Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Solvent-free Approaches towards the Synthesis of Therapeutically Important Heterocycles

Author(s): Ambarish Priyadarshan, Garima Tripathi*, Anil Kumar Singh, Sanchayita Rajkhowa, Abhijeet Kumar* and Vinod Kumar Tiwari*

Volume 11, Issue 2, 2024

Published on: 28 September, 2023

Page: [127 - 147] Pages: 21

DOI: 10.2174/2213346110666230915163034

Price: $65

conference banner
Abstract

The development of synthetic methodologies to obtain a diverse range of heterocyclic scaffolds has been a very attractive area of research due to their vast therapeutic importance. Conventional approaches that require the use of organic solvents, which are generally flammable, toxic, and not ecofriendly, are replaced either with greener alternatives or by completely avoiding their use. In literature, several solvent-free methods have already been reported for the synthesis of vast varieties of organic compounds. This review focuses on the solvent-free methods developed for the synthesis of different types of nitrogen and oxygen heterocycles which have exhibited diverse therapeutic applications.

Next »
Graphical Abstract

[1]
Tiwari, V. K. ; Kumar, A.; Rajkhowa, S.; Tripathi, G. ; Singh A. K. Green Chemistry: Introduction, Application and Scope; Springer, 2022.
[2]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[3]
Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13(6), 1391-1398.
[http://dx.doi.org/10.1039/c0gc00797h]
[4]
Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem., 2017, 19(1), 18-43.
[http://dx.doi.org/10.1039/C6GC02157C]
[5]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. Chem. Rev., 2009, 109(9), 4140-4182.
[http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022]
[6]
Tripathi, G.; Kumar, A.; Rajkhowa, S.; Tiwari, V.K. Synthesis of biologically relevant heterocyclic skeletons under solvent-free condition. In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier, 2021; pp. 421-459.
[http://dx.doi.org/10.1016/B978-0-12-820586-0.00013-3]
[7]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[8]
Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.043] [PMID: 31330449]
[9]
Garella, D.; Borretto, E.; Di Stilo, A.; Martina, K.; Cravotto, G.; Cintas, P. Microwave-assisted synthesis of N-heterocycles in medicinal chemistry. MedChemComm, 2013, 4(10), 1323-1343.
[http://dx.doi.org/10.1039/c3md00152k]
[10]
Wang, D.; Wang, X.; Zhou, S.; Gu, P.; Zhu, X.; Wang, C.; Zhang, Q. Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coord. Chem. Rev., 2023, 482, 215074.
[http://dx.doi.org/10.1016/j.ccr.2023.215074]
[11]
Gu, P.Y.; Kim, P.Y.; Chai, Y.; Ashby, P.D.; Xu, Q.F.; Liu, F.; Chen, Q.; Lu, J.M.; Russell, T.P. Visualizing assembly dynamics of all‐liquid 3D architectures (Small 6/2022). Small, 2022, 18(6), 2270028.
[http://dx.doi.org/10.1002/smll.202270028]
[12]
Singh, A.K.; Carroll, K.; McMurray, J.J.V.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; Wanner, C.; Wheeler, D.C.; Więcek, A.; Blackorby, A.; Cizman, B.; Cobitz, A.R.; Davies, R.; DiMino, T.L.; Kler, L.; Meadowcroft, A.M.; Taft, L.; Perkovic, V. Daprodustat for the treatment of anemia in patients not undergoing dialysis. N. Engl. J. Med., 2021, 385(25), 2313-2324.
[13]
Zarganes-Tzitzikas, T.; Neochoritis, C.G.; Dömling, A. Atorvastatin (Lipitor) by MCR. ACS Med. Chem. Lett., 2019, 10(3), 389-392.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00579] [PMID: 30891146]
[14]
Fairoosa, J.; Saranya, S.; Radhika, S.; Anilkumar, G. Recent advances in microwave assisted multicomponent reactions. ChemistrySelect, 2020, 5(17), 5180-5197.
[http://dx.doi.org/10.1002/slct.202000683]
[15]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Adv., 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843]
[16]
Mohamed, M.; El-Domany, R.; Abd El-Hameed, R. Synthesis of certain pyrrole derivatives as antimicro-bial agents. Acta Pharm., 2009, 59(2), 145-158.
[http://dx.doi.org/10.2478/v10007-009-0016-9] [PMID: 19564140]
[17]
Speck-Planche, A.; Guilarte-Montero, L.; Yera-Bueno, R.; Rojas-Vargas, J.A.; García-López, A.; Uriarte, E.; Molina-Pérez, E. Rational design of new agrochemical fungicides using substructural descriptors. Pest Manag. Sci., 2011, 67(4), 438-445.
[http://dx.doi.org/10.1002/ps.2082] [PMID: 21394877]
[18]
LaRosa, J.C.; Grundy, S.M.; Waters, D.D.; Shear, C.; Barter, P.; Fruchart, J.C.; Gotto, A.M.; Greten, H.; Kastelein, J.J.P.; Shepherd, J.; Wenger, N.K. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N. Engl. J. Med., 2005, 352(14), 1425-1435.
[http://dx.doi.org/10.1056/NEJMoa050461] [PMID: 15755765]
[19]
Amadio, P., Jr; Cummings, D.M. The effect of tolmetin on the chronic pain and decreased functional capacity associated with degenerative joint disease. J. Clin. Pharmacol., 1985, 25(2), 100-108.
[http://dx.doi.org/10.1002/j.1552-4604.1985.tb02809.x] [PMID: 3886706]
[20]
Abd El-Hameed, R.H.; Sayed, A.I.; Mahmoud Ali, S.; Mosa, M.A.; Khoder, Z.M.; Fatahala, S.S. Synthesis of novel pyrroles and fused pyrroles as antifungal and antibacterial agents. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 2183-2198.
[http://dx.doi.org/10.1080/14756366.2021.1984904] [PMID: 34602000]
[21]
Okada, A.; Banno, S.; Ichiishi, A.; Kimura, M.; Yamaguchi, I.; Fujimura, M. Pyrrolnitrin interferes with osmotic signal transduction in Neurospora crassa. J. Pestic. Sci., 2005, 30(4), 378-383.
[http://dx.doi.org/10.1584/jpestics.30.378]
[22]
Trautwein, A.W.; Süßmuth, R.D.; Jung, G. Hantzsch pyrrole synthesis on solid support. Bioorg. Med. Chem. Lett., 1998, 8(17), 2381-2384.
[http://dx.doi.org/10.1016/S0960-894X(98)00430-2] [PMID: 9873545]
[23]
Menéndez, J.; Leonardi, M.; Estévez, V.; Villacampa, M. The hantzsch pyrrole synthesis: Non-conventional variations and applications of a neglected classical reaction. Synthesis, 2019, 51(4), 816-828.
[http://dx.doi.org/10.1055/s-0037-1610320]
[24]
Gui, Q.W.; He, X.; Wang, W.; Zhou, H.; Dong, Y.; Wang, N.; Tang, J.X.; Cao, Z.; He, W.M. The clean preparation of multisubstituted pyrroles under metal- and solvent-free conditions. Green Chem., 2020, 22(1), 118-122.
[http://dx.doi.org/10.1039/C9GC02657F]
[25]
von Zuben, T.W.; Cariello, S, G.; Salles, A.G. Visible light-driven metal-free synthesis of highly substituted pyrroles through C–H functionalisation. Green Chem., 2021, 23(17), 6361-6365.
[http://dx.doi.org/10.1039/D1GC02177J]
[26]
Thwin, M.; Mahmoudi, B.; Ivaschuk, O.A.; Yousif, Q.A. An efficient and recyclable nanocatalyst for the green and rapid synthesis of biologically active polysubstituted pyrroles and 1,2,4,5-tetrasubstituted imidazole derivatives. RSC Adv., 2019, 9(28), 15966-15975.
[http://dx.doi.org/10.1039/C9RA02325A] [PMID: 35521369]
[27]
Nguyen, H.T.; Thuy Nguyen, L.H.; Le Hoang Doan, T.; Tran, P.H. A mild and efficient method for the synthesis of pyrroles using MIL-53(Al) as a catalyst under solvent-free sonication. RSC Adv., 2019, 9(16), 9093-9098.
[http://dx.doi.org/10.1039/C9RA01071H] [PMID: 35517685]
[28]
Borghs, J.C.; Lebedev, Y.; Rueping, M.; El-Sepelgy, O. Sustainable manganese-catalyzed solvent-free synthesis of pyrroles from 1,4-diols and primary amines. Org. Lett., 2019, 21(1), 70-74.
[http://dx.doi.org/10.1021/acs.orglett.8b03506] [PMID: 30582820]
[29]
Cho, H.; Madden, R.; Nisanci, B.; Török, B. The paal-knorr reaction revisited. A catalyst and solvent-free synthesis of underivatized and n-substituted pyrroles. Green Chem., 2015, 17(2), 1088-1099.
[30]
Jana, A.; Das Adhikary, N.; Pramanik, A. Graphene oxide (GO) catalysed MW-assisted one-pot synthesis of densely substituted furan. Green Chem., 2020, 22(13), 4304-4310.
[http://dx.doi.org/10.1039/D0GC00723D]
[31]
Wani, R.R.; Chaudhari, H.K.; Takale, B.S. Solvent free synthesis of n‐substituted pyrroles catalyzed by calcium nitrate. J. Heterocycl. Chem., 2019, 56(4), 1337-1340.
[http://dx.doi.org/10.1002/jhet.3507]
[32]
Yavari, I.; Ghazvini, M.; Azad, L.; Sanaeishoar, T. A solvent-free synthesis of 1,2,3,5-tetrasubstituted pyrroles from enaminones and α-haloketones. Chin. Chem. Lett., 2011, 22, 1219-1222.
[http://dx.doi.org/10.1016/j.cclet.2011.05.026]
[33]
Alizadeh, A.; Babaki, M.; Zohreh, N. Solvent-free synthesis of penta-substituted pyrroles: one-pot reaction of amine, alkyl acetoacetate, and fumaryl chloride. Tetrahedron, 2009, 65(8), 1704-1707.
[http://dx.doi.org/10.1016/j.tet.2008.12.011]
[34]
Hossaini, Z. Solvent-free synthesis of substituted five membered heterocycles: One-pot reaction of primary amine and alkyl propiolate or isothiocyanate in the presence of oxalyl chloride. Chin. Chem. Lett., 2014, 25(1), 159-162.
[http://dx.doi.org/10.1016/j.cclet.2013.09.015]
[35]
Bhatnagar, A.; Sharma, P.K.; Kumar, N. A review on “Imidazoles”: Their chemistry and pharmacological potentials. Int. J. Pharm. Tech. Res., 2011, 3, 268-282.
[36]
Zheng, X.; Ma, Z.; Zhang, D. Synthesis of imidazole-based medicinal molecules utilizing the van leusen imidazole synthesis. Pharmaceuticals., 2020, 13(3), 37.
[http://dx.doi.org/10.3390/ph13030037] [PMID: 32138202]
[37]
Vardanyan, R.S.; Hruby, V.J. 35 - Antifungal Drugs; Elsevier: Amsterdam, 2006, pp. 535-547.
[38]
Park, N-H.; Shin, K-H.; Kang, M.K. 34 - Antifungal and antiviral agents. Mosby; , 2017, pp. 488-503.
[39]
Ebel, K.; Koehler, H.; Gamer, A.O.; Jäckh, R. Imidazole and derivatives. In: Ullmann's Encyclopedia of Industrial Chemistry; Wiley, 2000.
[http://dx.doi.org/10.1002/14356007.a13_661]
[40]
Patel, G.; Patel, A.R.; Banerjee, S. Visible light-emitting diode light-driven one-pot four component synthesis of poly-functionalized imidazoles under catalyst- and solvent-free conditions. New J. Chem., 2020, 44(31), 13295-13300.
[http://dx.doi.org/10.1039/D0NJ02527E]
[41]
Gajengi, A.L.; Chaurasia, S.; Monflier, E.; Ponchel, A.; Ternel, J.; Bhanage, B.M. Ultrasound-assisted synthesis of NiO nanoparticles and their catalytic application for the synthesis of trisubstituted imidazoles under solvent free conditions. Catal. Commun., 2021, 161, 106366.
[http://dx.doi.org/10.1016/j.catcom.2021.106366]
[42]
Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Adv., 2015, 5, 15233-15266.
[43]
Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem., 2020, 208, 112783.
[http://dx.doi.org/10.1016/j.ejmech.2020.112783] [PMID: 32916311]
[44]
Jeelan Basha, N.; Basavarajaiah, S.M.; Shyamsunder, K. Therapeutic potential of pyrrole and pyrrolidine analogs: An update. Mol. Divers., 2022, 26(5), 2915-2937.
[http://dx.doi.org/10.1007/s11030-022-10387-8] [PMID: 35079946]
[45]
Chu, C-M.; Hung, M-S.; Hsieh, M-T.; Kuo, C-W.; Suja, T.D.; Song, J.S.; Chiu, H.H.; Chao, Y.S.; Shia, K.S. Bioisosteric replacement of the pyrazole 3-carboxamide moiety of rimonabant. A novel series of oxadiazoles as CB1 cannabinoid receptor antagonists. Org. Biomol. Chem., 2008, 6(18), 3399-3407.
[http://dx.doi.org/10.1039/b807648k] [PMID: 18802648]
[46]
Annes, S.B.; Saritha, R.; Subramanian, S.; Shankar, B.; Ramesh, S. Solvent-free and montmorillonite K10-catalyzed domino reactions for the synthesis of pyrazoles with alkynylester as a dual synthon. Green Chem., 2020, 22(8), 2388-2393.
[http://dx.doi.org/10.1039/D0GC00162G]
[47]
Soltanzadeh, Z.; Imanzadeh, G.; Noroozi-Pesyan, N.; Şahin, E. Green synthesis of pyrazole systems under solvent-free conditions. Green Chem. Lett. Rev., 2017, 10(3), 148-153.
[http://dx.doi.org/10.1080/17518253.2017.1330428]
[48]
Martins, M.A.P.; Beck, P.; Machado, P.; Brondani, S.; Moura, S.; Zanatta, N.; Bonacorso, H.G.; Flores, A.F.C. Microwave-assisted synthesis of novel 5-trichloromethyl-4,5-dihydro-1H-1-pyrazole methyl esters under solvent free conditions. J. Braz. Chem. Soc., 2006, 17(2), 408-411.
[http://dx.doi.org/10.1590/S0103-50532006000200027]
[49]
Sabitha, G.; SatheeshBabu, R.; Yadav, J.S. One pot synthesis of 4-(2-Hydroxybenzoyl)-pyrazoles from 3-Formylchromones under microwave irradiation in solvent free conditions. Synth. Commun., 1998, 28(24), 4571-4576.
[http://dx.doi.org/10.1080/00397919808004521]
[50]
Panda, J.; Raiguru, B.P.; Mishra, M.; Mohapatra, S.; Nayak, S. Recent advances in the synthesis of imidazo[1,2‐ a]pyridines: A brief review. ChemistrySelect, 2022, 7(3), e202103987.
[http://dx.doi.org/10.1002/slct.202103987]
[51]
Hasanvand, Z.; Oghabi Bakhshaiesh, T.; Peytam, F.; Firoozpour, L.; Hosseinzadeh, E.; Motahari, R.; Moghimi, S.; Nazeri, E.; Toolabi, M.; Momeni, F.; Bijanzadeh, H.; Khalaj, A.; Baratte, B.; Josselin, B.; Robert, T.; Bach, S.; Esmaeili, R.; Foroumadi, A. Imidazo[1,2-a]quinazolines as novel, potent EGFR-TK inhibitors: Design, synthesis, bioactivity evaluation, and in silico studies. Bioorg. Chem., 2023, 133, 106383.
[http://dx.doi.org/10.1016/j.bioorg.2023.106383] [PMID: 36764231]
[52]
Attanasi, O.A.; Bianchi, L.; Campisi, L.A.; Crescentini, L.D.; Favi, G.; Mantellini, F. A novel solvent-free approach to imidazole containing nitrogen-bridgehead heterocycles. Org. Lett., 2013, 15(14), 3646-3649.
[http://dx.doi.org/10.1021/ol4015267] [PMID: 23805986]
[53]
Ansari, A.J.; Sharma, S.; Pathare, R.S.; Gopal, K.; Sawant, D.M.; Pardasani, R.T. Solvent–free multicomponent synthesis of biologically–active fused–imidazo heterocycles catalyzed by reusable Yb(OTf)3 under microwave irradiation. ChemistrySelect, 2016, 1(5), 1016-1021.
[54]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[55]
Ayati, A.; Emami, S.; Foroumadi, A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur. J. Med. Chem., 2016, 109, 380-392.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.009] [PMID: 26826582]
[56]
Gupta, D.; Jain, D.K. Synthesis, antifungal and antibacterial activity of novel 1,2,4-triazole derivatives. J. Adv. Pharm. Technol. Res., 2015, 6(3), 141-146.
[http://dx.doi.org/10.4103/2231-4040.161515] [PMID: 26317080]
[57]
Strzelecka, M.; Świątek, P. 1,2,4-triazoles as important antibacterial agents. Pharmaceuticals, 2021, 14(3), 224.
[http://dx.doi.org/10.3390/ph14030224] [PMID: 33799936]
[58]
Agrahari, A.K.; Bose, P.; Jaiswal, M.K.; Rajkhowa, S.; Singh, A.S.; Hotha, S.; Mishra, N.; Tiwari, V.K. Cu(I)-catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev., 2021, 121(13), 7638-7956.
[http://dx.doi.org/10.1021/acs.chemrev.0c00920] [PMID: 34165284]
[59]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[60]
Gribanov, P.S.; Atoian, E.M.; Philippova, A.N.; Topchiy, M.A.; Asachenko, A.F.; Osipov, S.N. One‐pot synthesis of 5‐Amino‐1,2,3‐triazole derivatives via dipolar azide−nitrile cycloaddition and dimroth rearrangement under solvent‐free conditions. Eur. J. Org. Chem., 2021, 2021(9), 1378-1384.
[http://dx.doi.org/10.1002/ejoc.202001620]
[61]
Mukherjee, N.; Ahammed, S.; Bhadra, S.; Ranu, B.C. Solvent-free one-pot synthesis of 1,2,3-triazole derivatives by the ‘Click’ reaction of alkyl halides or aryl boronic acids, sodium azide and terminal alkynes over a Cu/Al2O3 surface under ball-milling. Green Chem., 2013, 15(2), 389-397.
[http://dx.doi.org/10.1039/C2GC36521A]
[62]
Kiranmye, T.; Vadivelu, M.; Magadevan, D.; Sampath, S.; Parthasarathy, K.; Aman, N.; Karthikeyan, K. Sunlight‐assisted photocatalytic sustainable synthesis of 1,4‐disubstituted 1,2,3‐Triazoles and benzimidazoles using TiO2 −Cu2 (OH)PO4 under solvent‐free condition. ChemistrySelect, 2021, 6(6), 1210-1215.
[http://dx.doi.org/10.1002/slct.202004427]
[63]
Wang, D.; Li, N.; Zhao, M.; Shi, W.; Ma, C.; Chen, B. Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chem., 2010, 12(12), 2120-2123.
[http://dx.doi.org/10.1039/c0gc00381f]
[64]
Sareen, N.; Singh, A.S.; Tiwari, V.K.; Kant, R.; Bhattacharya, S. A dinuclear copper(i) thiodiacetate complex as an efficient and reusable “click” catalyst for the synthesis of glycoconjugates. Dalt Trans, 2017, 46, 12705-12710.
[65]
Heeb, S.; Fletcher, M.P.; Chhabra, S.R.; Diggle, S.P.; Williams, P.; Cámara, M. Quinolones: From antibiotics to autoinducers. FEMS Microbiol. Rev., 2011, 35(2), 247-274.
[http://dx.doi.org/10.1111/j.1574-6976.2010.00247.x] [PMID: 20738404]
[66]
Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. MedChemComm, 2019, 10(10), 1719-1739.
[http://dx.doi.org/10.1039/C9MD00120D] [PMID: 31803393]
[67]
Lue, P.; Greenhill, J.V. Enaminones in heterocyclic synthesis. In: Advances in Heterocyclic Chemistry; , 1996.
[http://dx.doi.org/10.1016/S0065-2725(08)60072-0]
[68]
Dave, C.G.; Joshipura, H.M. ChemInform Abstract: Microwave assisted gould-jacob reaction: Synthesis of 4quinolones under solvent-free conditions. ChemInform, 2002, 33(28)
[69]
Nadaraj, V.; Selvi, S.T. Microwave-assisted solvent-free synthesis of 4-methyl-2-hydroxy- and 2-methyl-4-hydroxyquinolines. Indian J. Chem., 2007, 38, 1203-1207.
[70]
Hong, W.P.; Shin, I.; Lim, H.N. Recent advances in one-pot modular synthesis of 2-quinolones. Molecules, 2020, 25(22), 5450.
[http://dx.doi.org/10.3390/molecules25225450] [PMID: 33233747]
[71]
Jia, C.S.; Dong, Y.W.; Tu, S.J.; Wang, G.W. Microwave-assisted solvent-free synthesis of substituted 2-quinolones. Tetrahedron, 2007, 63(4), 892-897.
[http://dx.doi.org/10.1016/j.tet.2006.11.030]
[72]
Nguyen, H.T.; Truong, V.A.; Tran, P.H. Synthesis of polyhydroquinolines and propargylamines through one-pot multicomponent reactions using an acidic ionic liquid immobilized onto magnetic Fe3O4 as an efficient heterogeneous catalyst under solvent-free sonication. RSC Advances, 2020, 10(42), 25358-25363.
[http://dx.doi.org/10.1039/D0RA04008H] [PMID: 35517476]
[73]
Kumar, S.; Sharma, P.; Kapoor, K.K.; Hundal, M.S. An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron, 2008, 64(3), 536-542.
[http://dx.doi.org/10.1016/j.tet.2007.11.008]
[74]
Kumar, S.; Narasimhan, B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J., 2018, 12(1), 38.
[http://dx.doi.org/10.1186/s13065-018-0406-5] [PMID: 29619583]
[75]
Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem., 2014, 2014, 1-31.
[http://dx.doi.org/10.1155/2014/202784] [PMID: 25383216]
[76]
Smith, S.J.; Pauly, G.T.; Akram, A.; Melody, K.; Ambrose, Z.; Schneider, J.P.; Hughes, S.H. Rilpivirine and doravirine have complementary efficacies against NNRTI-resistant HIV-1 mutants. J. Acquir. Immune Defic. Syndr., 2016, 72(5), 485-491.
[http://dx.doi.org/10.1097/QAI.0000000000001031] [PMID: 27124362]
[77]
Smith, S.J.; Pauly, G.T.; Akram, A.; Melody, K.; Rai, G.; Maloney, D.J.; Ambrose, Z.; Thomas, C.J.; Schneider, J.T.; Hughes, S.H. Rilpivirine analogs potently inhibit drug-resistant HIV-1 mutants. Retrovirology, 2016, 13(1), 11.
[http://dx.doi.org/10.1186/s12977-016-0244-2] [PMID: 26880034]
[78]
Bosica, G.; Cachia, F.; De Nittis, R.; Mariotti, N. Efficient one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via a three-component biginelli reaction. Molecules, 2021, 26(12), 3753.
[http://dx.doi.org/10.3390/molecules26123753] [PMID: 34202951]
[79]
Elmaghraby, A.M.; Mousa, I.A.; Harb, A.A.; Mahgoub, M.Y. Three component reaction: An efficient synthesis and reactions of 3,4-dihydropyrimidin-2(1 H)-ones and thiones using new natural catalyst. ISRN Org. Chem., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/706437] [PMID: 24052868]
[80]
Zhang, Y.; Wang, B.; Zhang, X.; Huang, J.; Liu, C. An efficient synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and thiones catalyzed by a novel Brønsted acidic ionic liquid under solvent-free conditions. Molecules, 2015, 20(3), 3811-3820.
[http://dx.doi.org/10.3390/molecules20033811] [PMID: 25730389]
[81]
Guo, Y.; Tang, H.; Gao, Z.; Meng, X.; Yu, H.; Zhong, H.; Huang, G.; Zou, C. Solvent-free and catalyst-free biginelli reaction to synthesize 4-Alkyl- 3,4-dihydropyrimidin-2-(1H)-ones. ChemistrySelect, 2017, 2(27), 8253-8255.
[http://dx.doi.org/10.1002/slct.201701466]
[82]
Handique, S.; Sharma, P. One pot three components solvent free synthesis of 4-substituted phenyl-2-(sulfanyl/oxo) pyrimidine-5-carboxylate derivatives. Results in Chemistry, 2022, 4, 100411.
[http://dx.doi.org/10.1016/j.rechem.2022.100411]
[83]
Siddiqui, I.R.; Rai, P.; Srivastava, A. Chitosan: An efficient promoter for the synthesis of 2-aminopyrimidine-5-carbonitrile derivatives in solvent free conditions. New J. Chem., 2014, 38(8), 3791-3795.
[http://dx.doi.org/10.1039/C4NJ00199K]
[84]
Faisal, M.; Saeed, A. Chemical insights into the synthetic chemistry of quinazolines: Recent advances. Front Chem., 2021, 8, 594717.
[http://dx.doi.org/10.3389/fchem.2020.594717] [PMID: 33585397]
[85]
Reist, C.; Streja, E.; Tang, C.C.; Shapiro, B.; Mintz, J.; Hollifield, M. Prazosin for treatment of post-traumatic stress disorder: A systematic review and meta-analysis. CNS Spectr., 2021, 26(4), 338-344.
[http://dx.doi.org/10.1017/S1092852920001121] [PMID: 32362287]
[86]
Mohammadkhani, L.; Heravi, M.M. Microwave-assisted synthesis of quinazolines and quinazolinones: An overview. Front Chem., 2020, 8, 580086.
[http://dx.doi.org/10.3389/fchem.2020.580086] [PMID: 33282829]
[87]
He, L.; Li, H.; Chen, J.; Wu, X.F. Recent advances in 4(3H)-quinazolinone syntheses. RSC Adv., 2014, 4(24), 12065-12077.
[http://dx.doi.org/10.1039/C4RA00351A]
[88]
Gajaganti, S.; Kumari, S.; Kumar, D.; Allam, B.K.; Srivastava, V.; Singh, S. An efficient, green, and solvent-free multi-component synthesis of benzimidazolo/benzothiazolo quinazolinone derivatives using Sc (OTf) 3 catalyst under controlled microwave irradiation. J. Heterocycl. Chem., 2018, 55(11), 2578-2584.
[http://dx.doi.org/10.1002/jhet.3314]
[89]
Purkhosrow, A.; Khalili, A.; Chih Ho, A.; Mowlazadeh, H.S.; Fakher, S.; Khalafi-Nezhad, A. Highly efficient, one pot, solvent and catalyst, free synthesis of novel quinazoline derivatives under ultrasonic irradiation and their vasorelaxant activity isolated thoracic aorta of rat. Iran. J. Pharm. Res., 2019, 18(2), 607-619.
[PMID: 31531045]
[90]
Rad-Moghadam, K.; Samavi, L. One-pot three-component synthesis of 2-substituted 4-aminoquinazolines. J. Heterocycl. Chem., 2006, 43, 913-916.
[91]
Yashwantrao, G.; Jejurkar, V.P.; Kshatriya, R.; Saha, S. Solvent-free, mechanochemically scalable synthesis of 2,3-dihydroquinazolin-4(1H)-one using brønsted acid catalyst. ACS Sustain. Chem. Eng., 2019, 7(15), 13551-13558.
[http://dx.doi.org/10.1021/acssuschemeng.9b03199]
[92]
Petty, F.; Trivedi, M.H.; Fulton, M.; John R, A. Benzodiazepines as antidepressants: Does GABA play a role in depression? Biol. Psychiatry, 1995, 38(9), 578-591.
[http://dx.doi.org/10.1016/0006-3223(95)00049-7] [PMID: 8573660]
[93]
Ogawa, Y.; Takeshima, N.; Hayasaka, Y.; Tajika, A.; Watanabe, N.; Streiner, D.; Furukawa, T.A. Antidepressants plus benzodiazepines for adults with major depression. Cochrane Libr., 2019, 6(6), CD001026.
[http://dx.doi.org/10.1002/14651858.CD001026.pub2] [PMID: 31158298]
[94]
Bushnell, G.A.; Stürmer, T.; Gaynes, B.N.; Pate, V.; Miller, M. Simultaneous antidepressant and benzodiazepine new use and subsequent long-term benzodiazepine use in adults with depression, United States, 2001-2014. JAMA Psychiatry, 2017, 74(7), 747-755.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.1273] [PMID: 28593281]
[95]
Birkenhäger, T.K.; Moleman, P.; Nolen, W.A. Benzodiazepines for depression? A review of the literature. Int. Clin. Psychopharmacol., 1995, 10(3), 181-195.
[http://dx.doi.org/10.1097/00004850-199510030-00008] [PMID: 8675972]
[96]
Smith, S.G.; Sanchez, R.; Zhou, M.M. Privileged diazepine compounds and their emergence as bromodomain inhibitors. Chem. Biol., 2014, 21(5), 573-583.
[http://dx.doi.org/10.1016/j.chembiol.2014.03.004] [PMID: 24746559]
[97]
Jadhav, A.H.; Kim, H. Solvent free synthesis of 1,5-benzodiazepine derivatives over the heterogeneous silver salt of silicotungstic acid under ambient conditions. RSC Adv., 2013, 3(15), 5131-5140.
[http://dx.doi.org/10.1039/c3ra22663h]
[98]
Jamatia, R.; Saha, M.; Pal, A.K. An efficient facile and one-pot synthesis of benzodiazepines and chemoselective 1,2-disubstituted benzimidazoles using a magnetically retrievable Fe3O4 nanocatalyst under solvent free conditions. RSC Adv., 2014, 4(25), 12826-12833.
[http://dx.doi.org/10.1039/C3RA47860B]
[99]
Jeganathan, M.; Pitchumani, K. Solvent-free syntheses of 1,5-benzodiazepines using HY zeolite as a green solid acid catalyst. ACS Sustain. Chem. Eng., 2014, 2(5), 1169-1176.
[http://dx.doi.org/10.1021/sc400560v]
[100]
Alizadeh, M.; Moludi, J.; Khodaei, H.; Saber, A.; Kheirouri, S.; Pourteymour, F.T.F.; Kamari, N. Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives. J. Inflamm. Res., 2020, 13, 451-463.
[http://dx.doi.org/10.2147/JIR.S262132] [PMID: 32884326]
[101]
Koca, M.; Ertürk, A.S.; Bozca, O. Rap‐stoermer reaction: TEA catalyzed one‐pot efficient synthesis of benzofurans and optimization of different reaction conditions. Chemistry Select, 2022, 7(30), e202202243.
[http://dx.doi.org/10.1002/slct.202202243]
[102]
Rao, M.L.N.; Awasthi, D.K.; Banerjee, D. Microwave-mediated solvent free Rap–Stoermer reaction for efficient synthesis of benzofurans. Tetrahedron Lett., 2007, 48(3), 431-434.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.077]
[103]
Koca, İ.; Kamaci, V.; Özsoy, C.; Sert, Y.; Kani, İ.; Tutar, L.; Tutar, Y. Pyrazolyl‐benzoxazinone derivatives as dual hsp inhibitors in human breast cancer. Chemistry Select, 2022, 7(19), e202200359.
[http://dx.doi.org/10.1002/slct.202200359]
[104]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[105]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[106]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[107]
Ekalu, A.; Habila, J.D. Flavonoids: Isolation, characterization, and health benefits. Beni. Suef Univ. J. Basic Appl. Sci., 2020, 9(1), 45.
[http://dx.doi.org/10.1186/s43088-020-00065-9]
[108]
Akram, M.; Rashid, A. Anti-coagulant activity of plants: Mini review. J. Thromb. Thrombolysis, 2017, 44(3), 406-411.
[http://dx.doi.org/10.1007/s11239-017-1546-5] [PMID: 28866770]
[109]
Maheswara, M.; Siddaiah, V.; Damu, G.L.V.; Rao, Y.K.; Rao, C.V. A solvent-free synthesis of coumarins via Pechmann condensation using heterogeneous catalyst. J. Mol. Catal. Chem., 2006, 255(1-2), 49-52.
[http://dx.doi.org/10.1016/j.molcata.2006.03.051]
[110]
Fiorito, S.; Epifano, F.; Taddeo, V.A.; Genovese, S. Ytterbium triflate promoted coupling of phenols and propiolic acids: Synthesis of coumarins. Tetrahedron Lett., 2016, 57(26), 2939-2942.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.087]
[111]
Tajudeen, S.S.; Nawaz Khan, F. Synthesis of some 3‐substituted isochromen‐1‐ones. Synth. Commun., 2007, 37(20), 3649-3656.
[http://dx.doi.org/10.1080/00397910701557796]
[112]
Seijas, J.A.; Vázquez-Tato, M.P.; Carballido-Reboredo, R. Solvent-free synthesis of functionalized flavones under microwave irradiation. J. Org. Chem., 2005, 70(7), 2855-2858.
[http://dx.doi.org/10.1021/jo048685z] [PMID: 15787587]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy