Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Oxidation of Polycyclic Aromatic Hydrocarbons with Mono-Oxygen Donors Catalysed by Triaryl-Manganese(III) Corroles

Author(s): Anshu Dandia, Shive M.S. Chauhan* and Marilyn Daisy Milton*

Volume 27, Issue 19, 2023

Published on: 27 September, 2023

Page: [1728 - 1737] Pages: 10

DOI: 10.2174/0113852728269382230926033829

Price: $65

Abstract

The oxidation of polycyclic aromatic hydrocarbons (PAH) with mono-oxygen donors such as iodosylbenzene, hydrogen peroxide and tert-butyl hydroperoxide in the presence of selected 5,10,15-triarylmanganese( III) corroles as catalysts were examined under different reaction conditions. The effect of reaction conditions on triaryl-manganese(III) corroles catalysts and oxidants is discussed. It was observed that in a solvent system consisting of a mixture of dichloromethane and acetonitrile, the oxidation of anthracene with tertbutyl hydroperoxide catalysed by tri(aryl)manganese(III)corroles worked better than with hydrogen peroxide or iodosylbenzene as the oxidants. The oxidation of anthracene with hydroxo-manganese(IV)corroles was also examined in organic solvents under mild conditions. UV-Vis and other spectroscopic data were used to determine the oxidative mechanism for the oxidation of anthracene and other polycyclic aromatic hydrocarbons with mono-oxygen donors catalysed by triaryl-manganese(III)corroles.

Graphical Abstract

[1]
Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int., 2013, 60, 71-80.
[http://dx.doi.org/10.1016/j.envint.2013.07.019] [PMID: 24013021]
[2]
Wigger, T.; Seidel, A.; Karst, U. Electrochemistry coupled to (LC-)MS for the simulation of oxidative biotransformation reactions of PAHs. Chemosphere, 2017, 176, 202-211.
[http://dx.doi.org/10.1016/j.chemosphere.2017.02.128] [PMID: 28264777]
[3]
RamaKrishna N.V.S.; Devanesan, P.D.; Rogan, E.G.; Cavalieri, E.L.; Jeong, H.; Jankowiak, R.; Small, G.J. Mechanism of metabolic activation of the potent carcinogen 7,12-dimethylbenz[a]anthracene. Chem. Res. Toxicol., 1992, 5(2), 220-226.
[http://dx.doi.org/10.1021/tx00026a011]
[4]
Ravi Kumar, M.N.V.; Vadhanam, M.V.; Horn, J.; Flesher, J.W.; Gupta, R.C. Formation of benzylic-DNA adducts resulting from 7,12-dimethylbenz[a]anthracene in vivo. Chem. Res. Toxicol., 2005, 18(4), 686-691.
[http://dx.doi.org/10.1021/tx049686p] [PMID: 15833028]
[5]
Perin-Roussel, O.; Croisy, A.; Ekert, B.; Zajdela, F. The metabolic activation of dibenzo[a,e]fluoranthene in vitro. Evidence that its bay-region and pseudo-bay-region diol-epoxides react preferentially with guanosine. Cancer Lett., 1984, 22(3), 289-298.
[http://dx.doi.org/10.1016/0304-3835(84)90165-4] [PMID: 6713370]
[6]
Chen, J.X.; Pao, A.; Zheng, Y.; Ye, X.; Kisleyou, A.S.; Morris, R.; Slaga, T.J.; Harvey, R.G.; Tang, M. Sequence preference of 7,12-dimethylbenz[a]anthracene-syn-diol epoxide-DNA binding in the mouse H-ras gene detected by UvrABC nucleases. Biochemistry, 1996, 35(29), 9594-9602.
[http://dx.doi.org/10.1021/bi9604136] [PMID: 8755741]
[7]
Cavalieri, E.L.; Rogan, E.G. Radical cations in aromatic hydrocarbon carcinogenesis. Free Radic. Res. Commun., 1990, 11(1-3), 77-87.
[http://dx.doi.org/10.3109/10715769009109670] [PMID: 2074051]
[8]
Cavalieri, E.L.; Rogan, E.G. Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica, 1995, 25(7), 677-688.
[http://dx.doi.org/10.3109/00498259509061885] [PMID: 7483666]
[9]
Ran, C.; Dai, Q.; Ruan, Q.; Penning, T.M.; Blair, I.A.; Harvey, R.G. Strategies for synthesis of adducts of omicron-quinone metabolites of carcinogenic polycyclic aromatic hydrocarbons with 2′-deoxyribonucleosides. J. Org. Chem., 2008, 73(3), 992-1003.
[http://dx.doi.org/10.1021/jo701667u] [PMID: 18181642]
[10]
Gold, A.; Jayaraj, K.; Ball, L.M.; Brust, K. Oxidation of polycyclic aromatic hydrocarbons by an oxoferryl porphyrin π-cation radical. J. Mol. Catal. Chem., 1997, 125(1), 23-32.
[http://dx.doi.org/10.1016/S1381-1169(97)00053-8]
[11]
Safari, N.; Naghavi, S.S.; Khavasi, H.R. Homogeneous m-CPBA-oxidation of anthracene by electron-withdrawing metalloporphyrins in different reaction conditions. Appl. Catal. A Gen., 2005, 285(1-2), 59-64.
[http://dx.doi.org/10.1016/j.apcata.2005.02.009]
[12]
Giri, N.G.; Chauhan, S.M.S. Oxidation of polycyclic aromatic hydrocarbons with hydrogen peroxide catalyzed by Iron(III)porphyrins. Catal. Commun., 2009, 10(4), 383-387.
[http://dx.doi.org/10.1016/j.catcom.2008.09.030]
[13]
Diaz-Uribe, C.; Vallejo, W.; Quiñones, C. Quinones, Physical-chemical study of anthracene selective oxidation by a Fe(III)-phenyl porhyrin derivative. Int. J. Mol. Sci., 2020, 21(1), 353.
[http://dx.doi.org/10.3390/ijms21010353] [PMID: 31948078]
[14]
Kadri, T.; Rouissi, T.; Kaur Brar, S.; Cledon, M.; Sarma, S.; Verma, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. (China), 2017, 51, 52-74.
[http://dx.doi.org/10.1016/j.jes.2016.08.023] [PMID: 28115152]
[15]
Eibes, G.; Cajthaml, T.; Moreira, M.T.; Feijoo, G.; Lema, J.M. Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 2006, 64(3), 408-414.
[http://dx.doi.org/10.1016/j.chemosphere.2005.11.075] [PMID: 16445965]
[16]
Munir, I.Z.; Dordick, J.S. Soybean peroxidase as an effective bromination catalyst. Enzyme Microb. Technol., 2000, 26(5-6), 337-341.
[http://dx.doi.org/10.1016/S0141-0229(99)00180-5] [PMID: 10713205]
[17]
Kraus, J.J.; Munir, I.Z.; McEldoon, J.P.; Clark, D.S.; Dordick, J.S. Oxidation of polycyclic aromatic hydrocarbons catalyzed by soybean peroxidase. Appl. Biochem. Biotechnol., 1999, 80(3), 221-230.
[http://dx.doi.org/10.1385/ABAB:80:3:221]
[18]
Fukuzumi, S.; Nakanishi, I.; Tanaka, K. Multi-electron oxidation of anthracenes with a one-electron oxidant via water-accelerated electron-transfer disproportionation of the radical cations as the rate-determining step. J. Phys. Chem. A, 1999, 103(50), 11212-11220.
[http://dx.doi.org/10.1021/jp990541e]
[19]
Peng, T.; Luo, A.; Kan, J.; Liang, L.; Huang, T.; Hu, Z. Identification of a ring hydroxylating dioxygenase capable of anthracene and benz{a]anthracene oxidation from Rhodococcus sp P14. Microbial Physiology, 2018, 28(4), 183-189.
[http://dx.doi.org/10.1159/000494384] [PMID: 30566957]
[20]
Sawant, S.C.; Wu, X.; Cho, J.; Cho, K.B.; Kim, S.H.; Seo, M.S.; Lee, Y.M.; Kubo, M.; Ogura, T.; Shaik, S.; Nam, W. Water as an oxygen source: Synthesis, characterization, and reactivity studies of a mononuclear nonheme manganese(IV) oxo complex. Angew. Chem. Int. Ed., 2010, 49(44), 8190-8194.
[http://dx.doi.org/10.1002/anie.201000819] [PMID: 20859971]
[21]
Mayfield, J.R.; Grotemeyer, E.N.; Jackson, T.A. Concerted proton–electron transfer reactions of manganese–hydroxo and manganese–oxo complexes. Chem. Commun. (Camb.), 2020, 56(65), 9238-9255.
[http://dx.doi.org/10.1039/D0CC01201G] [PMID: 32578605]
[22]
Lei, H.; Li, X.; Meng, J.; Zheng, H.; Zhang, W.; Cao, R. Structure effects of metal corroles on energy-related small molecule activation reactions. ACS Catal., 2019, 9(5), 4320-4344.
[http://dx.doi.org/10.1021/acscatal.9b00310]
[23]
Grills, D.C.; Ertem, M.Z.; McKinnon, M.; Ngo, K.T.; Rochford, J. Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts. Coord. Chem. Rev., 2018, 374, 173-217.
[http://dx.doi.org/10.1016/j.ccr.2018.05.022]
[24]
De, R.; Gonglach, S.; Paul, S.; Haas, M.; Sreejith, S.S.; Gerschel, P.; Apfel, U.P.; Vuong, T.H.; Rabeah, J.; Roy, S.; Schöfberger, W. Electrocatalytic reduction of CO2 to acetic acid by a molecular manganese corrole complex. Angew. Chem. Int. Ed., 2020, 59(26), 10527-10534.
[http://dx.doi.org/10.1002/anie.202000601] [PMID: 32281187]
[25]
Luo, A.; Wu, Y.R.; Xu, Y.; Kan, J.; Qiao, J.; Liang, L.; Huang, T.; Hu, Z. Characterization of a cytochrome P450 monooxygenase capable of high molecular weight PAHs oxidization from Rhodococcus sp. P14. Process Biochem., 2016, 51(12), 2127-2133.
[http://dx.doi.org/10.1016/j.procbio.2016.07.024]
[26]
England, P.A.; Harford-Cross, C.F.; Stevenson, J.A.; Rouch, D.A.; Wong, L.L. The oxidation of naphthalene and pyrene by cytochrome P450 cam. FEBS Lett., 1998, 424(3), 271-274.
[http://dx.doi.org/10.1016/S0014-5793(98)00189-6] [PMID: 9539165]
[27]
a) Sideri, A.; Goyal, A.; Di Nardo, G.; Tsotsou, G.E.; Gilardi, G. Hydroxylation of non-substituted polycyclic aromatic hydrocarbons by cytochrome P450 BM3 engineered by directed evolution. J. Inorg. Biochem., 2013, 120, 1-7.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.11.007] [PMID: 23262457];
b) Kumari, P.; Nagpal, R.; Chauhan, S.M.S. Efficient oxidation of polycyclic aromatic hydrocarbons with H2O2 catalyzed by 5,10,15-triaryl-corrolatoiron (IV) chloride in ionic liquids. Catal. Commun., 2012, 29, 15-20.
[http://dx.doi.org/10.1016/j.catcom.2012.09.011]
[28]
a) Chauhan, S.M.S.; Kohli, T.S.; Rao, K.V.; Gulati, A. Oxidation of 1,3-dimethyluracil with manganese(III)-5,10,15,20-tetraarylporphyrins and monooxygen donors as models for cytochrome-P-450. Ind. J. Chem. Section B-Org. ChemMedChem, 1990, 29, 539-544.;
b) Gulati, A.; Chauhan, S.M.S. Oxidation of 1, 3‐dimethylthymine with cumene hydroperoxide catalyzed by 5,10,15,20‐tetraarylporphyrinatoman-ganese (III) chlorides. J. Indian Chem. Soc., 1997, 74, 74.
[29]
a) Minisci, F.; Fontana, F.; Araneo, S.; Recupero, F.; Banfi, S.; Quici, S. Kharasch and metalloporphyrin catalysis in the functionalization of alkanes, alkenes, and alkylbenzenes by t-BuOOH. free radical mechanisms, solvent effect, and relationship with the gif reaction. J. Am. Chem. Soc., 1995, 117(1), 226-232.
[http://dx.doi.org/ 10.1021/ja00106a026];
b) Brovo, A.; Fontana, F.; Minisci, F. A free-radical mechanism in a novel metalloporphyrin-catalyzed oxidation of phenols by t -BuOOH. Chem. Lett., 1996, 25(5), 401-402.
[http://dx.doi.org/10.1246/cl.1996.401]
[30]
Mansuy, D.; Bartoli, J-F.; Momenteau, M. Alkane hydroxylation catalyzed by metalloporhyrins: Evidence for different active oxygen species with alkylhydroperoxides and iodosobenzene as oxidants. Tetrahedron Lett., 1982, 23(27), 2781-2784.
[http://dx.doi.org/10.1016/S0040-4039(00)87457-2]
[31]
Carrier, M.N.; Scheer, C.; Gouvine, P.; Bartoli, J.F.; Battioni, P.; Mansuy, D. Biomimetic hydroxylation of aromatic compounds: Hydrogen peroxide and manganese-polyhalogenated porphyrins as a particularly good system. Tetrahedron Lett., 1990, 31(46), 6645-6648.
[http://dx.doi.org/10.1016/S0040-4039(00)97136-3]
[32]
Rebelo, S.L.H.; Simões, M.M.Q.; Neves, M.G.P.M.S.; Silva, A.M.S.; Cavaleiro, J.A.S. An efficient approach for aromatic epoxidation using hydrogen peroxide and Mn(III) porphyrins. Chem. Commun. , 2004, 5(5), 608-609.
[http://dx.doi.org/10.1039/B313683C] [PMID: 14973631]
[33]
Arunkumar, C.; Lee, Y.M.; Lee, J.Y.; Fukuzumi, S.; Nam, W. Hydrogen-atom abstraction reactions by manganese(V)- and manganese(IV)-oxo porphyrin complexes in aqueous solution. Chemistry, 2009, 15(43), 11482-11489.
[http://dx.doi.org/10.1002/chem.200901362] [PMID: 19810056]
[34]
Nam, W.; Kim, I.; Lim, M.H.; Choi, H.J.; Lee, J.S.; Jang, H.G. Isolation of an oxomanganese(V) porphyrin intermediate in the reaction of a manganese(III) porphyrin complex and H2O2 in aqueous solution. Chemistry, 2002, 8(9), 2067-2071.
[http://dx.doi.org/10.1002/1521-3765(20020503)8:9<2067:AID-CHEM2067>3.0.CO;2-V] [PMID: 11981891]
[35]
a) Song, W.J.; Seo, M.S.; DeBeer George, S.; Ohta, T.; Song, R.; Kang, M.J.; Tosha, T.; Kitagawa, T.; Solomon, E.I.; Nam, W. Synthesis, characterization, and reactivities of manganese(V)-oxo porphyrin complexes. J. Am. Chem. Soc., 2007, 129(5), 1268-1277.
[http://dx.doi.org/10.1021/ja066460v] [PMID: 17263410];
b) Guo, M.; Lee, Y.M.; Seo, M.S.; Kwon, Y.J.; Li, X.X.; Ohta, T.; Kim, W.S.; Sarangi, R.; Fukuzumi, S.; Nam, W. Mn(III)-iodosylarene porphyrins as an active oxidant in oxidation reactions: Synthesis, characterization, and reactivity studies. Inorg. Chem., 2018, 57(16), 10232-10240.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01426] [PMID: 30080409]
[36]
Sacramento, J.J.D.; Goldberg, D.P. Factors affecting hydrogen atom transfer reactivity of metal–oxo porphyrinoid complexes. Acc. Chem. Res., 2018, 51(11), 2641-2652.
[http://dx.doi.org/10.1021/acs.accounts.8b00414] [PMID: 30403479]
[37]
Mohammed, T.P.; Sankaralingam, M. Reactivities of high valent manganese-oxo porphyrins in aqueous medium. Tetrahedron, 2022, 103132483
[http://dx.doi.org/10.1016/j.tet.2021.132483]
[38]
Guo, M.; Seo, M.S.; Lee, Y.M.; Fukuzumi, S.; Nam, W. Highly reactive manganese (IV)-oxo porphyrins showing temperature-dependent reversed electronic effect in C-H bond activation reactions. J. Am. Chem. Soc., 2019, 141(31), 12187-12191.
[http://dx.doi.org/10.1021/jacs.9b04496] [PMID: 31337211]
[39]
Di Natale, C.; Gros, C.P.; Paolesse, R. Corroles at work: A small macrocycle for great applications. Chem. Soc. Rev., 2022, 51(4), 1277-1335.
[http://dx.doi.org/10.1039/D1CS00662B] [PMID: 35037929]
[40]
Kumari, P.; Chauhan, S.M.S. Efficient synthesis of 5,10,15-triarylcorroles using amberlyst 15 under solvent-free conditions. J. Heterocycl. Chem., 2008, 45(3), 779-783.
[http://dx.doi.org/10.1002/jhet.5570450323]
[41]
Dandia, A.; Chauhan, S.M.S. Synthesis of meso-substituted corroles and porphyrins using iodine as a catalyst. J. Chem. Sci., 2020, 132(1), 123-132.
[http://dx.doi.org/10.1007/s12039-020-01823-z]
[42]
a) Gross, Z.; Galili, N.; Saltsman, I. The first direct synthesis of corroles from pyrrole. Angew. Chem. Int. Ed., 1999, 38(10), 1427-1429.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1427:AID-ANIE1427>3.0.CO;2-1] [PMID: 29711568];
b) Gross, Z.; Galili, N.; Simkhovich, L.; Saltsman, I.; Botoshansky, M.; Bläser, D.; Boese, R.; Goldberg, I. Solvent-free condensation of pyrrole and pentafluorobenzaldehyde: A novel synthetic pathway to corrole and oligopyrromethenes. Org. Lett., 1999, 1(4), 599-602.
[http://dx.doi.org/10.1021/ol990739h]
[43]
Paolesse, R.; Nardis, S.; Sagone, F.; Khoury, R.G. Synthesis and functionalization of meso-aryl-substituted corroles. J. Org. Chem., 2001, 66(2), 550-556.
[http://dx.doi.org/10.1021/jo005661t] [PMID: 11429828]
[44]
Koszarna, B.; Gryko, D.T. Efficient synthesis of meso-substituted corroles in a H2O-MeOH mixture. J. Org. Chem., 2006, 71(10), 3707-3717.
[http://dx.doi.org/10.1021/jo060007k] [PMID: 16674040]
[45]
a) Bröring, M.; Hell, C. Manganese as a template: A new synthesis of corrole. Chem. Commun. , 2001, 22(22), 2336-2337.
[http://dx.doi.org/10.1039/b107362c] [PMID: 12240063];
b) Yadav, O.; Varshney, A.; Kumar, A. Manganese(III) mediated synthesis of A2B Mn(III) corroles: A new general and green synthetic approach and characterization. Inorg. Chem. Commun., 2017, 86, 168-171.
[http://dx.doi.org/10.1016/j.inoche.2017.10.018]
[46]
Ou, Z.; Erben, C.; Autret, M.; Will, S.; Rosen, D.; Lex, J.; Vogel, E.; Kadish, K.M. Manganese(III) and manganese(IV) corroles: Synthesis, spectroscopic, electrochemical and X-ray structural characterization. J. Porphyr. Phthalocyanines, 2005, 9(6), 398-412.
[http://dx.doi.org/10.1142/S1088424605000502]
[47]
Golubkov, G.; Bendix, J.; Gray, H.B.; Mahammed, A.; Goldberg, I.; DiBilio, A.J.; Gross, Z. High-valent manganese corroles and the first perhalogenated metallocorrole catalyst. Angew. Chem. Int. Ed., 2001, 40(11), 2132-2134.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2132:AID-ANIE2132>3.0.CO;2-5]
[48]
Gross, Z.; Golubkov, G.; Simkhovich, L. Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(V) corrole. Angew. Chem. Int. Ed., 2000, 39, 4045-4047.
[49]
Liu, H.Y.; Lai, T.S.; Yeung, L.L.; Chang, C.K. First synthesis of perfluorinated corrole and its mn=o complex. Org. Lett., 2003, 5(5), 617-620.
[http://dx.doi.org/10.1021/ol027111i] [PMID: 12605473]
[50]
Kumar, A.; Goldberg, I.; Botoshansky, M.; Buchman, Y.; Gross, Z. Oxygen atom transfer reactions from isolated (oxo)manganese(V) corroles to sulfides. J. Am. Chem. Soc., 2010, 132(43), 15233-15245.
[http://dx.doi.org/10.1021/ja1050296] [PMID: 20932015]
[51]
Ka, W.K.; Ngo, F.L.; Ranburger, D.; Malone, J.; Zhang, R. Visible light-induced formation of corrole-manganese(V)-oxo complexes: Observation of multiple oxidation pathways. J. Inorg. Biochem., 2016, 163, 39-44.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.08.004] [PMID: 27513949]
[52]
Merlau, M.L.; Cho, S.H.; Sun, S.S.; Nguyen, S.T.; Hupp, J.T. Anthracene-induced turnover enhancement in the manganese porphyrin-catalyzed epoxidation of olefins. Inorg. Chem., 2005, 44(15), 5523-5529.
[http://dx.doi.org/10.1021/ic0505596] [PMID: 16022551]
[53]
Koposov, A.Y.; Netzel, B.C.; Yusubov, M.S.; Nemykin, V.N.; Nazarenko, A.Y.; Zhdankin, V.V. Preparation and structure of oligomeric iodosylbenzene sulfate (PhIO)3·SO3: Stable and water-soluble analog of iodosylbenzene. Eur. J. Org. Chem., 2007, 2007(27), 4475-4478.
[http://dx.doi.org/10.1002/ejoc.200700625]
[54]
Bose, S.; Pariyar, A.; Biswas, A.N.; Das, P.; Bandyopadhyay, P. Mild oxidation of hydrocarbons by tert-butyl hydroperoxide catalyzed by electron deficient manganese(III) corroles. J. Mol. Catal. Chem., 2010, 332(1-2), 1-6.
[http://dx.doi.org/10.1016/j.molcata.2010.09.001]
[55]
Bose, S.; Pariyar, A.; Biswas, A.N.; Das, P.; Bandyopadhyay, P. Electron deficient manganese(III) corrole catalyzed oxidation of alkanes and alkylbenzenes at room temperature. Catal. Commun., 2011, 12(13), 1193-1197.
[http://dx.doi.org/10.1016/j.catcom.2011.04.026]
[56]
Li, X.; Zhang, X.P.; Guo, M.; Lv, B.; Guo, K.; Jin, X.; Zhang, W.; Lee, Y.M.; Fukuzumi, S.; Nam, W.; Cao, R. Identifying intermediates in electrocatalytic water oxidation with a manganese corrole complex. J. Am. Chem. Soc., 2021, 143(36), 14613-14621.
[http://dx.doi.org/10.1021/jacs.1c05204] [PMID: 34469154]
[57]
Guo, M.; Lee, Y.M.; Gupta, R.; Seo, M.S.; Ohta, T.; Wang, H.H.; Liu, H.Y.; Dhuri, S.N.; Sarangi, R.; Fukuzumi, S.; Nam, W. Dioxygen activation and O-O Bond formation reactions by manganese corroles. J. Am. Chem. Soc., 2017, 139(44), 15858-15867.
[http://dx.doi.org/10.1021/jacs.7b08678] [PMID: 29056043]
[58]
Yu, J.; Wang, Y.; Yang, Y.; Lai, W. Mechanistic insight into the O-O bond activation by manganese corrole complexes. Top. Catal., 2022, 65(1-4), 493-504.
[http://dx.doi.org/10.1007/s11244-021-01525-x]
[59]
a) Lansky, D.E.; Narducci Sarjeant, A.A.; Goldberg, D.P. Inverse axial-ligand effects in the activation of H(2)O(2) and ROOH by an Mn(III) corrolazine. Angew. Chem. Int. Ed., 2006, 45(48), 8214-8217.
[http://dx.doi.org/10.1002/anie.200603139] [PMID: 17103472];
b) Alcover-Fortuny, G.; Caballol, R.; Pierloot, K.; de Graaf, C. Role of the imide axial ligand in the spin and oxidation state of manganese corrole and corrolazine Complexes. Inorg. Chem., 2016, 55(11), 5274-5280.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00194] [PMID: 27163862];
c) Zhao, H.; Pierloot, K.; Langner, E.H.G.; Swarts, J.C.; Conradie, J.; Ghosh, A. Low-energy states of manganese-oxo corrole and corrolazine: Multiconfiguration reference ab initio calculations. Inorg. Chem., 2012, 51(7), 4002-4006.
[http://dx.doi.org/10.1021/ic201972f] [PMID: 22432719];
d) Neu, H.M.; Yang, T.; Baglia, R.A.; Yosca, T.H.; Green, M.T.; Quesne, M.G.; de Visser, S.P.; Goldberg, D.P. Oxygen-atom transfer reactivity of axially ligated Mn(V)-oxo complexes: Evidence for enhanced electrophilic and nucleophilic pathways. J. Am. Chem. Soc., 2014, 136(39), 13845-13852.
[http://dx.doi.org/10.1021/ja507177h] [PMID: 25238495]
[60]
a) Matsui, J.; Park, H.; Otsuka, K.; Oyama, M. Kinetics and mechanisms of the reactions of 9-substituted anthracene cation radicals with water or methanol in acetonitrile. J. Electroanal. Chem. , 2003, 558, 49-57.
[http://dx.doi.org/10.1016/S0022-0728(03)00376-0];
b) Branz, S.E.; Jin, K.; Liu, Y.; Dao, T.N. New and renewed synthesis of 10-phenylanthrone and10-hydroxy-10-phenylanthrone. Org. Prep. Proced. Int., 1992, 24(2), 127-133.
[http://dx.doi.org/10.1080/00304949209355685]
[61]
Tomaszewski, J.E.; Manning, W.B.; Muschik, G.M. A facile synthesis of benz[a]anthracene-7,12-diones. Tetrahedron Lett., 1977, 18(11), 971-974.
[http://dx.doi.org/10.1016/S0040-4039(01)92805-9]
[62]
Jeong, D.; Yan, J.J.; Noh, H.; Hedman, B.; Hodgson, K.O.; Solomon, E.I.; Cho, J. Oxidation of naphthalene with a manganese(IV) Bis(hydroxo) complex in the presence of acid. Angew. Chem. Int. Ed., 2018, 57(26), 7764-7768.
[http://dx.doi.org/10.1002/anie.201802641] [PMID: 29701293]
[63]
Williams, D.B.G.; Lawton, M. Drying of organic solvents: Quantitative evaluation of the efficiency of several desiccants. J. Org. Chem., 2010, 75(24), 8351-8354.
[http://dx.doi.org/10.1021/jo101589h] [PMID: 20945830]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy