Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

3D Printed Personalized Colon-targeted Tablets: A Novel Approach in Ulcerative Colitis Management

Author(s): Yachana Mishra, Vijay Mishra*, Alaa A.A. Aljabali, Mohamed El-Tanani, Gowhar A. Naikoo, Nitin Charbe, Sai Raghuveer Chava and Murtaza M. Tambuwala*

Volume 21, Issue 9, 2024

Published on: 09 October, 2023

Page: [1211 - 1225] Pages: 15

DOI: 10.2174/1567201821666230915150544

Price: $65

Abstract

Ulcerative colitis (UC) and Crohn's disease (CD) are two types of idiopathic inflammatory bowel disease (IBD) that are increasing in frequency and incidence worldwide, particularly in highly industrialized countries. Conventional tablets struggle to effectively deliver anti-inflammatory drugs since the inflammation is localized in different areas of the colon in each patient. The goal of 3D printing technology in pharmaceutics is to create personalized drug delivery systems (DDS) that are tailored to each individual's specific needs. This review provides an overview of existing 3D printing processes, with a focus on extrusion-based technologies, which have received the most attention.

Personalized pharmaceutical products offer numerous benefits to patients worldwide, and 3D printing technology is becoming more affordable every day. Custom manufacturing of 3D printed tablets provides innovative ideas for developing a tailored colon DDS. In the future, 3D printing could be used to manufacture personalized tablets for UC patients based on the location of inflammation in the colon, resulting in improved therapeutic outcomes and a better quality of life.

Graphical Abstract

[1]
Zhang, J.; Vo, A.Q.; Feng, X.; Bandari, S.; Repka, M.A. Pharmaceutical additive manufacturing: A novel tool for complex and personalized drug delivery systems. AAPS PharmSciTech, 2018, 19(8), 3388-3402.
[http://dx.doi.org/10.1208/s12249-018-1097-x] [PMID: 29943281]
[2]
Alhnan, M.A.; Okwuosa, T.C.; Sadia, M.; Wan, K.W.; Ahmed, W.; Arafat, B. Emergence of 3D printed dosage forms: Opportunities and challenges. Pharm. Res., 2016, 33(8), 1817-1832.
[http://dx.doi.org/10.1007/s11095-016-1933-1] [PMID: 27194002]
[3]
Beg, S.; Almalki, W.H.; Malik, A.; Farhan, M.; Aatif, M.; Rahman, Z.; Alruwaili, N.K.; Alrobaian, M.; Tarique, M.; Rahman, M. 3D printing for drug delivery and biomedical applications. Drug Discov. Today, 2020, 25(9), 1668-1681.
[http://dx.doi.org/10.1016/j.drudis.2020.07.007]
[4]
Ventola, C.L. Medical applications for 3D printing: Current and projected uses. P T, 2014, 39(10), 704-711.
[PMID: 25336867]
[5]
Zhu, X.; Li, H.; Huang, L.; Zhang, M.; Fan, W.; Cui, L. 3D printing promotes the development of drugs. Biomed. Pharmacother., 2020, 131, 110644.
[http://dx.doi.org/10.1016/j.biopha.2020.110644] [PMID: 32853908]
[6]
Zastrow, M. 3D printing gets bigger, faster and stronger. Nature, 2020, 578(7793), 20-23.
[http://dx.doi.org/10.1038/d41586-020-00271-6] [PMID: 32025009]
[7]
Melocchi, A.; Uboldi, M.; Maroni, A.; Foppoli, A.; Palugan, L.; Zema, L.; Gazzaniga, A. 3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery - A review. Int. J. Pharm., 2020, 579, 119155.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119155] [PMID: 32081794]
[8]
Li, H.; Fan, W.; Zhu, X. Three‐dimensional printing: The potential technology widely used in medical fields. J. Biomed. Mater. Res. A, 2020, 108(11), 2217-2229.
[http://dx.doi.org/10.1002/jbm.a.36979] [PMID: 32363725]
[9]
Kuriyama, T.; Yamato, M.; Homma, J.; Tobe, Y.; Tokushige, K. A novel rat model of inflammatory bowel disease developed using a device created with a 3D printer. Regen. Ther., 2020, 14, 1-10.
[http://dx.doi.org/10.1016/j.reth.2019.12.005] [PMID: 31970267]
[10]
Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y.; Kaplan, G.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet, 2017, 390(10114), 2769-2778.
[http://dx.doi.org/10.1016/S0140-6736(17)32448-0] [PMID: 29050646]
[11]
Ng, S.C. Epidemiology of inflammatory bowel disease: Focus on Asia. Best Pract. Res. Clin. Gastroenterol., 2014, 28(3), 363-372.
[http://dx.doi.org/10.1016/j.bpg.2014.04.003] [PMID: 24913377]
[12]
Cominelli, F.; Arseneau, K.O.; Rodriguez-Palacios, A.; Pizarro, T.T. Uncovering pathogenic mechanisms of inflammatory bowel disease using mouse models of crohn’s disease-like ileitis: What is the right model? Cell. Mol. Gastroenterol. Hepatol., 2017, 4(1), 19-32.
[http://dx.doi.org/10.1016/j.jcmgh.2017.02.010] [PMID: 28560286]
[13]
Bramhall, M.; Flórez-Vargas, O.; Stevens, R.; Brass, A.; Cruickshank, S. Quality of methods reporting in animal models of colitis. Inflamm. Bowel Dis., 2015, 21(6), 1.
[http://dx.doi.org/10.1097/MIB.0000000000000369] [PMID: 25989337]
[14]
Powers, M.K.; Lee, B.R.; Silberstein, J. Three-dimensional printing of surgical anatomy. Curr. Opin. Urol., 2016, 26(3), 283-288.
[http://dx.doi.org/10.1097/MOU.0000000000000274] [PMID: 26825651]
[15]
Frölich, A.M.J.; Spallek, J.; Brehmer, L.; Buhk, J.H.; Krause, D.; Fiehler, J.; Kemmling, A.A. Kemmling, 3D printing of intracranial aneurysms using fused deposition modeling offers highly accurate replications. AJNR Am. J. Neuroradiol., 2016, 37(1), 120-124.
[http://dx.doi.org/10.3174/ajnr.A4486] [PMID: 26294648]
[16]
Shibata, E.; Takao, H.; Amemiya, S.; Ohtomo, K.K. Ohtomo, 3D-printed visceral aneurysm models based on CT data for simulations of endovascular embolization: Evaluation of size and shape accuracy. AJR Am. J. Roentgenol., 2017, 209(2), 243-247.
[http://dx.doi.org/10.2214/AJR.16.17694] [PMID: 28731812]
[17]
Liang, K.; Carmone, S.; Brambilla, D.; Leroux, J.C. 3D printing of a wearable personalized oral delivery device: A first-in-human study. Sci. Adv., 2018, 4(5), eaat2544.
[http://dx.doi.org/10.1126/sciadv.aat2544] [PMID: 29750201]
[18]
Sairenji, T.; Collins, K.L.; Evans, D.V. An update on inflammatory bowel disease. Prim. Care, 2017, 44(4), 673-692.
[http://dx.doi.org/10.1016/j.pop.2017.07.010] [PMID: 29132528]
[19]
Alatab, S.; Sepanlou, S.G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.R.; Abdoli, A.; Abolhassani, H.; Alipour, V.; Almadi, M.A.H.; Almasi-Hashiani, A.; Anushiravani, A.; Arabloo, J.; Atique, S.; Awasthi, A.; Badawi, A.; Baig, A.A.A.; Bhala, N.; Bijani, A.; Biondi, A.; Borzì, A.M.; Burke, K.E.; Carvalho, F.; Daryani, A.; Dubey, M.; Eftekhari, A.; Fernandes, E.; Fernandes, J.C.; Fischer, F.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hasanzadeh, A.; Hashemian, M.; Hay, S.I.; Hoang, C.L.; Househ, M.; Ilesanmi, O.S.; Jafari Balalami, N.; James, S.L.; Kengne, A.P.; Malekzadeh, M.M.; Merat, S.; Meretoja, T.J.; Mestrovic, T.; Mirrakhimov, E.M.; Mirzaei, H.; Mohammad, K.A.; Mokdad, A.H.; Monasta, L.; Negoi, I.; Nguyen, T.H.; Nguyen, C.T.; Pourshams, A.; Poustchi, H.; Rabiee, M.; Rabiee, N.; Ramezanzadeh, K.; Rawaf, D.L.; Rawaf, S.; Rezaei, N.; Robinson, S.R.; Ronfani, L.; Saxena, S.; Sepehrimanesh, M.; Shaikh, M.A.; Sharafi, Z.; Sharif, M.; Siabani, S.; Sima, A.R.; Singh, J.A.; Soheili, A.; Sotoudehmanesh, R.; Suleria, H.A.R.; Tesfay, B.E.; Tran, B.; Tsoi, D.; Vacante, M.; Wondmieneh, A.B.; Zarghi, A.; Zhang, Z-J.; Dirac, M.; Malekzadeh, R.; Naghavi, M. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol., 2020, 5(1), 17-30.
[http://dx.doi.org/10.1016/S2468-1253(19)30333-4] [PMID: 31648971]
[20]
Shivashankar, R.; Tremaine, W.J.; Harmsen, W.S.; Loftus, E.V. Jr Incidence and prevalence of crohn’s disease and ulcerative colitis in olmsted County, Minnesota from 1970 through 2010. Clin. Gastroenterol. Hepatol., 2017, 15(6), 857-863.
[21]
Kotze, P.G.; Steinwurz, F.; Francisconi, C.; Zaltman, C.; Pinheiro, M.; Salese, L.; Ponce de Leon, D. Review of the epidemiology and burden of ulcerative colitis in Latin America. Therap. Adv. Gastroenterol., 2020, 13.
[http://dx.doi.org/10.1177/1756284820931739] [PMID: 32695230]
[22]
Burisch, J.; Jess, T.; Martinato, M.; Lakatos, P.L. The burden of inflammatory bowel disease in Europe. J. Crohn’s Colitis, 2013, 7(4), 322-337.
[http://dx.doi.org/10.1016/j.crohns.2013.01.010] [PMID: 23395397]
[23]
Yang, S.K.; Yun, S.; Kim, J.H.; Park, J.Y.; Kim, H.Y.; Kim, Y.H.; Chang, D.K.; Kim, J.S.; Song, I.S.; Park, J.B.; Park, E.R.; Kim, K.J.; Moon, G.; Yang, S.H. Epidemiology of inflammatory bowel disease in the Songpa-Kangdong district, Seoul, Korea, 1986–2005: A KASID study. Inflamm. Bowel Dis., 2008, 14(4), 542-549.
[http://dx.doi.org/10.1002/ibd.20310] [PMID: 17941073]
[24]
Kedia, S.; Ahuja, V. Epidemiology of inflammatory bowel disease in India: The great shift east. Inflamm. Intest. Dis., 2017, 2(2), 102-115.
[http://dx.doi.org/10.1159/000465522] [PMID: 30018961]
[25]
Alharbi, O.R.; Azzam, N.A.; Almalki, A.S.; Almadi, M.A.; Alswat, K.A.; Sadaf, N.; Aljebreen, A.M. Clinical epidemiology of ulcerative colitis in Arabs based on the Montréal classification. World J. Gastroenterol., 2014, 20(46), 17525-17531.
[http://dx.doi.org/10.3748/wjg.v20.i46.17525] [PMID: 25516667]
[26]
Pasvol, T.J.; Horsfall, L.; Bloom, S.; Segal, A.W.; Sabin, C.; Field, N.; Rait, G. Incidence and prevalence of inflammatory bowel disease in UK primary care: A population-based cohort study. BMJ Open, 2020, 10(7), e036584.
[http://dx.doi.org/10.1136/bmjopen-2019-036584] [PMID: 32690524]
[27]
Gajendran, M.; Loganathan, P.; Jimenez, G.; Catinella, A.P.; Ng, N.; Umapathy, C.; Ziade, N.; Hashash, J.G. A comprehensive review and update on ulcerative colitis. Dis. Mon., 2019, 65(12), 100851.
[http://dx.doi.org/10.1016/j.disamonth.2019.02.004] [PMID: 30837080]
[28]
Shah, S.C.; Khalili, H.; Gower-Rousseau, C.; Olen, O.; Benchimol, E.I.; Lynge, E.; Nielsen, K.R.; Brassard, P.; Vutcovici, M.; Bitton, A.; Bernstein, C.N.; Leddin, D.; Tamim, H.; Stefansson, T.; Loftus, E.V., Jr; Moum, B.; Tang, W.; Ng, S.C.; Gearry, R.; Sincic, B.; Bell, S.; Sands, B.E.; Lakatos, P.L.; Végh, Z.; Ott, C.; Kaplan, G.G.; Burisch, J.; Colombel, J.F. Sex-based differences in incidence of inflammatory bowel diseases-pooled analysis of population-based studies from western countries. Gastroenterology, 2018, 155(4), 1079-1089.e3.
[http://dx.doi.org/10.1053/j.gastro.2018.06.043] [PMID: 29958857]
[29]
Zeng, Z.; Zhu, Z.; Yang, Y.; Ruan, W.; Peng, X.; Su, Y.; Peng, L.; Chen, J.; Yin, Q.; Zhao, C.; Zhou, H.; Yuan, S.; Hao, Y.; Qian, J.; Ng, S.C.; Chen, M.; Hu, P. Incidence and clinical characteristics of inflammatory bowel disease in a developed region of Guangdong Province, China: A prospective population-based study. J. Gastroenterol. Hepatol., 2013, 28(7), 1148-1153.
[http://dx.doi.org/10.1111/jgh.12164] [PMID: 23432198]
[30]
Lakatos, P.L.; Vegh, Z.; Lovasz, B.D.; David, G.; Pandur, T.; Erdelyi, Z.; Szita, I.; Mester, G.; Balogh, M.; Szipocs, I.; Molnar, C.; Komaromi, E.; Golovics, P.A.; Mandel, M.; Horvath, A.; Szathmari, M.; Kiss, L.S.; Lakatos, L. Is current smoking still an important environmental factor in inflammatory bowel diseases? Results from a population-based incident cohort. Inflamm. Bowel Dis., 2013, 19(5), 1010-1017.
[http://dx.doi.org/10.1097/MIB.0b013e3182802b3e] [PMID: 23399739]
[31]
Ng, S.C.; Tang, W.; Leong, R.W.; Chen, M.; Ko, Y.; Studd, C.; Niewiadomski, O.; Bell, S.; Kamm, M.A.; de Silva, H.J.; Kasturiratne, A.; Senanayake, Y.U.; Ooi, C.J.; Ling, K.L.; Ong, D.; Goh, K.L.; Hilmi, I.; Ouyang, Q.; Wang, Y.F.; Hu, P.; Zhu, Z.; Zeng, Z.; Wu, K.; Wang, X.; Xia, B.; Li, J.; Pisespongsa, P.; Manatsathit, S.; Aniwan, S.; Simadibrata, M.; Abdullah, M.; Tsang, S.W.C.; Wong, T.C.; Hui, A.J.; Chow, C.M.; Yu, H.H.; Li, M.F.; Ng, K.K.; Ching, J.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y. Environmental risk factors in inflammatory bowel disease: A population-based case-control study in Asia-Pacific. Gut, 2015, 64(7), 1063-1071.
[http://dx.doi.org/10.1136/gutjnl-2014-307410] [PMID: 25217388]
[32]
Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental risk factors for inflammatory bowel diseases: An umbrella review of meta-analyses. Gastroenterology, 2019, 157(3), 647-659.e4.
[http://dx.doi.org/10.1053/j.gastro.2019.04.016] [PMID: 31014995]
[33]
Fumery, M.; Singh, S.; Dulai, P.S.; Gower-Rousseau, C.; Peyrin-Biroulet, L.; Sandborn, W.J. Natural history of adult ulcerative colitis in population-based cohorts: A systematic review. Clin. Gastroenterol. Hepatol., 2018, 16(3), 343-356.e3.
[34]
Ng, S.C.; Tsoi, K.K.F.; Kamm, M.A.; Xia, B.; Wu, J.; Chan, F.K.L.; Sung, J.J.Y. Genetics of inflammatory bowel disease in Asia: Systematic review and meta-analysis. Inflamm. Bowel Dis., 2012, 18(6), 1164-1176.
[http://dx.doi.org/10.1002/ibd.21845] [PMID: 21887729]
[35]
Asano, K.; Matsushita, T.; Umeno, J.; Hosono, N.; Takahashi, A.; Kawaguchi, T.; Matsumoto, T.; Matsui, T.; Kakuta, Y.; Kinouchi, Y.; Shimosegawa, T.; Hosokawa, M.; Arimura, Y.; Shinomura, Y.; Kiyohara, Y.; Tsunoda, T.; Kamatani, N.; Iida, M.; Nakamura, Y.; Kubo, M. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat. Genet., 2009, 41(12), 1325-1329.
[http://dx.doi.org/10.1038/ng.482] [PMID: 19915573]
[36]
Juyal, G.; Negi, S.; Sood, A.; Gupta, A.; Prasad, P.; Senapati, S.; Zaneveld, J.; Singh, S.; Midha, V.; van Sommeren, S.; Weersma, R.K.; Ott, J.; Jain, S.; Juyal, R.C.; Thelma, B.K. Genome-wide association scan in north Indians reveals three novel HLA-independent risk loci for ulcerative colitis. Gut, 2015, 64(4), 571-579.
[http://dx.doi.org/10.1136/gutjnl-2013-306625] [PMID: 24837172]
[37]
Li, K.; Yao, S.; Liu, S.; Wang, B.; Mao, D. Genetic polymorphisms of interleukin 8 and risk of ulcerative colitis in the Chinese population. Clin. Chim. Acta, 2009, 405(1-2), 30-34.
[38]
Lee, H.S.; Yang, S.K.; Hong, M.; Jung, S.; Kim, B.M.; Moon, J.W.; Park, S.H.; Ye, B.D.; Oh, S.H.; Kim, K.M.; Yoon, Y.S.; Yu, C.S.; Baek, J.; Lee, C.H.; Han, B.; Liu, J.; Haritunians, T.; McGovern, D.P.B.; Song, K. An intergenic variant RS9268877 between HLA-DRA and HLA-DRB contributes to the clinical course and long-term outcome of ulcerative colitis. J. Crohn’s Colitis, 2018, 12(9), 1113-1121.
[http://dx.doi.org/10.1093/ecco-jcc/jjy080] [PMID: 29905830]
[39]
Franke, A.; Balschun, T.; Karlsen, T.H.; Sventoraityte, J.; Nikolaus, S.; Mayr, G.; Domingues, F.S.; Albrecht, M.; Nothnagel, M.; Ellinghaus, D.; Sina, C.; Onnie, C.M.; Weersma, R.K.; Stokkers, P.C.F.; Wijmenga, C.; Gazouli, M.; Strachan, D.; McArdle, W.L.; Vermeire, S.; Rutgeerts, P.; Rosenstiel, P.; Krawczak, M.; Vatn, M.H.; Mathew, C.G.; Schreiber, S. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet., 2008, 40(11), 1319-1323.
[http://dx.doi.org/10.1038/ng.221] [PMID: 18836448]
[40]
Bek, S.; Nielsen, J.V.; Bojesen, A.B.; Franke, A.; Bank, S.; Vogel, U.; Andersen, V. Systematic review: Genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases. Aliment. Pharmacol. Ther., 2016, 44(6), 554-567.
[http://dx.doi.org/10.1111/apt.13736] [PMID: 27417569]
[41]
Jürgens, M.; Laubender, R.P.; Hartl, F.; Weidinger, M.; Seiderer, J.; Wagner, J.; Wetzke, M.; Beigel, F.; Pfennig, S.; Stallhofer, J.; Schnitzler, F.; Tillack, C.; Lohse, P.; Göke, B.; Glas, J.; Ochsenkühn, T.; Brand, S. Disease activity, ANCA, and IL23R genotype status determine early response to infliximab in patients with ulcerative colitis. Am. J. Gastroenterol., 2010, 105(8), 1811-1819.
[http://dx.doi.org/10.1038/ajg.2010.95] [PMID: 20197757]
[42]
Ordás, I.; Mould, D.R.; Feagan, B.G.; Sandborn, W.J. Anti-TNF monoclonal antibodies in inflammatory bowel disease: Pharmacokinetics-based dosing paradigms. Clin. Pharmacol. Ther., 2012, 91(4), 635-646.
[http://dx.doi.org/10.1038/clpt.2011.328] [PMID: 22357456]
[43]
Yamamoto-Furusho, J.K.; Peñaloza-Coronel, A.; Sánchez-Muñoz, F.; Barreto-Zuñiga, R.; Dominguez-Lopez, A. Peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression is downregulated in patients with active ulcerative colitis. Inflamm. Bowel Dis., 2011, 17(2), 680-681.
[http://dx.doi.org/10.1002/ibd.21322] [PMID: 20848495]
[44]
Tomasello, G.; Rodolico, V.; Zerilli, M.; Martorana, A.; Bucchieri, F.; Pitruzzella, A.; Gammazza, A.M.; David, S.; Rappa, F.; Zummo, G.; Damiani, P.; Accomando, S.; Rizzo, M.; de Macario, E.C.; Macario, A.J.L.; Cappello, F. Changes in immunohistochemical levels and subcellular localization after therapy and correlation and colocalization with CD68 suggest a pathogenetic role of Hsp60 in ulcerative colitis. Appl. Immunohistochem. Mol. Morphol., 2011, 19(6), 552-561.
[http://dx.doi.org/10.1097/PAI.0b013e3182118e5f] [PMID: 21441812]
[45]
Tomasello, G.; Sciumé, C.; Rappa, F.; Rodolico, V.; Zerilli, M.; Martorana, A.; Cicero, G.; De Luca, R.; Damiani, P.; Accardo, F.M.; Romeo, M.; Farina, F.; Bonaventura, G.; Modica, G.; Zummo, G.; Conway de Macario, E.; Macario, A.J.; Cappello, F. Hsp10, Hsp70, and Hsp90 immunohistochemical levels change in ulcerative colitis after therapy. EJH, 2011, 55(4), e38.
[http://dx.doi.org/10.4081/ejh.2011.e38] [PMID: 22297444]
[46]
Moran, C.J.; Huang, H.; Rivas, M.; Kaplan, J.L.; Daly, M.J.; Winter, H.S. Genetic variants in cellular transport do not affect mesalamine response in ulcerative colitis. PLoS One, 2018, 13(3), e0192806.
[http://dx.doi.org/10.1371/journal.pone.0192806] [PMID: 29579042]
[47]
Paoluzi, O.A.; Pica, R.; Marcheggiano, A.; Crispino, P.; Iacopini, F.; Iannoni, C.; Rivera, M.; Paoluzi, P. Azathioprine or methotrexate in the treatment of patients with steroid-dependent or steroid-resistant ulcerative colitis: Results of an open-label study on efficacy and tolerability in inducing and maintaining remission. Aliment. Pharmacol. Ther., 2002, 16(10), 1751-1759.
[http://dx.doi.org/10.1046/j.1365-2036.2002.01340.x] [PMID: 12269968]
[48]
Harmand, P.O.; Solassol, J. Thiopurine drugs in the treatment of ulcerative colitis: Identification of a novel deleterious mutation in TPMT. Genes, 2020, 11(10), 1212.
[http://dx.doi.org/10.3390/genes11101212] [PMID: 33081236]
[49]
Farrell, R.J.; Murphy, A.; Long, A.; Donnelly, S.; Cherikuri, A.; O’Toole, D.; Mahmud, N.; Keeling, P.W.N.; Weir, D.G.; Kelleher, D. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology, 2000, 118(2), 279-288.
[http://dx.doi.org/10.1016/S0016-5085(00)70210-1] [PMID: 10648456]
[50]
Fujishima, S.; Takeda, H.; Kawata, S.; Yamakawa, M. The relationship between the expression of the glucocorticoid receptor in biopsied colonic mucosa and the glucocorticoid responsiveness of ulcerative colitis patients. Clin. Immunol., 2009, 133(2), 208-217.
[http://dx.doi.org/10.1016/j.clim.2009.07.006] [PMID: 19646928]
[51]
Yamamoto-Furusho, J.K.; Santiago-Hernández, J.J.; Pérez-Hernández, N.; Rami’rez-Fuentes, S.; Fragoso, J.M.; Vargas-Alarcón, G. Interleukin 1 β (IL-1B) and IL-1 antagonist receptor (IL-1RN) gene polymorphisms are associated with the genetic susceptibility and steroid dependence in patients with ulcerative colitis. J. Clin. Gastroenterol., 2011, 45(6), 531-535.
[http://dx.doi.org/10.1097/MCG.0b013e3181faec51] [PMID: 20975573]
[52]
Wu, B.; Tong, J.; Ran, Z. Tacrolimus therapy in steroid-refractory ulcerative colitis: A review. Inflamm. Bowel Dis., 2020, 26(1), 24-32.
[http://dx.doi.org/10.1093/ibd/izz068] [PMID: 30980713]
[53]
Moayyedi, P.; Surette, M.G.; Kim, P.T.; Libertucci, J.; Wolfe, M.; Onischi, C.; Armstrong, D.; Marshall, J.K.; Kassam, Z.; Reinisch, W.; Lee, C.H. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology, 2015, 149, 102-109.
[54]
Flamant, M.; Roblin, X. Inflammatory bowel disease: Towards a personalized medicine. Therap. Adv. Gastroenterol., 2018, 11, 1756283X17745029.
[55]
Tambuwala, M.M.; Charbe, N.B.; McCarron, P.A.; Lane, M.E. Application of three-dimensional printing for colon targeted drug delivery systems. Int. J. Pharm. Investig., 2017, 7(2), 47-59.
[http://dx.doi.org/10.4103/jphi.JPHI_32_17] [PMID: 28929046]
[56]
Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.W.; Park, B.J.; Han, H.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics, 2020, 12(1), 68.
[http://dx.doi.org/10.3390/pharmaceutics12010068] [PMID: 31952340]
[57]
Haggag, Y.; Elshikh, M.; El-Tanani, M.; Bannat, I.M.; McCarron, P.; Tambuwala, M.M. Nanoencapsulation of sophorolipids in PEGylated poly(lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Deliv. Transl. Res., 2020, 10(5), 1353-1366.
[http://dx.doi.org/10.1007/s13346-020-00750-3] [PMID: 32239473]
[58]
Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr., 2017, 17(1), 230.
[http://dx.doi.org/10.1186/s12877-017-0621-2] [PMID: 29017448]
[59]
Xu, X.; Robles-Martinez, P.; Madla, C.M.; Joubert, F.; Goyanes, A.; Basit, A.W.; Gaisford, S. Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction. Addit. Manuf., 2020, 33, 101071.
[http://dx.doi.org/10.1016/j.addma.2020.101071]
[60]
Fina, F.; Goyanes, A.; Madla, C.M.; Awad, A.; Trenfield, S.J.; Kuek, J.M.; Patel, P.; Gaisford, S.; Basit, A.W. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int. J. Pharm., 2018, 547(1-2), 44-52.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.044] [PMID: 29787894]
[61]
Mohammed, A.; Elshaer, A.; Sareh, P.; Elsayed, M.; Hassanin, H. Additive manufacturing technologies for drug delivery applications. Int. J. Pharm., 2020, 580, 119245.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119245] [PMID: 32201252]
[62]
Okafor-Muo, O.L.; Hassanin, H.; Kayyali, R.; ElShaer, A.A. ElShaer, 3D printing of solid oral dosage forms: Numerous challenges with unique opportunities. J. Pharm. Sci., 2020, 109(12), 3535-3550.
[http://dx.doi.org/10.1016/j.xphs.2020.08.029] [PMID: 32976900]
[63]
Healy, A.V.; Fuenmayor, E.; Doran, P.; Geever, L.M.; Higginbotham, C.L.; Lyons, J.G. Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography. Pharmaceutics, 2019, 11(12), 645.
[http://dx.doi.org/10.3390/pharmaceutics11120645] [PMID: 31816898]
[64]
Vaz, V.M.; Kumar, L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech, 2021, 22(1), 49.
[http://dx.doi.org/10.1208/s12249-020-01905-8] [PMID: 33458797]
[65]
Lim, S.H.; Kathuria, H.; Tan, J.J.Y.; Kang, L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv. Drug Deliv. Rev., 2018, 132, 139-168.
[http://dx.doi.org/10.1016/j.addr.2018.05.006] [PMID: 29778901]
[66]
Khatri, P.; Shah, M.K.; Vora, N. Formulation strategies for solid oral dosage form using 3D printing technology: A mini-review. J. Drug Deliv. Sci. Technol., 2018, 46, 148-155.
[http://dx.doi.org/10.1016/j.jddst.2018.05.009]
[67]
Samiei, N. Recent trends on applications of 3D printing technology on the design and manufacture of pharmaceutical oral formulation: A mini review. Beni. Suef Univ. J. Basic Appl. Sci., 2020, 9, 1-12.
[68]
Douroumis, D. 3D printing of pharmaceutical and medical applications: A new era. Pharm. Res., 2019, 36(3), 42.
[http://dx.doi.org/10.1007/s11095-019-2575-x] [PMID: 30684014]
[69]
Jamróz, W.; Szafraniec, J.; Kurek, M.; Jachowicz, R.R. Jachowicz, 3D printing in pharmaceutical and medical applications-recent achievements and challenges. Pharm. Res., 2018, 35(9), 176.
[http://dx.doi.org/10.1007/s11095-018-2454-x]
[70]
Xu, X.; Awad, A.; Robles-Martinez, P.; Gaisford, S.; Goyanes, A.; Basit, A.W. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J. Control. Release, 2021, 329, 743-757.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.008] [PMID: 33031881]
[71]
Cailleaux, S.; Sanchez-Ballester, N.M.; Gueche, Y.A.; Bataille, B.; Soulairol, I. Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines. J. Control. Release, 2021, 330, 821-841.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.056] [PMID: 33130069]
[72]
Seoane-Viaño, I.; Januskaite, P.; Alvarez-Lorenzo, C.; Basit, A.W.; Goyanes, A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J. Control. Release, 2021, 332, 367-389.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.027] [PMID: 33652114]
[73]
Rahman, J.; Quodbach, J. Versatility on demand - The case for semi-solid micro-extrusion in pharmaceutics. Adv. Drug Deliv. Rev., 2021, 172, 104-126.
[http://dx.doi.org/10.1016/j.addr.2021.02.013] [PMID: 33705878]
[74]
Brambilla, C.R.M.; Okafor-Muo, O.L.; Hassanin, H.; ElShaer, A. 3DP printing of oral solid formulations: A systematic review. Pharmaceutics, 2021, 13(3), 358.
[http://dx.doi.org/10.3390/pharmaceutics13030358] [PMID: 33803163]
[75]
Januskaite, P.; Xu, X.; Ranmal, S.R.; Gaisford, S.; Basit, A.W.; Tuleu, C.; Goyanes, A. I spy with my little eye: A paediatric visual preferences survey of 3D printed tablets. Pharmaceutics, 2020, 12(11), 1100.
[http://dx.doi.org/10.3390/pharmaceutics12111100] [PMID: 33212847]
[76]
Lamichhane, S.; Bashyal, S.; Keum, T.; Noh, G.; Seo, J.E.; Bastola, R.; Choi, J.; Sohn, D.H.; Lee, S. Complex formulations, simple techniques: Can 3D printing technology be the Midas touch in pharmaceutical industry? Asian J. Pharm. Sci., 2019, 14(5), 465-479.
[http://dx.doi.org/10.1016/j.ajps.2018.11.008] [PMID: 32104475]
[77]
Ayyoubi, S.; Cerda, J.R.; Fernández-García, R.; Knief, P.; Lalatsa, A.; Healy, A.M.; Serrano, D.R. 3D printed spherical mini-tablets: Geometry versus composition effects in controlling dissolution from personalised solid dosage forms. Int. J. Pharm., 2021, 597, 120336.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120336] [PMID: 33545280]
[78]
Singh, M.; Jonnalagadda, S. Design and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applications. J. Mater. Sci. Mater. Med., 2021, 32(4), 44.
[http://dx.doi.org/10.1007/s10856-021-06509-7] [PMID: 33830338]
[79]
Lafeber, I.; Tichem, J.M.; Ouwerkerk, N.; van Unen, A.D.; van Uitert, J.J.D.; Bijleveld-Olierook, H.C.M.; Kweekel, D.M.; Zaal, W.M.; Le Brun, P.P.H.; Guchelaar, H.J.; Schimmel, K.J.M. 3D printed furosemide and sildenafil tablets: Innovative production and quality control. Int. J. Pharm., 2021, 603, 120694.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120694] [PMID: 33984452]
[80]
Fang, D.; Yang, Y.; Cui, M.; Pan, H.; Wang, L.; Li, P.; Wu, W.; Qiao, S.; Pan, W. Three-dimensional (3D)–printed zero-order released platform: A novel method of personalized dosage form design and manufacturing. AAPS PharmSciTech, 2021, 22(1), 37.
[http://dx.doi.org/10.1208/s12249-020-01886-8] [PMID: 33409925]
[81]
Algahtani, M.S.; Mohammed, A.A.; Ahmad, J.; Abdullah, M.M.; Saleh, E. 3D printing of dapagliflozin containing self-nanoemulsifying tablets: Formulation design and in vitro characterization. Pharmaceutics, 2021, 13(7), 993.
[http://dx.doi.org/10.3390/pharmaceutics13070993] [PMID: 34209066]
[82]
Chen, P.; Luo, H.; Huang, S.; Liu, J.; Lin, M.; Yang, F.; Ban, J.; Huang, Z.; Lu, Z.; Xie, Q.; Chen, Y. Preparation of high-drug-loaded clarithromycin gastric-floating sustained-release tablets using 3D printing. AAPS PharmSciTech, 2021, 22(3), 131.
[http://dx.doi.org/10.1208/s12249-021-01994-z] [PMID: 33839973]
[83]
Fanous, M.; Bitar, M.; Gold, S.; Sobczuk, A.; Hirsch, S.; Ogorka, J.; Imanidis, G. Development of immediate release 3D-printed dosage forms for a poorly water-soluble drug by fused deposition modeling: Study of morphology, solid state and dissolution. Int. J. Pharm., 2021, 599, 120417.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120417] [PMID: 33647418]
[84]
Gültekin, H.E.; Tort, S.; Tuğcu-Demiröz, F.; Acartürk, F. 3D printed extended release tablets for once daily use: An In vitro and in vivo evaluation study for a personalized solid dosage form. Int. J. Pharm., 2021, 596, 120222.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120222] [PMID: 33484916]
[85]
Ghanizadeh Tabriz, A.; Nandi, U.; Hurt, A.P.; Hui, H.W.; Karki, S.; Gong, Y.; Kumar, S.; Douroumis, D. 3D printed bilayer tablet with dual controlled drug release for tuberculosis treatment. Int. J. Pharm., 2021, 593, 120147.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120147] [PMID: 33278493]
[86]
Algahtani, M.S.; Mohammed, A.A.; Ahmad, J.; Saleh, E. Development of a 3D printed coating shell to control the drug release of encapsulated immediate-release tablets. Polymers, 2020, 12(6), 1395.
[http://dx.doi.org/10.3390/polym12061395] [PMID: 32580349]
[87]
Charoenying, T.; Patrojanasophon, P.; Ngawhirunpat, T.; Rojanarata, T.; Akkaramongkolporn, P.; Opanasopit, P. Three-dimensional (3D)-printed devices composed of hydrophilic cap and hydrophobic body for improving buoyancy and gastric retention of domperidone tablets. Eur. J. Pharm. Sci., 2020, 155, 105555.
[http://dx.doi.org/10.1016/j.ejps.2020.105555] [PMID: 32949749]
[88]
Hussain, A.; Mahmood, F.; Arshad, M.S.; Abbas, N.; Qamar, N.; Mudassir, J.; Farhaj, S.; Nirwan, J.S.; Ghori, M.U. Personalised 3d printed fast-dissolving tablets for managing hypertensive crisis: In-vitro/in-vivo studies. Polymers, 2020, 12(12), 3057.
[http://dx.doi.org/10.3390/polym12123057] [PMID: 33419348]
[89]
Kissi, E.O.; Nilsson, R.; Nogueira, L.P.; Larsson, A.; Tho, I. Influence of drug load on the printability and solid-state properties of 3D-printed naproxen-based amorphous solid dispersion. Molecules, 2021, 26(15), 4492.
[http://dx.doi.org/10.3390/molecules26154492] [PMID: 34361646]
[90]
Bhatt, U.; Malakar, T.K.; Murty, U.S.S. Banerjee, 3D printing of immediate-release tablets containing olanzapine by filaments extrusion. Drug Dev. Ind. Pharm., 2021, 1-10.
[91]
Shi, K.; Salvage, J.P.; Maniruzzaman, M.; Nokhodchi, A. Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets. Int. J. Pharm., 2021, 597, 120315.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120315] [PMID: 33540000]
[92]
Giri, B.; Song, E.; Kwon, J.; Lee, J.H.; Park, J.B.; Kim, D. Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics, 2020, 12(1), 77.
[http://dx.doi.org/10.3390/pharmaceutics12010077] [PMID: 31963484]
[93]
Chen, D.; Xu, X.Y.; Li, R.; Zang, G.A.; Zhang, Y.; Wang, M.R.; Xiong, M.F.; Xu, J.R.; Wang, T.; Fu, H.; Hu, Q.; Wu, B.; Yan, G.R.; Fan, T.Y. Preparation and In vitro evaluation of FDM 3D-printed ellipsoid-shaped gastric floating tablets with low infill percentages. AAPS PharmSciTech, 2020, 21(1), 6.
[http://dx.doi.org/10.1208/s12249-019-1521-x] [PMID: 31754916]
[94]
Jamróz, W.; Pyteraf, J.; Kurek, M.; Knapik-Kowalczuk, J.; Szafraniec-Szczęsny, J.; Jurkiewicz, K.; Leszczyński, B.; Wróbel, A.; Paluch, M.; Jachowicz, R. Multivariate design of 3D printed immediate-release tablets with liquid crystal-forming drug-itraconazole. Materials, 2020, 13(21), 4961.
[http://dx.doi.org/10.3390/ma13214961] [PMID: 33158192]
[95]
Wang, Z.; Li, J.; Hong, X.; Han, X.; Liu, B.; Li, X.; Zhang, H.; Gao, J.; Liu, N.; Gao, X.; Zheng, A. Taste masking study based on an electronic tongue: The formulation design of 3D printed levetiracetam instant-dissolving tablets. Pharm. Res., 2021, 38(5), 831-842.
[http://dx.doi.org/10.1007/s11095-021-03041-9] [PMID: 33974211]
[96]
Mule, S.T.; Bhusnure, O.G.; Waghmare, S.S.; Mali, M.R. Recent trends, opportunities and challenges in 3D printing technology for personalize medicine. J. Drug Deliv. Ther., 2020, 10(4), 242-252.
[http://dx.doi.org/10.22270/jddt.v10i4.4143]
[97]
Gioumouxouzis, C.I.; Katsamenis, O.L.; Bouropoulos, N.; Fatouros, D.G. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J. Drug Deliv. Sci. Technol., 2017, 40, 164-171.
[http://dx.doi.org/10.1016/j.jddst.2017.06.008]
[98]
Jamróz, W.; Kurek, M.; Łyszczarz, E.; Szafraniec, J.; Knapik-Kowalczuk, J.; Syrek, K.; Paluch, M.; Jachowicz, R. 3D printed orodispersible films with Aripiprazole. Int. J. Pharm., 2017, 533(2), 413-420.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.052] [PMID: 28552800]
[99]
Goyanes, A.; Buanz, A.B.M.; Hatton, G.B.; Gaisford, S.; Basit, A.W. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur. J. Pharm. Biopharm., 2015, 89, 157-162.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.003] [PMID: 25497178]
[100]
Cheng, Y.; Qin, H.; Acevedo, N.C.; Jiang, X.; Shi, X. 3D printing of extended-release tablets of theophylline using hydroxypropyl methylcellulose (HPMC) hydrogels. Int. J. Pharm., 2020, 591, 119983.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119983] [PMID: 33065220]
[101]
Shoueir, K.; Ahmed, M.K.; Abdel Gaber, S.A.; El-Kemary, M. Thallium and selenite doped carbonated hydroxyapatite: Microstructural features and anticancer activity assessment against human lung carcinoma. Ceram. Int., 2020, 46(4), 5201-5212.
[http://dx.doi.org/10.1016/j.ceramint.2019.10.268]
[102]
Khaled, S.A.; Burley, J.C.; Alexander, M.R.; Yang, J.; Roberts, C.J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J. Control. Release, 2015, 217, 308-314.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.028] [PMID: 26390808]
[103]
Khaled, S.A.; Burley, J.C.; Alexander, M.R.; Yang, J.; Roberts, C.J. 3D printing of tablets containing multiple drugs with defined release profiles. Int. J. Pharm., 2015, 494(2), 643-650.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.067] [PMID: 26235921]
[104]
Vithani, K.; Goyanes, A.; Jannin, V.; Basit, A.W.; Gaisford, S.; Boyd, B.J. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm. Res., 2019, 36(1), 4.
[http://dx.doi.org/10.1007/s11095-018-2531-1] [PMID: 30406349]
[105]
Cui, M.; Pan, H.; Fang, D.; Qiao, S.; Wang, S.; Pan, W. Fabrication of high drug loading levetiracetam tablets using semi-solid extrusion 3D printing. J. Drug Deliv. Sci. Technol., 2020, 57, 101683.
[http://dx.doi.org/10.1016/j.jddst.2020.101683]
[106]
Yang, Y.; Wang, X.; Lin, X.; Xie, L.; Ivone, R.; Shen, J.; Yang, G. A tunable extruded 3D printing platform using thermo-sensitive pastes. Int. J. Pharm., 2020, 583, 119360.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119360] [PMID: 32335080]
[107]
Öblom, H.; Sjöholm, E.; Rautamo, M.; Sandler, N. Towards printed pediatric medicines in hospital pharmacies: Comparison of 2D and 3D-printed orodispersible warfarin films with conventional oral powders in unit dose sachets. Pharmaceutics, 2019, 11(7), 334.
[http://dx.doi.org/10.3390/pharmaceutics11070334] [PMID: 31337146]
[108]
Martinez, P.R.; Goyanes, A.; Basit, A.W.; Gaisford, S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int. J. Pharm., 2017, 532(1), 313-317.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.003] [PMID: 28888978]
[109]
Khaled, S.A.; Alexander, M.R.; Irvine, D.J.; Wildman, R.D.; Wallace, M.J.; Sharpe, S.; Yoo, J.; Roberts, C.J. Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS PharmSciTech, 2018, 19(8), 3403-3413.
[http://dx.doi.org/10.1208/s12249-018-1107-z] [PMID: 30097806]
[110]
Daly, R.; Harrington, T.S.; Martin, G.D.; Hutchings, I.M. Inkjet printing for pharmaceutics - A review of research and manufacturing. Int. J. Pharm., 2015, 494(2), 554-567.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.017] [PMID: 25772419]
[111]
Kyobula, M.; Adedeji, A.; Alexander, M.R.; Saleh, E.; Wildman, R.; Ashcroft, I.; Gellert, P.R.; Roberts, C.J. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J. Control. Release, 2017, 261, 207-215.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.025] [PMID: 28668378]
[112]
Scoutaris, N.; Alexander, M.R.; Gellert, P.R.; Roberts, C.J. Inkjet printing as a novel medicine formulation technique. J. Control. Release, 2011, 156(2), 179-185.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.033] [PMID: 21827800]
[113]
Khaled, S.A.; Burley, J.C.; Alexander, M.R.; Roberts, C.J. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int. J. Pharm., 2014, 461(1-2), 105-111.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.021] [PMID: 24280018]
[114]
Bernal, P.N.; Delrot, P.; Loterie, D.; Li, Y.; Malda, J.; Moser, C.; Levato, R. Volumetric bioprinting of complex living‐tissue constructs within seconds. Adv. Mater., 2019, 31(42), 1904209.
[http://dx.doi.org/10.1002/adma.201904209] [PMID: 31423698]
[115]
Zhang, J.; Hu, Q.; Wang, S.; Tao, J.; Gou, M. Digital light processing based three-dimensional printing for medical applications. Int. J. Bioprint., 2019, 6(1), 1.
[http://dx.doi.org/10.18063/ijb.v6i1.242] [PMID: 32782984]
[116]
Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D printing technique and its challenges. Bioact. Mater., 2020, 5(1), 110-115.
[http://dx.doi.org/10.1016/j.bioactmat.2019.12.003] [PMID: 32021945]
[117]
Preobrazhenskiy, I.I.; Tikhonov, A.A.; Evdokimov, P.V.; Shibaev, A.V.; Putlyaev, V.I. DLP printing of hydrogel/calcium phosphate composites for the treatment of bone defects. Open Ceramics, 2021, 6, 100115.
[http://dx.doi.org/10.1016/j.oceram.2021.100115]
[118]
Krkobabić, M.; Medarević, D.; Pešić, N.; Vasiljević, D.; Ivković, B.; Ibrić, S. Digital light processing (DLP) 3D printing of atomoxetine hydrochloride tablets using photoreactive suspensions. Pharmaceutics, 2020, 12(9), 833.
[http://dx.doi.org/10.3390/pharmaceutics12090833] [PMID: 32878260]
[119]
Bloomquist, C.J.; Mecham, M.B.; Paradzinsky, M.D.; Janusziewicz, R.; Warner, S.B.; Luft, J.C.; Mecham, S.J.; Wang, A.Z.; DeSimone, J.M. Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins. J. Control. Release, 2018, 278, 9-23.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.026] [PMID: 29596874]
[120]
Caudill, C.L.; Perry, J.L.; Tian, S.; Luft, J.C.; DeSimone, J.M. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J. Control. Release, 2018, 284, 122-132.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.042] [PMID: 29894710]
[121]
Arévalo-Pérez, R.; Maderuelo, C.; Lanao, J.M. Recent advances in colon drug delivery systems. J. Control. Release, 2020, 327, 703-724.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.026] [PMID: 32941930]
[122]
Xu, C.T.; Meng, S.Y.; Pan, B.R. Drug therapy for ulcerative colitis. World J. Gastroenterol., 2004, 10(16), 2311-2317.
[http://dx.doi.org/10.3748/wjg.v10.i16.2311] [PMID: 15285010]
[123]
Abdalla, M.I.; Herfarth, H. Budesonide for the treatment of ulcerative colitis. Expert Opin. Pharmacother., 2016, 17(11), 1549-1559.
[http://dx.doi.org/10.1080/14656566.2016.1183648] [PMID: 27157244]
[124]
Goyanes, A.; Chang, H.; Sedough, D.; Hatton, G.B.; Wang, J.; Buanz, A.; Gaisford, S.; Basit, A.W. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int. J. Pharm., 2015, 496(2), 414-420.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.039] [PMID: 26481468]
[125]
Seoane-Viaño, I.; Gómez-Lado, N.; Lázare-Iglesias, H.; García-Otero, X.; Antúnez-López, J.R.; Ruibal, Á.; Varela-Correa, J.J.; Aguiar, P.; Basit, A.W.; Otero-Espinar, F.J.; González-Barcia, M.; Goyanes, A.; Luzardo-Álvarez, A.; Fernández-Ferreiro, A. 3D printed tacrolimus rectal formulations ameliorate colitis in an experimental animal model of inflammatory bowel disease. Biomedicines, 2020, 8(12), 563.
[http://dx.doi.org/10.3390/biomedicines8120563] [PMID: 33276641]
[126]
Seoane-Viaño, I.; Ong, J.J.; Luzardo-Álvarez, A.; González-Barcia, M.; Basit, A.W.; Otero-Espinar, F.J.; Goyanes, A. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J. Pharm. Sci., 2021, 16(1), 110-119.
[http://dx.doi.org/10.1016/j.ajps.2020.06.003] [PMID: 33613734]
[127]
Salas, A.; Hernandez-Rocha, C.; Duijvestein, M.; Faubion, W.; McGovern, D.; Vermeire, S.; Vetrano, S.; Vande Casteele, N. JAK–STAT pathway targeting for the treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(6), 323-337.
[http://dx.doi.org/10.1038/s41575-020-0273-0] [PMID: 32203403]
[128]
Palasik, B.N.; Wang, H. Tofacitinib, the first oral janus kinase inhibitor approved for adult ulcerative colitis. J. Pharm. Pract., 2020, 897190020953019.
[PMID: 32873116]
[129]
Shahrubudin, N.; Koshy, P.; Alipal, J.; Kadir, M.H.A.; Lee, T.C. Challenges of 3D printing technology for manufacturing biomedical products: A case study of Malaysian manufacturing firms. Heliyon, 2020, 6(4), e03734.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03734] [PMID: 32322726]
[130]
Infanger, S.; Haemmerli, A.; Iliev, S.; Baier, A.; Stoyanov, E.; Quodbach, J. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder. Int. J. Pharm., 2019, 555, 198-206.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.048] [PMID: 30458260]
[131]
Cui, M.; Pan, H.; Su, Y.; Fang, D.; Qiao, S.; Ding, P.; Pan, W. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm. Sin. B, 2021, 11(8), 2488-2504.
[http://dx.doi.org/10.1016/j.apsb.2021.03.015] [PMID: 34567958]
[132]
Pereira, G.G.; Figueiredo, S.; Fernandes, A.I.; Pinto, J.F. Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics, 2020, 12(9), 795.
[http://dx.doi.org/10.3390/pharmaceutics12090795] [PMID: 32842703]
[133]
Naseri, E.; Butler, H.; MacNevin, W.; Ahmed, M.; Ahmadi, A. Low-temperature solvent-based 3D printing of PLGA: A parametric printability study. Drug Dev. Ind. Pharm., 2020, 46(2), 173-178.
[http://dx.doi.org/10.1080/03639045.2019.1711389] [PMID: 31931645]
[134]
Kollamaram, G.; Croker, D.M.; Walker, G.M.; Goyanes, A.; Basit, A.W.; Gaisford, S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int. J. Pharm., 2018, 545(1-2), 144-152.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.055] [PMID: 29705104]
[135]
Verstraete, G.; Samaro, A.; Grymonpré, W.; Vanhoorne, V.; Van Snick, B.; Boone, M.N.; Hellemans, T.; Van Hoorebeke, L.; Remon, J.P.; Vervaet, C. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int. J. Pharm., 2018, 536(1), 318-325.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.002] [PMID: 29217471]
[136]
Yu, D.G.; Zhu, L.M.; Branford-White, C.J.; Yang, X.L. Three-dimensional printing in pharmaceutics: Promises and problems. J. Pharm. Sci., 2008, 97(9), 3666-3690.
[http://dx.doi.org/10.1002/jps.21284] [PMID: 18257041]
[137]
Zheng, F.; Huang, S. Advances in study on three-dimensional printing in pharmaceutics. Chin. Herb. Med., 2016, 8(2), 121-125.
[http://dx.doi.org/10.1016/S1674-6384(16)60020-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy