P.; Devine, S.M.; Rotem-Yehudar, R.; Lozanski, G.; Byrd, J.C.; Caligiuri, M.A. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: A therapeutic target for CT-011, a novel monoclonal anti–PD-1 antibody. Blood, 2010, 116(13), 2286-2294.
[http://dx.doi.org/10.1182/blood-2010-02-271874] [PMID: 20460501]
[109]
Menger, L.; Sledzinska, A.; Bergerhoff, K.; Vargas, F.A.; Smith, J.; Poirot, L.; Pule, M.; Herrero, J.; Peggs, K.S.; Quezada, S.A. TALEN-Mediated inactivation of PD-1 in tumor-reactive lymphocytes promotes intratumoral T-cell persistence and rejection of established tumors. Cancer Res., 2016, 76(8), 2087-2093.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3352] [PMID: 27197251]
[110]
Rupp, L.J.; Schumann, K.; Roybal, K.T.; Gate, R.E.; Ye, C.J.; Lim, W.A.; Marson, A. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep., 2017, 7(1), 737.
[http://dx.doi.org/10.1038/s41598-017-00462-8] [PMID: 28389661]
[111]
Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.; Chen, F.; Tian, L.; Gonzalez, V.E.; Xu, J.; Jung, I.; Melenhorst, J.J.; Plesa, G.; Shea, J.; Matlawski, T.; Cervini, A.; Gaymon, A.L.; Desjardins, S.; Lamontagne, A.; Salas-Mckee, J.; Fesnak, A.; Siegel, D.L.; Levine, B.L.; Jadlowsky, J.K.; Young, R.M.; Chew, A.; Hwang, W.T.; Hexner, E.O.; Carreno, B.M.; Nobles, C.L.; Bushman, F.D.; Parker, K.R.; Qi, Y.; Satpathy, A.T.; Chang, H.Y.; Zhao, Y.; Lacey, S.F.; June, C.H. CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367(6481), eaba7365.
[http://dx.doi.org/10.1126/science.aba7365] [PMID: 32029687]
[112]
Liu, X.; Zhang, Y.; Cheng, C.; Cheng, A.W.; Zhang, X.; Li, N.; Xia, C.; Wei, X.; Liu, X.; Wang, H. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res., 2017, 27(1), 154-157.
[http://dx.doi.org/10.1038/cr.2016.142] [PMID: 27910851]
[113]
Ren, J.; Zhang, X.; Liu, X.; Fang, C.; Jiang, S.; June, C.H.; Zhao, Y. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget, 2017, 8(10), 17002-17011.
[http://dx.doi.org/10.18632/oncotarget.15218] [PMID: 28199983]
[114]
Li, H.; Zhao, L.; Sun, Z.; Yao, Y.; Li, L.; Wang, J.; Hua, T.; Ji, S.; Wang, S.; Cheng, H.; Shi, M.; Li, Z.; Zeng, L.; Wu, Q.; Qiao, J.; Chen, C.; Zheng, J.; Cao, J.; Xu, K. Prolonged hematological toxicity in patients receiving BCMA/CD19 CAR-T-cell therapy for relapsed or refractory multiple myeloma. Front. Immunol., 2022, 13, 1019548.
[http://dx.doi.org/10.3389/fimmu.2022.1019548] [PMID: 36330523]
[115]
Hanamura, I.; Stewart, J.P.; Huang, Y.; Zhan, F.; Santra, M.; Sawyer, J.R.; Hollmig, K.; Zangarri, M.; Pineda-Roman, M.; van Rhee, F.; Cavallo, F.; Burington, B.; Crowley, J.; Tricot, G.; Barlogie, B.; Shaughnessy, J.D., Jr Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: Incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood, 2006, 108(5), 1724-1732.
[http://dx.doi.org/10.1182/blood-2006-03-009910] [PMID: 16705089]
[116]
Xiong, W.; Wu, X.; Starnes, S.; Johnson, S.K.; Haessler, J.; Wang, S.; Chen, L.; Barlogie, B.; Shaughnessy, J.D., Jr; Zhan, F. An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood, 2008, 112(10), 4235-4246.
[http://dx.doi.org/10.1182/blood-2007-10-119123] [PMID: 18337559]
[117]
Gertz, M.A.; Lacy, M.Q.; Dispenzieri, A.; Greipp, P.R.; Litzow, M.R.; Henderson, K.J.; Van Wier, S.A.; Ahmann, G.J.; Fonseca, R. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood, 2005, 106(8), 2837-2840.
[http://dx.doi.org/10.1182/blood-2005-04-1411] [PMID: 15976175]
[118]
Yang, Q.; Li, X.; Zhang, F.; Yang, Q.; Zhou, W.; Liu, J. Efficacy and safety of CAR-T therapy for relapse or refractory multiple myeloma: A systematic review and meta-analysis. Int. J. Med. Sci., 2021, 18(8), 1786-1797.
[http://dx.doi.org/10.7150/ijms.46811] [PMID: 33746596]
[119]
Gagelmann, N.; Ayuk, F.; Atanackovic, D.; Kröger, N. B cell maturation antigen-specific chimeric antigen receptor T cells for relapsed or refractory multiple myeloma: A meta-analysis. Eur. J. Haematol., 2020, 104(4), 318-327.
[http://dx.doi.org/10.1111/ejh.13380] [PMID: 31883150]
[120]
Van Oekelen, O.; Nath, K.; Mouhieddine, T.H.; Farzana, T.; Aleman, A.; Melnekoff, D.T.; Ghodke-Puranik, Y.; Shah, G.L.; Lesokhin, A.M.; Giralt, S.A.; Thibaud, S.; Rossi, A.; Rodriguez, C.; Sanchez, L.; Richter, J.; Richard, S.; Cho, H.J.; Chari, A.; Usmani, S.Z.; Jagannath, S.; Shah, U.A.; Mailankody, S.; Parekh, S. Interventions and outcomes of multiple myeloma patients receiving salvage treatment after BCMA-directed CAR T therapy. Blood, 2022.
[121]
Casucci, M.; Ciceri, F. A second CD19 CAR T-cell infusion: Yes or no? Blood, 2021, 137(3), 284-286.
[http://dx.doi.org/10.1182/blood.2020009206] [PMID: 33475747]
[122]
Gauthier, J.; Bezerra, E.D.; Hirayama, A.V.; Fiorenza, S.; Sheih, A.; Chou, C.K.; Kimble, E.L.; Pender, B.S.; Hawkins, R.M.; Vakil, A.; Phi, T.D.; Steinmetz, R.N.; Jamieson, A.W.; Bar, M.; Cassaday, R.D.; Chapuis, A.G.; Cowan, A.J.; Green, D.J.; Kiem, H.P.; Milano, F.; Shadman, M.; Till, B.G.; Riddell, S.R.; Maloney, D.G.; Turtle, C.J. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood, 2021, 137(3), 323-335.
[http://dx.doi.org/10.1182/blood.2020006770] [PMID: 32967009]
[123]
Fernández de Larrea, C.; Staehr, M.; Lopez, A.V.; Ng, K.Y.; Chen, Y.; Godfrey, W.D.; Purdon, T.J.; Ponomarev, V.; Wendel, H.G.; Brentjens, R.J.; Smith, E.L. Defining an optimal dual-targeted CAR T-cell therapy approach simultaneously targeting BCMA and GPRC5D to prevent bcma escape–driven relapse in multiple myeloma. Blood Cancer Discov., 2020, 1(2), 146-154.
[http://dx.doi.org/10.1158/2643-3230.BCD-20-0020] [PMID: 33089218]
[124]
Popat, R.; Zweegman, S.; Cavet, J.; Yong, K.; Lee, L.; Faulkner, J.; Kotsopoulou, E.; Al-Hajj, M.; Thomas, S.; Cordoba, S.P.; Pule, M.; Cerec, V.; Peddareddigari, V.G.R.; Khokhar, N.Z.; Menne, T.F. Phase 1 first-in-human study of AUTO2, the first chimeric antigen receptor (CAR) T cell targeting APRIL for patients with relapsed/refractory multiple myeloma (RRMM). Blood, 2019, 134(Suppl. 1), 3112.
[http://dx.doi.org/10.1182/blood-2019-126689]
[125]
Tanaka, J.; Miller, J.S. Recent progress in and challenges in cellular therapy using NK cells for hematological malignancies. Blood Rev., 2020, 44, 100678.
[http://dx.doi.org/10.1016/j.blre.2020.100678] [PMID: 32229065]
[126]
Leivas, A.; Valeri, A.; Córdoba, L.; García-Ortiz, A.; Ortiz, A.; Sánchez-Vega, L.; Graña-Castro, O.; Fernández, L.; Carreño-Tarragona, G.; Pérez, M.; Megías, D.; Paciello, M.L.; Sánchez-Pina, J.; Pérez-Martínez, A.; Lee, D.A.; Powell, D.J., Jr; Río, P.; Martínez-López, J. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J., 2021, 11(8), 146.
[http://dx.doi.org/10.1038/s41408-021-00537-w] [PMID: 34392311]
[127]
Chu, J.; Deng, Y.; Benson, D.M.; He, S.; Hughes, T.; Zhang, J.; Peng, Y.; Mao, H.; Yi, L.; Ghoshal, K.; He, X.; Devine, S.M.; Zhang, X.; Caligiuri, M.A.; Hofmeister, C.C.; Yu, J. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia, 2014, 28(4), 917-927.
[http://dx.doi.org/10.1038/leu.2013.279] [PMID: 24067492]
[128]
Radhakrishnan, S.V.; Luetkens, T.; Scherer, S.D.; Davis, P.; Vander Mause, E.R.; Olson, M.L.; Yousef, S.; Panse, J.; Abdiche, Y.; Li, K.D.; Miles, R.R.; Matsui, W.; Welm, A.L.; Atanackovic, D. CD229 CAR T cells eliminate multiple myeloma and tumor propagating cells without fratricide. Nat. Commun., 2020, 11(1), 798.
[http://dx.doi.org/10.1038/s41467-020-14619-z] [PMID: 32034142]
[129]
Casucci, M.; Nicolis di Robilant, B.; Falcone, L.; Camisa, B.; Norelli, M.; Genovese, P.; Gentner, B.; Gullotta, F.; Ponzoni, M.; Bernardi, M.; Marcatti, M.; Saudemont, A.; Bordignon, C.; Savoldo, B.; Ciceri, F.; Naldini, L.; Dotti, G.; Bonini, C.; Bondanza, A. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood, 2013, 122(20), 3461-3472.
[http://dx.doi.org/10.1182/blood-2013-04-493361] [PMID: 24016461]
[130]
O’Neal, J.; Ritchey, J.K.; Cooper, M.L.; Niswonger, J.; Sofía González, L.; Street, E.; Rettig, M.P.; Gladney, S.W.; Gehrs, L.; Abboud, R.; Prior, J.L.; Haas, G.J.; Jayasinghe, R.G.; Ding, L.; Ghobadi, A.; Vij, R.; DiPersio, J.F. CS1 CAR-T targeting the distal domain of CS1 (SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+ CS1 expressing CAR-T cells. Leukemia, 2022, 36(6), 1625-1634.
[http://dx.doi.org/10.1038/s41375-022-01559-4] [PMID: 35422095]
[131]
Wang, Y.; Cao, J.; Gu, W.; Shi, M.; Lan, J.; Yan, Z.; Jin, L.; Xia, J.; Ma, S.; Liu, Y.; Li, H.; Pan, B.; Chen, W.; Fei, X.; Wang, C.; Xie, X.; Yu, L.; Wang, G.; Li, H.; Jing, G.; Cheng, H.; Zhu, F.; Sun, H.; Sang, W.; Li, D.; Li, Z.; Zheng, J.; Xu, K. Long-term follow-up of combination of B-cell maturation antigen and CD19 chimeric antigen receptor T cells in multiple myeloma. J. Clin. Oncol., 2022, 40(20), 2246-2256.
[http://dx.doi.org/10.1200/JCO.21.01676] [PMID: 35333600]
[132]
Tang, Y.; Yin, H.; Zhao, X.; Jin, D.; Liang, Y.; Xiong, T.; Li, L.; Tang, W.; Zhang, J.; Liu, M.; Yu, Z.; Liu, H.; Zang, S.; Huang, Z. High efficacy and safety of CD38 and BCMA bispecific CAR-T in relapsed or refractory multiple myeloma. J. Exp. Clin. Cancer Res., 2022, 41(1), 2.
[http://dx.doi.org/10.1186/s13046-021-02214-z] [PMID: 34980210]
[133]
García-Guerrero, E.; Rodríguez-Lobato, L.G.; Sierro-Martínez, B.; Danhof, S.; Bates, S.; Frenz, S.; Härtle, L.; Götz, R.; Sauer, M.; Rasche, L.; Kortüm, K.M.; Pérez-Simón, J.A.; Einsele, H.; Hudecek, M.; Prommersberger, S.R. All-trans retinoic acid works synergistically with the γ-secretase inhibitor crenigacestat to augment BCMA on multiple myeloma and the efficacy of BCMA-CAR T cells. Haematologica, 2022, 108(2), 568-580.
[http://dx.doi.org/10.3324/haematol.2022.281339] [PMID: 36722406]
[134]
Zhang, X.; Zhang, C.; Qiao, M.; Cheng, C.; Tang, N.; Lu, S.; Sun, W.; Xu, B.; Cao, Y.; Wei, X.; Wang, Y.; Han, W.; Wang, H. Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells. Cancer Cell, 2022, 40(11), 1407-1422.e7.
[http://dx.doi.org/10.1016/j.ccell.2022.09.013] [PMID: 36240777]
[135]
Liu, X.; Zhang, Y.; Li, K.; Liu, Y.; Xu, J.; Ma, J.; An, L.; Wang, H.; Chu, X. A novel dominant-negative PD-1 armored anti-CD19 CAR T cell is safe and effective against refractory/relapsed B cell lymphoma. Transl. Oncol., 2021, 14(7), 101085.
[http://dx.doi.org/10.1016/j.tranon.2021.101085] [PMID: 33813229]
[136]
Zheng, W.; O’Hear, C.E.; Alli, R.; Basham, J.H.; Abdelsamed, H.A.; Palmer, L.E.; Jones, L.L.; Youngblood, B.; Geiger, T.L. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia, 2018, 32(5), 1157-1167.
[http://dx.doi.org/10.1038/s41375-017-0008-6] [PMID: 29479065]
[137]
Yeku, O.O.; Brentjens, R.J. Armored CAR T-cells: Utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem. Soc. Trans., 2016, 44(2), 412-418.
[http://dx.doi.org/10.1042/BST20150291] [PMID: 27068948]
[138]
Zhang, X.; Zhang, H.; Lan, H.; Wu, J.; Xiao, Y. CAR-T cell therapy in multiple myeloma: Current limitations and potential strategies. Front. Immunol., 2023, 14, 1101495.
[http://dx.doi.org/10.3389/fimmu.2023.1101495] [PMID: 36891310]
[139]
Zhang, H.; Hu, Y.; Shao, M.; Teng, X.; Jiang, P.; Wang, X.; Wang, H.; Cui, J.; Yu, J.; Liang, Z.; Ding, L.; Han, Y.; Wei, J.; Xu, Y.; Li, X.; Shan, W.; Shi, J.; Luo, Y.; Qian, P.; Huang, H. Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion. J. Hematol. Oncol., 2021, 14(1), 113.
[http://dx.doi.org/10.1186/s13045-021-01117-y] [PMID: 34289897]
[140]
Rafiq, S.; Hackett, C.S.; Brentjens, R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol., 2020, 17(3), 147-167.
[http://dx.doi.org/10.1038/s41571-019-0297-y] [PMID: 31848460]
[141]
Yi, M.; Jiao, D.; Xu, H.; Liu, Q.; Zhao, W.; Han, X.; Wu, K. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer, 2018, 17(1), 129.
[http://dx.doi.org/10.1186/s12943-018-0864-3] [PMID: 30139382]
[142]
Liu, H.; Lei, W.; Zhang, C.; Yang, C.; Wei, J.; Guo, Q.; Guo, X.; Chen, Z.; Lu, Y.; Young, K.H.; Lu, Z.; Qian, W. CD19-specific CAR T cells that express a PD-1/CD28 chimeric switch-receptor are effective in patients with PD-L1–positive B-cell lymphoma. Clin. Cancer Res., 2021, 27(2), 473-484.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1457] [PMID: 33028589]
[143]
Tomasik, J.; Jasiński, M.; Basak, G.W. Next generations of CAR-T cells - new therapeutic opportunities in hematology? Front. Immunol., 2022, 13, 1034707.
[http://dx.doi.org/10.3389/fimmu.2022.1034707] [PMID: 36389658]
[144]
Kim, W.S.; Kim, S.J.; Yoon, S.; Kim, J.R. Phase 1/2 study of anbalcabtagene autoleucel, novel anti-CD19 CAR-T cell therapy with dual silencing of PD-1 and TIGIT in relapsed or refractory large B-cell lymphoma. J. Clin. Oncol., 2022, 40(16_suppl)(Suppl.), 7522.
[http://dx.doi.org/10.1200/JCO.2022.40.16_suppl.7522]
[145]
Moghanloo, E.; Mollanoori, H.; Talebi, M.; Pashangzadeh, S.; Faraji, F.; Hadjilooei, F.; Mahmoodzadeh, H. Remote controlling of CAR-T cells and toxicity management: Molecular switches and next generation CARs. Transl. Oncol., 2021, 14(6), 101070.
[http://dx.doi.org/10.1016/j.tranon.2021.101070] [PMID: 33789222]
[146]
Gagelmann, N.; Sureda, A.; Montoto, S.; Murray, J.; Bolaños, N.; Kenyon, M.; Beksac, M.; Schönland, S.; Hayden, P.; Scheurer, H.; Morgan, K.; Garderet, L.; McLornan, D.P.; Ruggeri, A. Access to and affordability of CAR T-cell therapy in multiple myeloma: An EBMT position paper. Lancet Haematol., 2022, 9(10), e786-e795.
[http://dx.doi.org/10.1016/S2352-3026(22)00226-5] [PMID: 36174641]
[147]
Kapinos, K.A.; Hu, E.; Trivedi, J.; Geethakumari, P.R.; Kansagra, A. Cost-effectiveness analysis of CAR T-cell therapies vs antibody drug conjugates for patients with advanced multiple myeloma. Cancer Contr., 2023, 30
[http://dx.doi.org/10.1177/10732748221142945] [PMID: 36651055]
[148]
Lenhoff, S.; Hjorth, M.; Turesson, I.; Westin, J.; Gimsing, P.; Wislöff, F.; Ahlberg, L.; Carlson, K.; Christiansen, I.; Dahl, I.M.; Forsberg, K.; Brinch, L.; Hammerström, J.; Johnsen, H.E.; Knudsen, L.M.; Linder, O.; Mellqvist, U.H.; Nesthus, I.; Nielsen, J.L. Intensive therapy for multiple myeloma in patients younger than 60 years. Long-term results focusing on the effect of the degree of response on survival and relapse pattern after transplantation. Haematologica, 2006, 91(9), 1228-1233.
[PMID: 16956822]
[149]
Munshi, N.C.; Avet-Loiseau, H.; Rawstron, A.C.; Owen, R.G.; Child, J.A.; Thakurta, A.; Sherrington, P.; Samur, M.K.; Georgieva, A.; Anderson, K.C.; Gregory, W.M. Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma. JAMA Oncol., 2017, 3(1), 28-35.
[http://dx.doi.org/10.1001/jamaoncol.2016.3160] [PMID: 27632282]
[150]
Landgren, O.; Devlin, S.; Boulad, M.; Mailankody, S. Role of MRD status in relation to clinical outcomes in newly diagnosed multiple myeloma patients: A meta-analysis. Bone Marrow Transplant., 2016, 51(12), 1565-1568.
[http://dx.doi.org/10.1038/bmt.2016.222] [PMID: 27595280]
[151]
Klausen, U.; Jørgensen, N.G.D.; Grauslund, J.H.; Holmström, M.O.; Andersen, M.H. Cancer immune therapy for lymphoid malignancies: Recent advances. Semin. Immunopathol., 2019, 41(1), 111-124.
[http://dx.doi.org/10.1007/s00281-018-0696-7] [PMID: 30006739]
[152]
Rosenblatt, J.; Avigan, D. Targeting the PD-1/PD-L1 axis in multiple myeloma: A dream or a reality? Blood, 2017, 129(3), 275-279.
[http://dx.doi.org/10.1182/blood-2016-08-731885] [PMID: 27919908]
[153]
Chung, D.J.; Pronschinske, K.B.; Shyer, J.A.; Sharma, S.; Leung, S.; Curran, S.A.; Lesokhin, A.M.; Devlin, S.M.; Giralt, S.A.; Young, J.W. T-cell exhaustion in multiple myeloma relapse after autotransplant: Optimal timing of immunotherapy. Cancer Immunol. Res., 2016, 4(1), 61-71.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0055] [PMID: 26464015]
[154]
Prabhala, R.H.; Neri, P.; Bae, J.E.; Tassone, P.; Shammas, M.A.; Allam, C.K.; Daley, J.F.; Chauhan, D.; Blanchard, E.; Thatte, H.S.; Anderson, K.C.; Munshi, N.C. Dysfunctional T regulatory cells in multiple myeloma. Blood, 2006, 107(1), 301-304.
[http://dx.doi.org/10.1182/blood-2005-08-3101] [PMID: 16150935]
[155]
Leone, P.; Berardi, S.; Frassanito, M.A.; Ria, R.; De Re, V.; Cicco, S.; Battaglia, S.; Ditonno, P.; Dammacco, F.; Vacca, A.; Racanelli, V. Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T-cell killing. Blood, 2015, 126(12), 1443-1451.
[http://dx.doi.org/10.1182/blood-2015-01-623975] [PMID: 26185130]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy