Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Advances in Stimuli-responsive Hydrogels for Tissue Engineering and Regenerative Medicine Applications: A Review Towards Improving Structural Design for 3D Printing

Author(s): Mduduzi Nkosinathi Sithole, Hillary Mndlovu, Lisa C. du Toit and Yahya Essop Choonara*

Volume 29, Issue 40, 2023

Published on: 27 September, 2023

Page: [3187 - 3205] Pages: 19

DOI: 10.2174/0113816128246888230920060802

Price: $65

Abstract

The physicochemical properties of polymeric hydrogels render them attractive for the development of 3D printed prototypes for tissue engineering in regenerative medicine. Significant effort has been made to design hydrogels with desirable attributes that facilitate 3D printability. In addition, there is significant interest in exploring stimuli-responsive hydrogels to support automated 3D printing into more structurally organised prototypes such as customizable bio-scaffolds for regenerative medicine applications. Synthesizing stimuli-responsive hydrogels is dependent on the type of design and modulation of various polymeric materials to open novel opportunities for applications in biomedicine and bio-engineering. In this review, the salient advances made in the design of stimuli-responsive polymeric hydrogels for 3D printing in tissue engineering are discussed with a specific focus on the different methods of manipulation to develop 3D printed stimuli-responsive polymeric hydrogels. Polymeric functionalisation, nano-enabling and crosslinking are amongst the most common manipulative attributes that affect the assembly and structure of 3D printed bio-scaffolds and their stimuli- responsiveness. The review also provides a concise incursion into the various applications of stimuli to enhance the automated production of structurally organized 3D printed medical prototypes.

[1]
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater Sci Eng Rep 2020; 140: 100543.
[http://dx.doi.org/10.1016/j.mser.2020.100543]
[2]
Züger F, Marsano A, Poggio M, Gullo MR. Nanocomposites in 3D bioprinting for engineering conductive and stimuli-responsive constructs mimicking electrically sensitive tissue. Adv NanoBiomed Res 2022; 2(2): 2100108.
[http://dx.doi.org/10.1002/anbr.202100108]
[3]
El-Husseiny HM, Mady EA, Hamabe L, et al. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13: 100186.
[http://dx.doi.org/10.1016/j.mtbio.2021.100186] [PMID: 34917924]
[4]
Neves SC, Moroni L, Barrias CC, Granja PL. Leveling up hydrogels: Hybrid systems in tissue engineering. Trends Biotechnol 2020; 38(3): 292-315.
[http://dx.doi.org/10.1016/j.tibtech.2019.09.004] [PMID: 31787346]
[5]
El Blidi O, El Omari N, Balahbib A, et al. Extraction methods, characterization and biomedical applications of collagen: A review. Biointerface Res Appl Chem 2021; 11(5): 13587-613.
[http://dx.doi.org/10.33263/BRIAC115.1358713613]
[6]
Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012; 64: 18-23.
[http://dx.doi.org/10.1016/j.addr.2012.09.010] [PMID: 11755703]
[7]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[8]
Wichterle O, Lím D. Hydrophilic gels for biological use. Nature 1960; 185(4706): 117-8.
[http://dx.doi.org/10.1038/185117a0]
[9]
Kashyap N, Kumar N, Kumar MR. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carr Syst 2005; 22: 2.
[10]
Tsitsilianis C. Responsive reversible hydrogels from associative “smart” macromolecules. Soft Matter 2010; 6(11): 2372-88.
[http://dx.doi.org/10.1039/b923947b]
[11]
Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels … A review. Saudi Pharm J 2016; 24(5): 554-9.
[http://dx.doi.org/10.1016/j.jsps.2015.03.022] [PMID: 27752227]
[12]
Chatterjee S, Hui PC. Stimuli-responsive hydrogels: An interdisciplinary overview. Hydrogels - Smart Materials for Biomedical Applications. intechopen 2018; pp. 1-23.
[13]
Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremião MPD. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur Polym J 2018; 99: 117-33.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.12.004]
[14]
Li M, Liang Y, He J, Zhang H, Guo B. Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem Mater 2020; 32(23): 9937-53.
[http://dx.doi.org/10.1021/acs.chemmater.0c02823]
[15]
Xu J, Wong CW, Hsu S. An injectable, electroconductive hydrogel/scaffold for neural repair and motion sensing. Chem Mater 2020; 32(24): 10407-22.
[http://dx.doi.org/10.1021/acs.chemmater.0c02906]
[16]
Lin SH, Papadakis CM, Kang JJ, Lin JM, Hsu S. Injectable phenolic-chitosan self-healing hydrogel with hierarchical micelle architectures and fast adhesiveness. Chem Mater 2021; 33(11): 3945-58.
[http://dx.doi.org/10.1021/acs.chemmater.1c00028]
[17]
Shafranek RT, Millik SC, Smith PT, Lee CU, Boydston AJ, Nelson A. Stimuli-responsive materials in additive manufacturing. Prog Polym Sci 2019; 93: 36-67.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.03.002]
[18]
Fellin CR, Nelson A. Direct-ink write 3D printing multistimuli-responsive hydrogels and post-functionalization via disulfide exchange. ACS Appl Polym Mater 2022; 4(5): 3054-61.
[http://dx.doi.org/10.1021/acsapm.1c01538]
[19]
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005; 4(7): 518-24.
[http://dx.doi.org/10.1038/nmat1421] [PMID: 16003400]
[20]
Pan T, Song W, Cao X, Wang Y. 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: Influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 2016; 32(9): 889-900.
[http://dx.doi.org/10.1016/j.jmst.2016.01.007]
[21]
Sahranavard M, Zamanian A, Ghorbani F, Shahrezaee MH. A critical review on three dimensional-printed chitosan hydrogels for development of tissue engineering. Bioprinting 2020; 17: e00063.
[http://dx.doi.org/10.1016/j.bprint.2019.e00063]
[22]
Kabu S, Gao Y, Kwon BK, Labhasetwar V. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release 2015; 219: 141-54.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.060] [PMID: 26343846]
[23]
Madl CM, LeSavage BL, Dewi RE, et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat Mater 2017; 16(12): 1233-42.
[http://dx.doi.org/10.1038/nmat5020] [PMID: 29115291]
[24]
Moroni L, Burdick JA, Highley C, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater 2018; 3(5): 21-37.
[http://dx.doi.org/10.1038/s41578-018-0006-y] [PMID: 31223488]
[25]
Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun 2019; 10(1): 3523.
[http://dx.doi.org/10.1038/s41467-019-11511-3] [PMID: 31388014]
[26]
Zhu Y, Zhang Q, Shi X, Han D. Hierarchical hydrogel composite interfaces with robust mechanical properties for biomedical applications. Adv Mater 2019; 31(45): 1804950.
[http://dx.doi.org/10.1002/adma.201804950] [PMID: 30815920]
[27]
Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater 2018; 30(29): 1705328.
[http://dx.doi.org/10.1002/adma.201705328] [PMID: 29736981]
[28]
Rodrigo-Navarro A, Sankaran S, Dalby MJ, del Campo A, Salmeron-Sanchez M. Engineered living biomaterials. Nat Rev Mater 2021; 6(12): 1175-90.
[http://dx.doi.org/10.1038/s41578-021-00350-8]
[29]
Wei H, Cui J, Lin K, Xie J, Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res 2022; 10(1): 17.
[http://dx.doi.org/10.1038/s41413-021-00180-y] [PMID: 35197462]
[30]
Bonetti L, De Nardo L, Farè S. Thermo-responsive methylcellulose hydrogels: From design to applications as smart biomaterials. Tissue Eng Part B Rev 2021; 27(5): 486-513.
[http://dx.doi.org/10.1089/ten.teb.2020.0202] [PMID: 33115329]
[31]
Farahani M, Shafiee A. Wound healing: From passive to smart dressings. Adv Healthc Mater 2021; 10(16): 2100477.
[http://dx.doi.org/10.1002/adhm.202100477] [PMID: 34174163]
[32]
Kapalatiya H, Madav Y, Tambe VS, Wairkar S. Enzyme-responsive smart nanocarriers for targeted chemotherapy: An overview. Drug Deliv Transl Res 2021; 12(6): 1293-305.
[PMID: 34251612]
[33]
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2021; 2(2): 20200042.
[http://dx.doi.org/10.1002/VIW.20200042]
[34]
Li YC, Zhang YS, Akpek A, Shin SR, Khademhosseini A. 4D bioprinting: The next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication 2016; 9(1): 012001.
[http://dx.doi.org/10.1088/1758-5090/9/1/012001] [PMID: 27910820]
[35]
Momeni F, Liu X, Ni J. A review of 4D printing. Mater Des 2017; 122: 42-79.
[http://dx.doi.org/10.1016/j.matdes.2017.02.068]
[36]
Zhao C, Lv Q, Wu W. Application and prospects of hydrogel additive manufacturing. Gels 2022; 8(5): 297.
[http://dx.doi.org/10.3390/gels8050297] [PMID: 35621595]
[37]
Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20(1): 45-53.
[http://dx.doi.org/10.1016/S0142-9612(98)00107-0] [PMID: 9916770]
[38]
Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 2009; 103(4): 655-63.
[http://dx.doi.org/10.1002/bit.22361] [PMID: 19472329]
[39]
Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 2010; 5(3): 469-84.
[http://dx.doi.org/10.2217/nnm.10.12] [PMID: 20394538]
[40]
Xing JF, Zheng ML, Duan XM. Two-photon polymerization microfabrication of hydrogels: An advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev 2015; 44(15): 5031-9.
[http://dx.doi.org/10.1039/C5CS00278H] [PMID: 25992492]
[41]
Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016; 34(4): 422-34.
[http://dx.doi.org/10.1016/j.biotechadv.2015.12.011] [PMID: 26724184]
[42]
Blaeser A, Duarte Campos DF, Fischer H. 3D bioprinting of cell-laden hydrogels for advanced tissue engineering. Curr Opin Biomed Eng 2017; 2: 58-66.
[http://dx.doi.org/10.1016/j.cobme.2017.04.003]
[43]
Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater 2018; 3(2): 144-56.
[http://dx.doi.org/10.1016/j.bioactmat.2017.11.008] [PMID: 29744452]
[44]
Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting. Adv Healthc Mater 2019; 8(7): 1801048.
[http://dx.doi.org/10.1002/adhm.201801048] [PMID: 30734530]
[45]
Skardal A, Atala A. Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng 2015; 43(3): 730-46.
[http://dx.doi.org/10.1007/s10439-014-1207-1] [PMID: 25476164]
[46]
Yue Z, Liu X, Coates PT, Wallace GG. Advances in printing biomaterials and living cells. Curr Opin Organ Transplant 2016; 21(5): 467-75.
[http://dx.doi.org/10.1097/MOT.0000000000000346] [PMID: 27517507]
[47]
Groll J, Burdick JA, Cho D-W, et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication 2018; 11(1): 013001.
[http://dx.doi.org/10.1088/1758-5090/aaec52] [PMID: 30468151]
[48]
Kim JD, Choi JS, Kim BS, Chan Choi Y, Cho YW. Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer 2010; 51(10): 2147-54.
[http://dx.doi.org/10.1016/j.polymer.2010.03.038]
[49]
Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 2011; 98B(1): 160-70.
[http://dx.doi.org/10.1002/jbm.b.31831] [PMID: 21504055]
[50]
Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 2014; 6(2): 024105.
[http://dx.doi.org/10.1088/1758-5082/6/2/024105] [PMID: 24695367]
[51]
Song SJ, Choi J, Park YD, Lee JJ, Hong SY, Sun K. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization. Artif Organs 2010; 34(11): 1044-8.
[http://dx.doi.org/10.1111/j.1525-1594.2010.01143.x] [PMID: 21092048]
[52]
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773-85.
[http://dx.doi.org/10.1038/nbt.2958] [PMID: 25093879]
[53]
Advincula RC, Dizon JRC, Caldona EB, et al. On the progress of 3D-printed hydrogels for tissue engineering. MRS Commun 2021; 11(5): 539-53.
[http://dx.doi.org/10.1557/s43579-021-00069-1] [PMID: 34367725]
[54]
Dong L, Wang SJ, Zhao XR, Zhu YF, Yu JK. 3D-printed poly(ε- caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep 2017; 7(1): 13412.
[http://dx.doi.org/10.1038/s41598-017-13838-7] [PMID: 29042614]
[55]
Khandan A, Jazayeri H, Fahmy MD, Razavi M. Hydrogels: Types, structure, properties, and applications. Biomat Tiss Eng 2017; 4(27): 143-69.
[56]
Miri AK, Khalilpour A, Cecen B, Maharjan S, Shin SR, Khademhosseini A. Multiscale bioprinting of vascularized models. Biomaterials 2019; 198: 204-16.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.006] [PMID: 30244825]
[57]
Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting. Acta Biomater 2014; 10(10): 4323-31.
[http://dx.doi.org/10.1016/j.actbio.2014.06.034] [PMID: 24998183]
[58]
Freeman FE, Kelly DJ. Tuning alginate bioink stiffness and composition for controlled growth factor delivery and to spatially direct msc fate within bioprinted tissues. Sci Rep 2017; 7(1): 17042.
[http://dx.doi.org/10.1038/s41598-017-17286-1] [PMID: 29213126]
[59]
Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015; 16(5): 1489-96.
[http://dx.doi.org/10.1021/acs.biomac.5b00188] [PMID: 25806996]
[60]
Sithole MN, Kumar P, du Toit LC, Marimuthu T, Choonara YE, Pillay V. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications. J Biomed Mater Res A 2018; 106(5): 1311-21.
[http://dx.doi.org/10.1002/jbm.a.36333] [PMID: 29316290]
[61]
Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials 2010; 3(3): 1863-87.
[http://dx.doi.org/10.3390/ma3031863]
[62]
Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016; 76: 321-43.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.076] [PMID: 26561931]
[63]
Xing R, Liu K, Jiao T, et al. An Injectable self-assembling collagen–gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 2016; 28(19): 3669-76.
[http://dx.doi.org/10.1002/adma.201600284] [PMID: 26991248]
[64]
Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today 2020; 18: 100479.
[http://dx.doi.org/10.1016/j.apmt.2019.100479] [PMID: 32775607]
[65]
Marques CF, Diogo GS, Pina S, Oliveira JM, Silva TH, Reis RL. Collagen-based bioinks for hard tissue engineering applications: A comprehensive review. J Mater Sci Mater Med 2019; 30(3): 32.
[http://dx.doi.org/10.1007/s10856-019-6234-x] [PMID: 30840132]
[66]
Chen Y, Zhou Y, Wang C. Investigation of collagen-incorporated sodium alginate bioprinting hydrogel for tissue engineering. J Compos Sci 2022; 6(8): 227.
[http://dx.doi.org/10.3390/jcs6080227]
[67]
Wei Z, Yang JH, Liu ZQ, et al. Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Funct Mater 2015; 25(9): 1352-9.
[http://dx.doi.org/10.1002/adfm.201401502]
[68]
Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules 2011; 12(5): 1387-408.
[http://dx.doi.org/10.1021/bm200083n] [PMID: 21388145]
[69]
Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011; 36(8): 981-1014.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001]
[70]
Muzzarelli RAA, Muzzarelli C. Chitosan chemistry: Relevance to the biomedical sciences. Heinze T. Polysaccharides I Advances in Polymer Science. Berlin, Heidelberg: Springer 2005.
[http://dx.doi.org/10.1007/b136820]
[71]
Zadpoor A. Mechanics of biological tissues and biomaterials: Current trends. Materials 2015; 8(7): 4505-11.
[http://dx.doi.org/10.3390/ma8074505] [PMID: 28793452]
[72]
Hong S, Sycks D, Chan HF, et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 2015; 27(27): 4035-40.
[http://dx.doi.org/10.1002/adma.201501099] [PMID: 26033288]
[73]
Liu X, Yuk H, Lin S, et al. 3D printing of living responsive materials and devices. Adv Mater 2018; 30(4): 1704821.
[http://dx.doi.org/10.1002/adma.201704821] [PMID: 29205532]
[74]
Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 2020; 5(5): 351-70.
[http://dx.doi.org/10.1038/s41578-019-0169-1]
[75]
Zhou L, Ramezani H, Sun M, et al. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomater Sci 2020; 8(18): 5020-8.
[http://dx.doi.org/10.1039/D0BM00896F] [PMID: 32844842]
[76]
Ang TH, Sultana FSA, Hutmacher DW, et al. Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system. Mater Sci Eng C 2002; 20(1-2): 35-42.
[http://dx.doi.org/10.1016/S0928-4931(02)00010-3]
[77]
Geng L, Feng W, Hutmacher DW, San Wong Y, Tong Loh H, Fuh JYH. Direct writing of chitosan scaffolds using a robotic system. Rapid Prototyping J 2005; 11(2): 90-7.
[http://dx.doi.org/10.1108/13552540510589458]
[78]
Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci 2006; 31(7): 603-32.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[79]
Chatterjee S, Lee MW, Woo SH. Enhanced mechanical strength of chitosan hydrogel beads by impregnation with carbon nanotubes. Carbon 2009; 47(12): 2933-6.
[http://dx.doi.org/10.1016/j.carbon.2009.06.043]
[80]
Tirella A, Orsini A, Vozzi G, Ahluwalia A. A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication 2009; 1(4): 045002.
[http://dx.doi.org/10.1088/1758-5082/1/4/045002] [PMID: 20811111]
[81]
Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J 2013; 49(4): 780-92.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[82]
Wu Q, Maire M, Lerouge S, Therriault D, Heuzey MC. 3D printing of microstructured and stretchable chitosan hydrogel for guided cell growth. Adv Biosyst 2017; 1(6): 1700058.
[http://dx.doi.org/10.1002/adbi.201700058]
[83]
Bardakova KN, Demina TS, Grebenik EA, et al. 3D printing biodegradable scaffolds with chitosan materials for tissue engineering. The Third International Youth Scientific Forum with International Participation "New Materials. 21–24 November 2017; Moscow, Russian Federation. 2018.
[http://dx.doi.org/10.1088/1757-899X/347/1/012009]
[84]
Gadgey K, Sharma G. Investigation of mechanical properties of chitosan based films. IJARET 2018; 8(6): 93-102.
[85]
Wu Q, Therriault D, Heuzey MC. Processing and properties of chitosan inks for 3D printing of hydrogel microstructures. ACS Biomater Sci Eng 2018; 4(7): 2643-52.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00415] [PMID: 33435127]
[86]
Seda Tığlı R, Karakeçili A, Gümüşderelioğlu M. In vitro characterization of chitosan scaffolds: Influence of composition and deacetylation degree. J Mater Sci Mater Med 2007; 18(9): 1665-74.
[http://dx.doi.org/10.1007/s10856-007-3066-x] [PMID: 17483879]
[87]
Tamo AK, Tran TA, Doench I, et al. 3D printing of cellulase-laden cellulose nanofiber/chitosan hydrogel composites: Towards tissue engineering functional biomaterials with enzyme-mediated biodegradation. Materials 2022; 15(17): 6039.
[http://dx.doi.org/10.3390/ma15176039] [PMID: 36079419]
[88]
Raucci MG, D’Amora U, Ronca A, Demitri C, Ambrosio L. Bioactivation routes of gelatin-based scaffolds to enhance at nanoscale level bone tissue regeneration. Front Bioeng Biotechnol 2019; 7: 27.
[http://dx.doi.org/10.3389/fbioe.2019.00027] [PMID: 30828576]
[89]
Laronda MM, Rutz AL, Xiao S, et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 2017; 8(1): 15261.
[http://dx.doi.org/10.1038/ncomms15261] [PMID: 28509899]
[90]
Choi DJ, Park SJ, Gu BK, Kim YJ, Chung S, Kim CH. Effect of the pore size in a 3D bioprinted gelatin scaffold on fibroblast proliferation. J Ind Eng Chem 2018; 67: 388-95.
[http://dx.doi.org/10.1016/j.jiec.2018.07.013]
[91]
Li Q, Xu S, Feng Q, et al. 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration. Bioact Mater 2021; 6(10): 3396-410.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.013] [PMID: 33842736]
[92]
Chang S, Wang S, Liu Z, Wang X. Advances of stimulus-responsive hydrogels for bone defects repair in tissue engineering. Gels 2022; 8(6): 389.
[http://dx.doi.org/10.3390/gels8060389] [PMID: 35735733]
[93]
El-Husseiny HM, Mady EA, El-Dakroury WA, et al. Smart/stimuli-responsive hydrogels: State-of-the-art platforms for bone tissue engineering. Appl Mater Today 2022; 29: 101560.
[http://dx.doi.org/10.1016/j.apmt.2022.101560]
[94]
Mishra SB, Mishra AK. Polymeric Hydrogels as Smart Biomaterials. Cham: Springer 2015.
[95]
Gibas I, Janik H. Review: Synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 2010; 4(4): 297-304.
[http://dx.doi.org/10.23939/chcht04.04.297]
[96]
Haq MA, Su Y, Wang D. Mechanical properties of PNIPAM based hydrogels: A review. Mater Sci Eng C 2017; 70(Pt 1): 842-55.
[http://dx.doi.org/10.1016/j.msec.2016.09.081] [PMID: 27770962]
[97]
Pawar SN, Edgar KJ. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012; 33(11): 3279-305.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.007] [PMID: 22281421]
[98]
Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli-responsive hydrogels: Fabrication and biomedical applications. VIEW 2022; 3(2): 20200112.
[http://dx.doi.org/10.1002/VIW.20200112]
[99]
Cho MH, Kim KS, Ahn HH, et al. Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Eng Part A 2008; 14(6): 1099-108.
[http://dx.doi.org/10.1089/ten.tea.2007.0305] [PMID: 19230130]
[100]
Lee H, Park TG. Photo-crosslinkable, biomimetic, and thermo-sensitive pluronic grafted hyaluronic acid copolymers for injectable delivery of chondrocytes. J Biomed Mater Res A 2009; 88A(3): 797-806.
[http://dx.doi.org/10.1002/jbm.a.31983] [PMID: 18381639]
[101]
Morelli A, Chiellini F. Ulvan as a new type of biomaterial from renewable resources: Functionalization and hydrogel preparation. Macromol Chem Phys 2010; 211(7): 821-32.
[http://dx.doi.org/10.1002/macp.200900562]
[102]
Wang JY, Jin Y, Xie R, et al. Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. J Colloid Interface Sci 2011; 353(1): 61-8.
[http://dx.doi.org/10.1016/j.jcis.2010.09.034] [PMID: 20932528]
[103]
Forget A, Blaeser A, Miessmer F, et al. Mechanically tunable bioink for 3D bioprinting of human cells. Adv Healthc Mater 2017; 6(20): 1700255.
[http://dx.doi.org/10.1002/adhm.201700255] [PMID: 28731220]
[104]
Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater 2011; 23(12): H41-56.
[http://dx.doi.org/10.1002/adma.201003963] [PMID: 21394792]
[105]
Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng 2016; 2(10): 1743-51.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00158] [PMID: 33440472]
[106]
Ono K, Saito Y, Yura H, et al. Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res 2000; 49(2): 289-95.
[http://dx.doi.org/10.1002/(SICI)1097-4636(200002)49:2<289::AID-JBM18>3.0.CO;2-M] [PMID: 10571917]
[107]
Zheng H, Gao M, Ren Y, et al. An improved pH-responsive carrier based on EDTA-Ca-alginate for oral delivery of Lactobacillus rhamnosus ATCC 53103. Carbohydr Polym 2017; 155: 329-35.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.096] [PMID: 27702519]
[108]
Liu X, Gao M, Chen J, et al. Recent advances in stimuli-responsive shape-morphing hydrogels. Adv Funct Mater 2022; 32(39): 2203323.
[http://dx.doi.org/10.1002/adfm.202203323]
[109]
Su H, Li Q, Li D, et al. A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels. Mater Horiz 2022; 9(9): 2393-407.
[http://dx.doi.org/10.1039/D2MH00314G] [PMID: 35789239]
[110]
Zhang A, Wang F, Chen L, et al. 3D printing hydrogels for actuators: A review. Chin Chem Lett 2021; 32(10): 2923-32.
[http://dx.doi.org/10.1016/j.cclet.2021.03.073]
[111]
Zhao J, Peng YY, Wang J, et al. Temperature-responsive aldehyde hydrogels with injectable, self-healing, and tunable mechanical properties. Biomacromolecules 2022; 23(6): 2552-61.
[http://dx.doi.org/10.1021/acs.biomac.2c00260] [PMID: 35608162]
[112]
Chen S, Han X, Zou Y, et al. An injectable hydrogel to reverse the adverse microenvironment of diabetic infarcted heart. Materialia 2021; 15: 100957.
[http://dx.doi.org/10.1016/j.mtla.2020.100957]
[113]
Kirschner CM, Anseth KS. Hydrogels in healthcare: From static to dynamic material microenvironments. Acta Mater 2013; 61(3): 931-44.
[http://dx.doi.org/10.1016/j.actamat.2012.10.037] [PMID: 23929381]
[114]
Sood N, Bhardwaj A, Mehta S, Mehta A. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv 2016; 23(3): 748-70.
[http://dx.doi.org/10.3109/10717544.2014.940091] [PMID: 25045782]
[115]
Anal A. Stimuli-induced pulsatile or triggered release delivery systems for bioactive compounds. Recent Pat Endocr Metab Immune Drug Discov 2007; 1(1): 83-90.
[http://dx.doi.org/10.2174/187221407779814598]
[116]
Thakur S, Arotiba OA. Synthesis, swelling and adsorption studies of a pH-responsive sodium alginate–poly(acrylic acid) superabsorbent hydrogel. Polym Bull 2018; 75(10): 4587-606.
[http://dx.doi.org/10.1007/s00289-018-2287-0]
[117]
Wan Ishak WH, Yong Jia O, Ahmad I. pH-responsive gamma-irradiated Poly(Acrylic Acid)-cellulose-nanocrystal-reinforced hydrogels. Polymers 2020; 12(9): 1932.
[http://dx.doi.org/10.3390/polym12091932] [PMID: 32867014]
[118]
Gu Q, Tomaskovic-Crook E, Lozano R, et al. Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater 2016; 5(12): 1429-38.
[http://dx.doi.org/10.1002/adhm.201600095] [PMID: 27028356]
[119]
Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 2000; 100(7): 2495-504.
[http://dx.doi.org/10.1021/cr990099w] [PMID: 11749293]
[120]
Suedee R. The use of molecularly imprinted polymers for dermal drug delivery. Pharm Anal Acta 2013; 4(8): 1-23.
[121]
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: A survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27(6): 297-401.
[http://dx.doi.org/10.1002/jmr.2347] [PMID: 24700625]
[122]
Alvarez-Lorenzo C, González-Chomón C, Concheiro A. Molecularly imprinted hydrogels for affinity-controlled and stimuli-responsive drug delivery. Smart Mater Drug Deliv 2013; 2: 228-60.
[http://dx.doi.org/10.1039/9781849734318-00228]
[123]
Alvarez-Lorenzo C, Guney O, Oya T, et al. Polymer gels that memorize elements of molecular conformation. Macromolecules 2000; 33(23): 8693-7.
[http://dx.doi.org/10.1021/ma000603v]
[124]
Xu S, Lu H, Zheng X, Chen L. Stimuli-responsive molecularly imprinted polymers: Versatile functional materials. J Mater Chem C Mater Opt Electron Devices 2013; 1(29): 4406-22.
[http://dx.doi.org/10.1039/c3tc30496e]
[125]
Lusina A, Cegłowski M. Molecularly imprinted polymers as state-of-the-art drug carriers in hydrogel transdermal drug delivery applications. Polymers 2022; 14(3): 640.
[http://dx.doi.org/10.3390/polym14030640] [PMID: 35160628]
[126]
Hayden O, Lieberzeit PA, Blaas D, Dickert FL. Artificial antibodies for bioanalyte detection-sensing viruses and proteins. Adv Funct Mater 2006; 16(10): 1269-78.
[http://dx.doi.org/10.1002/adfm.200500626]
[127]
Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev 2018; 47(15): 5574-87.
[http://dx.doi.org/10.1039/C7CS00854F] [PMID: 29876564]
[128]
Zaidi SA. Bacterial imprinting methods and their applications: An overview. Crit Rev Anal Chem 2021; 51(7): 609-18.
[PMID: 32336109]
[129]
Bolisay LD, Culver JN, Kofinas P. Molecularly imprinted polymers for tobacco mosaic virus recognition. Biomaterials 2006; 27(22): 4165-8.
[http://dx.doi.org/10.1016/j.biomaterials.2006.03.018] [PMID: 16574216]
[130]
Tsunemori H, Araki K, Uezu K, Goto M, Furusaki S. Surface imprinting polymers for the recognition of nucleotides. Bioseparation 2001; 10(6): 315-21.
[http://dx.doi.org/10.1023/A:1021541803571] [PMID: 12549875]
[131]
Bossi A, Bonini F, Turner APF, Piletsky SA. Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosens Bioelectron 2007; 22(6): 1131-7.
[http://dx.doi.org/10.1016/j.bios.2006.06.023] [PMID: 16891110]
[132]
Zhang Z, Liu J. Molecular imprinting with functional DNA. Small 2019; 15(26): 1805246.
[http://dx.doi.org/10.1002/smll.201805246] [PMID: 30761744]
[133]
Zaidi SA. Molecular imprinting polymers and their composites: A promising material for diverse applications. Biomater Sci 2017; 5(3): 388-402.
[http://dx.doi.org/10.1039/C6BM00765A] [PMID: 28138673]
[134]
BelBruno JJ. Molecularly Imprinted Polymers. Chem Rev 2019; 119(1): 94-119.
[http://dx.doi.org/10.1021/acs.chemrev.8b00171] [PMID: 30246529]
[135]
Asghar N, Mustafa G, Yasinzai M, Al-Soud YA, Lieberzeit PA, Latif U. Real-time and online monitoring of glucose contents by using molecular imprinted polymer-based IDEs sensor. Appl Biochem Biotechnol 2019; 189(4): 1156-66.
[http://dx.doi.org/10.1007/s12010-019-03049-3] [PMID: 31201600]
[136]
Kryscio DR, Peppas NA. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater 2012; 8(2): 461-73.
[http://dx.doi.org/10.1016/j.actbio.2011.11.005] [PMID: 22100344]
[137]
Li S, Cao S, Whitcombe MJ, Piletsky SA. Size matters: Challenges in imprinting macromolecules. Prog Polym Sci 2014; 39(1): 145-63.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.10.002]
[138]
Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW. From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol Prog 2006; 22(6): 1474-89.
[http://dx.doi.org/10.1002/bp060122g] [PMID: 17137293]
[139]
Huang HJ, Tsai YL, Lin SH, Hsu S. Smart polymers for cell therapy and precision medicine. J Biomed Sci 2019; 26(1): 73.
[http://dx.doi.org/10.1186/s12929-019-0571-4] [PMID: 31623607]
[140]
Hou S, Wang X, Park S, Jin X, Ma PX. Rapid self-integrating, injectable hydrogel for tissue complex regeneration. Adv Healthc Mater 2015; 4(10): 1491-1495, 1423.
[http://dx.doi.org/10.1002/adhm.201500093] [PMID: 25946414]
[141]
Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication 2016; 8(3): 032002.
[http://dx.doi.org/10.1088/1758-5090/8/3/032002] [PMID: 27658612]
[142]
Abdollahiyan P, Baradaran B, de la Guardia M, Oroojalian F, Mokhtarzadeh A. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. J Control Release 2020; 328: 514-31.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.030] [PMID: 32956710]
[143]
Wang S, Lee JM, Yeong WY. Smart hydrogels for 3D bioprinting. Int J Bioprinting 2015; 1(1)
[144]
Woodfield T, Lim K, Morouço P, Levato R, Malda J, Melchels F. Biofabrication in tissue engineering. Reference Module in Materials Science and Materials Engineering. Elsevier 2017.
[145]
Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater Sci Eng Rep 2015; 93: 1-49.
[http://dx.doi.org/10.1016/j.mser.2015.04.001] [PMID: 27134415]
[146]
Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D biofabrication using shape-morphing hydrogels. Adv Mater 2017; 29(46): 1703443.
[http://dx.doi.org/10.1002/adma.201703443] [PMID: 29024044]
[147]
Chen H, Qin Z, Zhao J, et al. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 2019; 225: 119520.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119520] [PMID: 31586865]
[148]
Wu H, Liu L, Song L, Ma M, Gu N, Zhang Y. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano 2019; 13(12): 14013-23.
[http://dx.doi.org/10.1021/acsnano.9b06134] [PMID: 31639298]
[149]
Chen X, Fan M, Tan H, et al. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Mater Sci Eng C 2019; 101: 619-29.
[http://dx.doi.org/10.1016/j.msec.2019.04.012] [PMID: 31029355]
[150]
Zhao X, Liu Y, Shao C, et al. Photoresponsive delivery microcarriers for tissue defects repair. Adv Sci 2019; 6(20): 1901280.
[http://dx.doi.org/10.1002/advs.201901280] [PMID: 31637165]
[151]
Cui L, Zhang J, Zou J, et al. Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials 2020; 230: 119617.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119617] [PMID: 31771859]
[152]
Yang YN, Lu KY, Wang P, Ho YC, Tsai ML, Mi FL. Development of bacterial cellulose/chitin multi-nanofibers based smart films containing natural active microspheres and nanoparticles formed in situ. Carbohydr Polym 2020; 228: 115370.
[http://dx.doi.org/10.1016/j.carbpol.2019.115370] [PMID: 31635728]
[153]
Li X, Wang Y, Li A, et al. A novel pH- and salt-responsive N-Succinyl-Chitosan Hydrogel via a one-step hydrothermal process. Molecules 2019; 24(23): 4211.
[http://dx.doi.org/10.3390/molecules24234211] [PMID: 31756996]
[154]
Zhang Y, Chen K, Li Y, et al. High-strength, self-healable, temperature-sensitive, mxene-containing composite hydrogel as a smart compression sensor. ACS Appl Mater Interfaces 2019; 11(50): 47350-7.
[http://dx.doi.org/10.1021/acsami.9b16078] [PMID: 31746192]
[155]
Li Z, Chen H, Li B, et al. Photoresponsive luminescent polymeric hydrogels for reversible information encryption and decryption. Adv Sci 2019; 6(21): 1901529.
[http://dx.doi.org/10.1002/advs.201901529] [PMID: 31728289]
[156]
Zhang H, Li J, Cui H, Li H, Yang F. Forward osmosis using electric-responsive polymer hydrogels as draw agents: Influence of freezing–thawing cycles, voltage, feed solutions on process performance. Chem Eng J 2015; 259: 814-9.
[http://dx.doi.org/10.1016/j.cej.2014.08.065]
[157]
Raman R, Cvetkovic C, Uzel SGM, et al. Optogenetic skeletal muscle-powered adaptive biological machines. Proc Natl Acad Sci 2016; 113(13): 3497-502.
[http://dx.doi.org/10.1073/pnas.1516139113] [PMID: 26976577]
[158]
Hu W, Lum GZ, Mastrangeli M, Sitti M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018; 554(7690): 81-5.
[http://dx.doi.org/10.1038/nature25443] [PMID: 29364873]
[159]
Kokkinis D, Schaffner M, Studart AR. Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 2015; 6(1): 8643.
[http://dx.doi.org/10.1038/ncomms9643] [PMID: 26494528]
[160]
Ji Z, Yan C, Yu B, Wang X, Zhou F. Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator. Adv Mater Interfaces 2017; 4(22): 1700629.
[http://dx.doi.org/10.1002/admi.201700629]
[161]
Gang F, Yan H, Ma C, et al. Robust magnetic double-network hydrogels with self-healing, MR imaging, cytocompatibility and 3D printability. Chem Commun 2019; 55(66): 9801-4.
[http://dx.doi.org/10.1039/C9CC04241E] [PMID: 31360942]
[162]
Tang J, Sun B, Yin Q, Yang M, Hu J, Wang T. 3D printable, tough, magnetic hydrogels with programmed magnetization for fast actuation. J Mater Chem B Mater Biol Med 2021; 9(44): 9183-90.
[http://dx.doi.org/10.1039/D1TB01694F] [PMID: 34698328]
[163]
Zhang XN, Zheng Q, Wu ZL. Recent advances in 3D printing of tough hydrogels: A review. Compos, Part B Eng 2022; 238: 109895.
[http://dx.doi.org/10.1016/j.compositesb.2022.109895]
[164]
Chen M, Yu P, Ao C, et al. Ethanol-induced responsive behavior of natural polysaccharide hydrogels. Ind Eng Chem Res 2022; 61(35): 13145-53.
[http://dx.doi.org/10.1021/acs.iecr.2c02246]
[165]
Huang B, He H, Liu H, Zhang Y, Chen H, Ma Y. Co-precipitated poly(vinyl alcohol)/chitosan composites with excellent mechanical properties and tunable water-induced shape memory. Carbohydr Polym 2020; 245: 116445.
[http://dx.doi.org/10.1016/j.carbpol.2020.116445] [PMID: 32718597]
[166]
Panda PK, Yang JM, Chang YH. Water-induced shape memory behavior of poly (vinyl alcohol) and p-coumaric acid-modified water-soluble chitosan blended membrane. Carbohydr Polym 2021; 257: 117633.
[http://dx.doi.org/10.1016/j.carbpol.2021.117633] [PMID: 33541659]
[167]
Brunchi CE, Morariu S, Bercea M. Impact of ethanol addition on the behaviour of xanthan gum in aqueous media. Food Hydrocoll 2021; 120: 106928.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106928]
[168]
Farid-ul-Haq M, Hussain MA, Haseeb MT, et al. A stimuli-responsive, superporous and non-toxic smart hydrogel from seeds of mugwort (Artemisia vulgaris): Stimuli responsive swelling/ deswelling, intelligent drug delivery and enhanced aceclofenac bioavailability. RSC Advances 2020; 10(34): 19832-43.
[http://dx.doi.org/10.1039/D0RA03176C] [PMID: 35520449]
[169]
Hussain MA, Rana AI, Haseeb MT, Muhammad G, Kiran L. Citric acid cross-linked glucuronoxylans: A pH-sensitive polysaccharide material for responsive swelling-deswelling vs. various biomimetic stimuli and zero-order drug release. J Drug Deliv Sci Technol 2020; 55: 101470.
[http://dx.doi.org/10.1016/j.jddst.2019.101470]
[170]
Singh NK, Lee DS. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J Control Release 2014; 193: 214-27.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.056] [PMID: 24815421]
[171]
Tran TS, Balu R, Mettu S, Roy Choudhury N, Dutta NK. 4D printing of hydrogels: Innovation in material design and emerging smart systems for drug delivery. Pharmaceuticals 2022; 15(10): 1282.
[http://dx.doi.org/10.3390/ph15101282] [PMID: 36297394]
[172]
Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, et al. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release 2017; 253: 46-63.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.021] [PMID: 28242418]
[173]
Hendi A, Umair Hassan M, Elsherif M, et al. Healthcare applications of pH-sensitive hydrogel-based devices: A review. Int J Nanomedicine 2020; 15: 3887-901.
[http://dx.doi.org/10.2147/IJN.S245743] [PMID: 32581536]
[174]
Lazaridou M, Bikiaris DN, Lamprou DA. 3D bioprinted chitosan-based hydrogel scaffolds in tissue engineering and localised drug delivery. Pharmaceutics 2022; 14(9): 1978.
[http://dx.doi.org/10.3390/pharmaceutics14091978] [PMID: 36145727]
[175]
Liu Q, Li Q, Xu S, Zheng Q, Cao X. Preparation and properties of 3D printed alginate-chitosan polyion complex hydrogels for tissue engineering. Polymers 2018; 10(6): 664.
[http://dx.doi.org/10.3390/polym10060664] [PMID: 30966698]
[176]
Lee V, Singh G, Trasatti JP, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 2014; 20(6): 473-84.
[http://dx.doi.org/10.1089/ten.tec.2013.0335] [PMID: 24188635]
[177]
Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials 2004; 25(17): 3707-15.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.052] [PMID: 15020146]
[178]
Park JY, Choi JC, Shim JH, et al. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 2014; 6(3): 035004.
[http://dx.doi.org/10.1088/1758-5082/6/3/035004] [PMID: 24758832]
[179]
Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng 2012; 109(7): 1855-63.
[http://dx.doi.org/10.1002/bit.24455] [PMID: 22328297]
[180]
Balaji S, Kumar R, Sripriya R, et al. Characterization of keratin- collagen 3D scaffold for biomedical applications. Polym Adv Technol 2012; 23(3): 500-7.
[http://dx.doi.org/10.1002/pat.1905]
[181]
Rouse JG, Van Dyke ME. A review of keratin-based biomaterials for biomedical applications. Materials 2010; 3(2): 999-1014.
[http://dx.doi.org/10.3390/ma3020999]
[182]
Szeverenyi I, Cassidy AJ, Chung CW, et al. The human intermediate filament database: comprehensive information on a gene family involved in many human diseases. Hum Mutat 2008; 29(3): 351-60.
[http://dx.doi.org/10.1002/humu.20652] [PMID: 18033728]
[183]
Makarem R, Humphries MJ. LDV: A novel cell adhesion motif recognized by the integrin alpha 4 beta 1. Biochem Soc Trans 1991; 19(4): 380S.
[184]
Verma V, Verma P, Ray P, Ray AR. Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater 2008; 3(2): 025007.
[http://dx.doi.org/10.1088/1748-6041/3/2/025007] [PMID: 18458372]
[185]
Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59(4-5): 263-73.
[http://dx.doi.org/10.1016/j.addr.2007.03.013] [PMID: 17507111]
[186]
Loh XJ, Li J. Biodegradable thermosensitive copolymer hydrogels for drug delivery. Expert Opin Ther Pat 2007; 17(8): 965-77.
[http://dx.doi.org/10.1517/13543776.17.8.965]
[187]
Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev 2008; 37(8): 1473-81.
[http://dx.doi.org/10.1039/b713009k] [PMID: 18648673]
[188]
Joo MK, Park MH, Choi BG, Jeong B. Reverse thermogelling biodegradable polymer aqueous solutions. J Mater Chem 2009; 19(33): 5891-905.
[http://dx.doi.org/10.1039/b902208b]
[189]
Geever L, Cooney C, Devine D, Devery S, Nugent M, Higginbotham C. Negative temperature sensitive hydrogels in controlled drug delivery. Macromolecular symposia. Wiley Online Library 2008; Vol. 266: pp. 53-8.
[190]
Cirillo G, Spataro T, Curcio M, et al. Tunable thermo-responsive hydrogels: Synthesis, structural analysis and drug release studies. Mater Sci Eng C 2015; 48: 499-510.
[http://dx.doi.org/10.1016/j.msec.2014.12.045] [PMID: 25579951]
[191]
Dutta S, Cohn D. Temperature and pH responsive 3D printed scaffolds. J Mater Chem B Mater Biol Med 2017; 5(48): 9514-21.
[http://dx.doi.org/10.1039/C7TB02368E] [PMID: 32264566]
[192]
Navara AM, Kim YS, Xu Y, et al. A dual-gelling poly(N-isopropylacrylamide)-based ink and thermoreversible poloxamer support bath for high-resolution bioprinting. Bioact Mater 2022; 14: 302-12.
[http://dx.doi.org/10.1016/j.bioactmat.2021.11.016] [PMID: 35310364]
[193]
Han D, Lu Z, Chester SA, Lee H. Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Sci Rep 2018; 8(1): 1963.
[http://dx.doi.org/10.1038/s41598-018-20385-2] [PMID: 29386555]
[194]
Rana MM, De la Hoz Siegler H. Tuning the properties of PNIPAm-based hydrogel scaffolds for cartilage tissue engineering. Polymers 2021; 13(18): 3154.
[http://dx.doi.org/10.3390/polym13183154] [PMID: 34578055]
[195]
Escobar-Chávez JJ, López-Cervantes M, Naïk A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 2006; 9(3): 339-58.
[PMID: 17207417]
[196]
Yoon JJ, Chung HJ, Park TG. Photo-crosslinkable and biodegradable Pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. J Biomed Mater Res A 2007; 83A(3): 597-605.
[http://dx.doi.org/10.1002/jbm.a.31271] [PMID: 17503533]
[197]
Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M. Printing thermoresponsive reverse molds for the creation of patterned two- component hydrogels for 3D cell culture. J Vis Exp 2013; (77): e50632.
[PMID: 23892955]
[198]
Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014; 26(19): 3124-30.
[http://dx.doi.org/10.1002/adma.201305506] [PMID: 24550124]
[199]
Ashraf S, Park HK, Park H, Lee SH. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering. Macromol Res 2016; 24(4): 297-304.
[http://dx.doi.org/10.1007/s13233-016-4052-2]
[200]
Gallastegui A, Spesia MB, dell’Erba IE, et al. Controlled release of antibiotics from photopolymerized hydrogels: Kinetics and microbiological studies. Mater Sci Eng C 2019; 102: 896-905.
[http://dx.doi.org/10.1016/j.msec.2019.04.027] [PMID: 31147061]
[201]
Tan G, Xu J, Yu Q, et al. Photo-crosslinkable hydrogels for 3D bioprinting in the repair of osteochondral defects: A review of present applications and future perspectives. Micromachines 2022; 13(7): 1038.
[http://dx.doi.org/10.3390/mi13071038] [PMID: 35888855]
[202]
Mei Q, Rao J, Bei HP, Liu Y, Zhao X. 3D bioprinting photo-crosslinkable hydrogels for bone and cartilage repair. Int J Bioprinting 2021; 7(3): 367.
[http://dx.doi.org/10.18063/ijb.v7i3.367] [PMID: 34286152]
[203]
Liu VA, Bhatia SN. Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices 2002; 4(4): 257-66.
[http://dx.doi.org/10.1023/A:1020932105236]
[204]
Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010; 31(21): 5536-44.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.064] [PMID: 20417964]
[205]
Torgersen J, Qin XH, Li Z, Ovsianikov A, Liska R, Stampfl J. Hydrogels for two-photon polymerization: A toolbox for mimicking the extracellular matrix. Adv Funct Mater 2013; 23(36): 4542-54.
[http://dx.doi.org/10.1002/adfm.201203880]
[206]
Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 2010; 16(8): 2675-85.
[http://dx.doi.org/10.1089/ten.tea.2009.0798] [PMID: 20387987]
[207]
Xiao W, He J, Nichol JW, et al. Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomater 2011; 7(6): 2384-93.
[http://dx.doi.org/10.1016/j.actbio.2011.01.016] [PMID: 21295165]
[208]
Shin H, Olsen BD, Khademhosseini A. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 2012; 33(11): 3143-52.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.050] [PMID: 22265786]
[209]
Lu H, Zhang N, Ma M. Electroconductive hydrogels for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019; 11(6): e1568.
[http://dx.doi.org/10.1002/wnan.1568] [PMID: 31241253]
[210]
Zhang W, Feng P, Chen J, Sun Z, Zhao B. Electrically conductive hydrogels for flexible energy storage systems. Prog Polym Sci 2019; 88: 220-40.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.09.001]
[211]
Min J, Patel M, Koh WG. Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers 2018; 10(10): 1078.
[http://dx.doi.org/10.3390/polym10101078] [PMID: 30961003]
[212]
Vo R, Hsu HH, Jiang X. Hydrogel facilitated bioelectronic integration. Biomater Sci 2021; 9(1): 23-37.
[http://dx.doi.org/10.1039/D0BM01373K] [PMID: 33094761]
[213]
Adesanya K, Vanderleyden E, Embrechts A, Glazer P, Mendes E, Dubruel P. Properties of electrically responsive hydrogels as a potential dynamic tool for biomedical applications. J Appl Polym Sci 2014; 131(23)
[http://dx.doi.org/10.1002/app.41195]
[214]
Attaran A, Brummund J, Wallmersperger T. Modeling and simulation of the bending behavior of electrically-stimulated cantilevered hydrogels. Smart Mater Struct 2015; 24(3): 035021.
[http://dx.doi.org/10.1088/0964-1726/24/3/035021]
[215]
Boruah M, Mili M, Sharma S, Gogoi B, Kumar Dolui S. Synthesis and evaluation of swelling kinetics of electric field responsive poly(vinyl alcohol)-g-polyacrylic acid/OMNT nanocomposite hydrogels. Polym Compos 2015; 36(1): 34-41.
[http://dx.doi.org/10.1002/pc.22909]
[216]
Jackson N, Stam F. Optimization of electrical stimulation parameters for electro-responsive hydrogels for biomedical applications. J Appl Polym Sci 2015; 132(12)
[217]
Taghizadeh B, Taranejoo S, Monemian SA, et al. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 2015; 22(2): 145-55.
[http://dx.doi.org/10.3109/10717544.2014.887157] [PMID: 24547737]
[218]
Distler T, Boccaccini AR. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors – A review. Acta Biomater 2020; 101: 1-13.
[http://dx.doi.org/10.1016/j.actbio.2019.08.044] [PMID: 31476385]
[219]
Sikorski P. Electroconductive scaffolds for tissue engineering applications. Biomater Sci 2020; 8(20): 5583-8.
[http://dx.doi.org/10.1039/D0BM01176B] [PMID: 32975260]
[220]
Athukorala SS, Tran TS, Balu R, et al. 3D printable electrically conductive hydrogel scaffolds for biomedical applications: A review. Polymers 2021; 13(3): 474.
[http://dx.doi.org/10.3390/polym13030474] [PMID: 33540900]
[221]
Sawahata K, Hara M, Yasunaga H, Osada Y. Electrically controlled drug delivery system using polyelectrolyte gels. J Control Release 1990; 14(3): 253-62.
[http://dx.doi.org/10.1016/0168-3659(90)90165-P]
[222]
Kulkarni RV, Biswanath S. Electrically responsive smart hydrogels in drug delivery: A review. J Appl Biomater Biomech 2007; 5(3): 125-39.
[PMID: 20799182]
[223]
Giani G, Fedi S, Barbucci R. Hybrid magnetic hydrogel: A potential system for controlled drug delivery by means of alternating magnetic fields. Polymers 2012; 4(2): 1157-69.
[http://dx.doi.org/10.3390/polym4021157]
[224]
Li Y, Huang G, Zhang X, et al. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 2013; 23(6): 660-72.
[http://dx.doi.org/10.1002/adfm.201201708]
[225]
Szabó D, Czakó-Nagy I, Zrínyi M, Vértes A. Magnetic and mössbauer studies of magnetite-loaded polyvinyl alcohol hydrogels. J Colloid Interface Sci 2000; 221(2): 166-72.
[http://dx.doi.org/10.1006/jcis.1999.6572] [PMID: 10631016]
[226]
Li Z, Shen J, Ma H, et al. Preparation and characterization of sodium alginate/poly(N-isopropylacrylamide)/clay semi-IPN magnetic hydrogels. Polym Bull 2012; 68(4): 1153-69.
[http://dx.doi.org/10.1007/s00289-011-0671-0]
[227]
Asa’di S, Frounchi M, Dadbin S. Nanomagnetic poly (Vinyl Alcohol) hydrogels. Adv Mater Res 2014; 829: 539-43.
[228]
Mahdavinia GR, Etemadi H. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release. Mater Sci Eng C 2014; 45: 250-60.
[http://dx.doi.org/10.1016/j.msec.2014.09.023] [PMID: 25491827]
[229]
Tóth IY, Veress G, Szekeres M, Illés E, Tombácz E. Magnetic hyaluronate hydrogels: Preparation and characterization. J Magn Magn Mater 2015; 380: 175-80.
[http://dx.doi.org/10.1016/j.jmmm.2014.10.139]
[230]
Chen Y, Xiong X, Liu X, et al. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. J Mater Chem B Mater Biol Med 2020; 8(25): 5500-14.
[http://dx.doi.org/10.1039/D0TB00060D] [PMID: 32484194]
[231]
Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: An overview. Biomater Sci 2018; 6(5): 915-46.
[http://dx.doi.org/10.1039/C7BM00765E] [PMID: 29492503]
[232]
Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res 2018; 22(1): 11.
[http://dx.doi.org/10.1186/s40824-018-0122-1] [PMID: 29636985]
[233]
Benwood C, Chrenek J, Kirsch RL, et al. Natural biomaterials and their use as bioinks for printing tissues. Bioengineering 2021; 8(2): 27.
[http://dx.doi.org/10.3390/bioengineering8020027] [PMID: 33672626]
[234]
Hafezi F, Shorter S, Tabriz AG, et al. Bioprinting and preliminary testing of highly reproducible novel bioink for potential skin regeneration. Pharmaceutics 2020; 12(6): 550.
[http://dx.doi.org/10.3390/pharmaceutics12060550] [PMID: 32545741]
[235]
Montero FE, Rezende RA, da Silva JVL, Sabino MA. Development of a smart bioink for bioprinting applications. Front Mech Eng 2019; 5: 56.
[http://dx.doi.org/10.3389/fmech.2019.00056]
[236]
Ramiah P, du Toit LC, Choonara YE, Kondiah PPD, Pillay V. Hydrogel-based bioinks for 3D bioprinting in tissue regeneration. Front Mater 2020; 7: 76.
[http://dx.doi.org/10.3389/fmats.2020.00076]
[237]
Maan Z, Masri NZ, Willerth SM. Smart bioinks for the printing of human tissue models. Biomolecules 2022; 12(1): 141.
[http://dx.doi.org/10.3390/biom12010141] [PMID: 35053289]
[238]
Aduba DC Jr, Margaretta ED, Marnot AEC, et al. Vat photopolymerization 3D printing of acid-cleavable PEG-methacrylate networks for biomaterial applications. Mater Today Commun 2019; 19: 204-11.
[http://dx.doi.org/10.1016/j.mtcomm.2019.01.003]
[239]
Amukarimi S, Mozafari M. 4D bioprinting of tissues and organs. Bioprinting 2021; 23: e00161.
[http://dx.doi.org/10.1016/j.bprint.2021.e00161]
[240]
Miao S, Zhu W, Castro NJ, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep 2016; 6(1): 27226.
[http://dx.doi.org/10.1038/srep27226] [PMID: 27251982]
[241]
Sun H, Jia Y, Dong H, Dong D, Zheng J. Combining additive manufacturing with microfluidics: An emerging method for developing novel organs-on-chips. Curr Opin Chem Eng 2020; 28: 1-9.
[http://dx.doi.org/10.1016/j.coche.2019.10.006]
[242]
Hou X, Zhang YS, Santiago GT, et al. Interplay between materials and microfluidics. Nat Rev Mater 2017; 2(5): 1-15.
[243]
González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog Polym Sci 2019; 94: 57-116.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.03.001]
[244]
Du Toit LC, Kumar P, Choonara YE, Pillay V. Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering. Elsevier 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy