Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Mesenchymal Stem Cell-Derived Exosomes Mitigate Acute Murine Liver Injury via Ets-1 and Heme Oxygenase-1 Up-regulation

Author(s): Ying-Hsien Kao*, Chih-Yang Chang, Yu-Chun Lin, Po-Han Chen, Po-Huang Lee, Huoy-Rou Chang, Wen-Yu Chang, Yo-Chen Chang, Shen-Fa Wun and Cheuk-Kwan Sun*

Volume 19, Issue 6, 2024

Published on: 19 September, 2023

Page: [906 - 918] Pages: 13

DOI: 10.2174/1574888X19666230918102826

Price: $65

Abstract

Background: Mesenchymal stem cells (MSCs)-derived exosomes have been previously demonstrated to promote tissue regeneration in various animal disease models. This study investigated the protective effect of exosome treatment in carbon tetrachloride (CCl4)-induced acute liver injury and delineated possible underlying mechanism.

Methods: Exosomes collected from conditioned media of previously characterized human umbilical cord-derived MSCs were intravenously administered into male CD-1 mice with CCl4-induced acute liver injury. Biochemical, histological and molecular parameters were used to evaluate the severity of liver injury. A rat hepatocyte cell line, Clone-9, was used to validate the molecular changes by exosome treatment.

Results: Exosome treatment significantly suppressed plasma levels of AST, ALT, and pro-inflammatory cytokines, including IL-6 and TNF-α, in the mice with CCl4-induced acute liver injury. Histological morphometry revealed a significant reduction in the necropoptic area in the injured livers following exosome therapy. Consistently, western blot analysis indicated marked elevations in hepatic expression of PCNA, c-Met, Ets-1, and HO-1 proteins after exosome treatment. Besides, the phosphorylation level of signaling mediator JNK was significantly increased, and that of p38 was restored by exosome therapy. Immunohistochemistry double staining confirmed nuclear Ets-1 expression and cytoplasmic localization of c-Met and HO-1 proteins. In vitro studies demonstrated that exosome treatment increased the proliferation of Clone-9 hepatocytes and protected them from CCl4-induced cytotoxicity. Kinase inhibition experiment indicated that the exosome-driven hepatoprotection might be mediated through the JNK pathway.

Conclusion: Exosome therapy activates the JNK signaling activation pathway as well as up-regulates Ets-1 and HO-1 expression, thereby protecting hepatocytes against hepatotoxin-induced cell death.

Graphical Abstract

[1]
Alves LA, Bonavita A, Quaresma K, et al. New strategies for acute liver failure: Focus on xenotransplantation therapy. Cell Med 2010; 1(1): 47-54.
[http://dx.doi.org/10.3727/215517910X516646] [PMID: 26998396]
[2]
Conconi M, Burra P, Di Liddo R, et al. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 2006; 18(6): 1089-96.
[http://dx.doi.org/10.3892/ijmm.18.6.1089] [PMID: 17089012]
[3]
Gauthaman K, Venugopal JR, Yee FC, Biswas A, Ramakrishna S, Bongso A. Osteogenic differentiation of human Wharton’s jelly stem cells on nanofibrous substrates in vitro. Tissue Eng Part A 2011; 17(1-2): 71-81.
[http://dx.doi.org/10.1089/ten.tea.2010.0224] [PMID: 20673136]
[4]
Fong CY, Subramanian A, Gauthaman K, et al. Human umbilical cord wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev 2011.
[5]
Weiss ML, Anderson C, Medicetty S, et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 2008; 26(11): 2865-74.
[http://dx.doi.org/10.1634/stemcells.2007-1028] [PMID: 18703664]
[6]
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815-22.
[http://dx.doi.org/10.1182/blood-2004-04-1559] [PMID: 15494428]
[7]
Tsai PC, Fu TW, Chen YMA, et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl 2009; 15(5): 484-95.
[http://dx.doi.org/10.1002/lt.21715] [PMID: 19399744]
[8]
Lin SZ, Chang YJ, Liu JW, et al. Transplantation of human Wharton’s Jelly-derived stem cells alleviates chemically induced liver fibrosis in rats. Cell Transplant 2010; 19(11): 1451-63.
[http://dx.doi.org/10.3727/096368910X514198] [PMID: 20587139]
[9]
Yin F, Wang WY, Jiang WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo : From biological characteristics to therapeutic mechanisms. World J Stem Cells 2019; 11(8): 548-64.
[http://dx.doi.org/10.4252/wjsc.v11.i8.548] [PMID: 31523373]
[10]
Kao YH, Lin YC, Lee PH, et al. Infusion of human mesenchymal stem cells improves regenerative niche in thioacetamide-injured mouse liver. Tissue Eng Regen Med 2020; 17(5): 671-82.
[http://dx.doi.org/10.1007/s13770-020-00274-4] [PMID: 32880852]
[11]
Huang B, Cheng X, Wang H, et al. Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J Transl Med 2016; 14(1): 45.
[http://dx.doi.org/10.1186/s12967-016-0792-1] [PMID: 26861623]
[12]
Wang Y, Wang J, Ma H, Tang Z, Ding H, Shi X. Mesenchymal stem cells increase heme oxygenase 1-activated autophagy in treatment of acute liver failure. Biochem Biophys Res Commun 2019; 508(3): 682-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.146] [PMID: 30528392]
[13]
Huang YJ, Chen P, Lee CY, et al. Protection against acetaminophen-induced acute liver failure by omentum adipose tissue derived stem cells through the mediation of Nrf2 and cytochrome P450 expression. J Biomed Sci 2016; 23(1): 5.
[http://dx.doi.org/10.1186/s12929-016-0231-x] [PMID: 26787241]
[14]
Wang J, Cen P, Chen J, et al. Role of mesenchymal stem cells, their derived factors, and extracellular vesicles in liver failure. Stem Cell Res Ther 2017; 8(1): 137.
[http://dx.doi.org/10.1186/s13287-017-0576-4] [PMID: 28583199]
[15]
Lotfinia M, Kadivar M, Piryaei A, et al. Effect of secreted molecules of human embryonic stem cell-derived mesenchymal stem cells on acute hepatic failure model. Stem Cells Dev 2016; 25(24): 1898-908.
[http://dx.doi.org/10.1089/scd.2016.0244] [PMID: 27676103]
[16]
Zagoura DS, Roubelakis MG, Bitsika V, et al. Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut 2012; 61(6): 894-906.
[http://dx.doi.org/10.1136/gutjnl-2011-300908] [PMID: 21997562]
[17]
Zhao T, Sun F, Liu J, et al. Emerging role of mesenchymal stem cell-derived exosomes in regenerative medicine. Curr Stem Cell Res Ther 2019; 14(6): 482-94.
[http://dx.doi.org/10.2174/1574888X14666190228103230] [PMID: 30819086]
[18]
Cai S, Cheng X, Pan X, Li J. Emerging role of exosomes in liver physiology and pathology. Hepatol Res 2017; 47(2): 194-203.
[http://dx.doi.org/10.1111/hepr.12794] [PMID: 27539153]
[19]
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116-25.
[http://dx.doi.org/10.1016/j.ceb.2014.05.004] [PMID: 24959705]
[20]
Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 2017; 49(6): e346.
[http://dx.doi.org/10.1038/emm.2017.63] [PMID: 28620221]
[21]
Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 2020; 12(8): 814-40.
[http://dx.doi.org/10.4252/wjsc.v12.i8.814] [PMID: 32952861]
[22]
Jiang W, Tan Y, Cai M, et al. Human umbilical cord msc-derived exosomes suppress the development of ccl4-induced liver injury through antioxidant effect. Stem Cells Int 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/6079642] [PMID: 29686713]
[23]
Rostom DM, Attia N, Khalifa HM, Abou Nazel MW, El Sabaawy EA. The therapeutic potential of extracellular vesicles versus mesenchymal stem cells in liver damage. Tissue Eng Regen Med 2020; 17(4): 537-52.
[http://dx.doi.org/10.1007/s13770-020-00267-3] [PMID: 32506351]
[24]
Nong K, Wang W, Niu X, et al. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell–derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy 2016; 18(12): 1548-59.
[http://dx.doi.org/10.1016/j.jcyt.2016.08.002] [PMID: 27592404]
[25]
Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22(6): 845-54.
[http://dx.doi.org/10.1089/scd.2012.0395] [PMID: 23002959]
[26]
Chiabotto G, Ceccotti E, Tapparo M, Camussi G, Bruno S. Human liver stem cell-derived extracellular vesicles target hepatic stellate cells and attenuate their pro-fibrotic phenotype. Front Cell Dev Biol 2021; 9: 777462.
[http://dx.doi.org/10.3389/fcell.2021.777462] [PMID: 34796180]
[27]
Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 2014; 5(3): 76.
[http://dx.doi.org/10.1186/scrt465] [PMID: 24915963]
[28]
Zhao S, Liu Y, Pu Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Des Devel Ther 2019; 13: 2887-97.
[http://dx.doi.org/10.2147/DDDT.S220190] [PMID: 31695322]
[29]
Yan Y, Jiang W, Tan Y, et al. Hucmsc exosome-derived gpx1 is required for the recovery of hepatic oxidant injury. Mol Ther 2017; 25(2): 465-79.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.019] [PMID: 28089078]
[30]
Tamura R, Uemoto S, Tabata Y. Immunosuppressive effect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model. Inflamm Regen 2016; 36(1): 26.
[http://dx.doi.org/10.1186/s41232-016-0030-5] [PMID: 29259699]
[31]
Shao M, Xu Q, Wu Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res Ther 2020; 11(1): 37.
[http://dx.doi.org/10.1186/s13287-020-1550-0] [PMID: 31973730]
[32]
Thery C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; Chapter 3: Unit 3.22.
[http://dx.doi.org/10.1002/0471143030.cb0322s30]
[33]
Hameed H, Farooq M, Vuillier C, et al. Ripk1 in liver parenchymal cells limits murine hepatitis during acute ccl4-induced liver injury. Int J Mol Sci 2022; 23(13): 7367.
[http://dx.doi.org/10.3390/ijms23137367] [PMID: 35806372]
[34]
Hsiao CC, Chen PH, Cheng CI, et al. Toll-like receptor-4 is a target for suppression of proliferation and chemoresistance in HepG2 hepatoblastoma cells. Cancer Lett 2015; 368(1): 144-52.
[http://dx.doi.org/10.1016/j.canlet.2015.08.004] [PMID: 26276725]
[35]
Kao YH, Chen CL, Jawan B, et al. Upregulation of hepatoma-derived growth factor is involved in murine hepatic fibrogenesis. J Hepatol 2010; 52(1): 96-105.
[http://dx.doi.org/10.1016/j.jhep.2009.10.002] [PMID: 19913322]
[36]
Kao YH, Lin YC, Tsai MS, et al. Involvement of the nuclear high mobility group B1 peptides released from injured hepatocytes in murine hepatic fibrogenesis. Biochim Biophys Acta Mol Basis Dis 2014; 1842(9): 1720-32.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.017] [PMID: 24970745]
[37]
Kang LI, Mars W, Michalopoulos G. Signals and cells involved in regulating liver regeneration. Cells 2012; 1(4): 1261-92.
[http://dx.doi.org/10.3390/cells1041261] [PMID: 24710554]
[38]
Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC. Angiogenesis and oxidative stress: Common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci 2011; 63(1): 1-9.
[http://dx.doi.org/10.1016/j.jdermsci.2011.04.007] [PMID: 21600738]
[39]
Gambarotta G, Boccaccio C, Giordano S, Andŏ M, Stella MC, Comoglio PM. Ets up-regulates MET transcription. Oncogene 1996; 13(9): 1911-7.
[PMID: 8934537]
[40]
Tomita N, Morishita R, Taniyama Y, et al. Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1. Circulation 2003; 107(10): 1411-7.
[http://dx.doi.org/10.1161/01.CIR.0000055331.41937.AA] [PMID: 12642363]
[41]
Li B, Lager J, Wang D, Li D. Ets-1 participates in and facilitates developmental expression of hypoxia-induced mitogenic factor in mouse lung. Front Biosci 2007; 12(1): 2269-78.
[http://dx.doi.org/10.2741/2229] [PMID: 17127463]
[42]
Chan YC, Khanna S, Roy S, Sen CK. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 2011; 286(3): 2047-56.
[http://dx.doi.org/10.1074/jbc.M110.158790] [PMID: 21081489]
[43]
Tanaka M, Masaki Y, Tanaka K, et al. Reduction of fatty acid oxidation and responses to hypoxia correlate with the progression of de-differentiation in HCC. Mol Med Rep 2013; 7(2): 365-70.
[http://dx.doi.org/10.3892/mmr.2012.1201] [PMID: 23178736]
[44]
Oikawa T. ETS transcription factors: Possible targets for cancer therapy. Cancer Sci 2004; 95(8): 626-33.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03320.x] [PMID: 15298723]
[45]
Anderson JD, Johansson HJ, Graham CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappab signaling. Stem Cells 2016; 34(3): 601-13.
[http://dx.doi.org/10.1002/stem.2298] [PMID: 26782178]
[46]
Lin D, Chen H, Xiong J, et al. Mesenchymal stem cells exosomal let-7a-5p improve autophagic flux and alleviate liver injury in acute-on-chronic liver failure by promoting nuclear expression of TFEB. Cell Death Dis 2022; 13(10): 865.
[http://dx.doi.org/10.1038/s41419-022-05303-9] [PMID: 36224178]
[47]
Ueno T, Komatsu M. Autophagy in the liver: Functions in health and disease. Nat Rev Gastroenterol Hepatol 2017; 14(3): 170-84.
[http://dx.doi.org/10.1038/nrgastro.2016.185] [PMID: 28053338]
[48]
Zhang X, Wu D, Aldarouish M, Yin X, Li C, Wang C. ETS-1: A potential target of glycolysis for metabolic therapy by regulating glucose metabolism in pancreatic cancer. Int J Oncol 2017; 50(1): 232-40.
[http://dx.doi.org/10.3892/ijo.2016.3770] [PMID: 27878249]
[49]
Weng CJ, Chen MJ, Yeh CT, Yen GC. Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. N Biotechnol 2011; 28(6): 767-77.
[http://dx.doi.org/10.1016/j.nbt.2011.05.003] [PMID: 21624509]
[50]
Yoon YJ, Kim DK, Yoon CM, et al. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS One 2014; 9(12): e115170.
[http://dx.doi.org/10.1371/journal.pone.0115170] [PMID: 25502753]
[51]
Li Y, Xiu F, Mou Z, et al. Exosomes derived from Toxoplasma gondii stimulate an inflammatory response through JNK signaling pathway. Nanomedicine 2018; 13(10): 1157-68.
[http://dx.doi.org/10.2217/nnm-2018-0035] [PMID: 29542367]
[52]
Ferguson SW, Wang J, Lee CJ, et al. The microRNA regulatory landscape of MSC-derived exosomes: A systems view. Sci Rep 2018; 8(1): 1419.
[http://dx.doi.org/10.1038/s41598-018-19581-x] [PMID: 29362496]
[53]
Song XJ, Zhang L, Li Q, Li Y, Ding FH, Li X. hUCB-MSC derived exosomal miR-124 promotes rat liver regeneration after partial hepatectomy via downregulating Foxg1. Life Sci 2021; 265: 118821.
[http://dx.doi.org/10.1016/j.lfs.2020.118821] [PMID: 33275988]
[54]
Zhang J, Gao J, Lin D, et al. Potential networks regulated by mscs in acute-on-chronic liver failure: Exosomal mirnas and intracellular target genes. Front Genet 2021; 12: 650536.
[http://dx.doi.org/10.3389/fgene.2021.650536] [PMID: 33968135]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy