Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

ARL15 and its Multiple Disease Association: Emerging Functions and Potential Therapeutic Application

Author(s): Manisha Saini, Varnita Anand, Aditya Sharma, Anuj Pandey, Bittianda Kuttapa Thelma and Suman Kundu*

Volume 25, Issue 2, 2024

Published on: 15 September, 2023

Page: [137 - 153] Pages: 17

DOI: 10.2174/1389203724666230915123217

Price: $65

Abstract

ARL15 is a member of the RAS superfamily of small GTPases and is associated with several metabolic traits, including increased risk of diabetes, rheumatoid arthritis and lipid metabolism disorders. The ARL15 gene encodes for an uncharacterized small GTP binding protein. Its precise role in human physiology remains unknown, but several genetic association studies have recognized different variants in this gene to be statistically associated with numerous traits and complex diseases. Here, we provided the unique features of ARL15 small G protein, its association with varied metabolic and lifestyle diseases, its function in vesicular and lipid trafficking, and its binding partners. We outlined this protein as a promising and emerging therapeutic target to combat metabolic disorders like cardiovascular diseases, diabetes and rheumatoid arthritis. The review provides a comprehensive description of the current advancements in ARL15 research with a perspective that focused research will position this small GTPase as a viable target for the treatment of rheumatoid arthritis.

Graphical Abstract

[1]
Colicelli, J. Human RAS superfamily proteins and related GTPases. Sci. STKE, 2004, 2004(250), RE13.
[http://dx.doi.org/10.1126/stke.2502004re13] [PMID: 15367757]
[2]
Wennerberg, K.; Rossman, K.L.; Der, C.J. The Ras superfamily at a glance. J. Cell Sci., 2005, 118(5), 843-846.
[http://dx.doi.org/10.1242/jcs.01660] [PMID: 15731001]
[3]
Bokoch, G.M.; Der, C.J. Emerging concepts in the Ras superfamily of GTP‐binding proteins. FASEB J., 1993, 7(9), 750-759.
[http://dx.doi.org/10.1096/fasebj.7.9.8330683] [PMID: 8330683]
[4]
Tetlow, A.L.; Tamanoi, F. The ras superfamily G-proteins. Enzymes, 2013, 33(Pt A), 1-14.
[http://dx.doi.org/10.1016/B978-0-12-416749-0.00001-4] [PMID: 25033798]
[5]
Heasman, S.J.; Ridley, A.J. Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol., 2008, 9(9), 690-701.
[http://dx.doi.org/10.1038/nrm2476] [PMID: 18719708]
[6]
Chavrier, P.; Goud, B. The role of ARF and Rab GTPases in membrane transport. Curr. Opin. Cell Biol., 1999, 11(4), 466-475.
[http://dx.doi.org/10.1016/S0955-0674(99)80067-2] [PMID: 10449335]
[7]
Casanova, J.E. ARFs. Curr. Biol., 2003, 13(4), R123.
[http://dx.doi.org/10.1016/S0960-9822(03)00069-1] [PMID: 12593809]
[8]
Matozaki, T.; Nakanishi, H.; Takai, Y. Small G-protein networks. Cell. Signal., 2000, 12(8), 515-524.
[http://dx.doi.org/10.1016/S0898-6568(00)00102-9] [PMID: 11027944]
[9]
Klöpper, T.H.; Kienle, N.; Fasshauer, D.; Munro, S. Untangling the evolution of Rab G proteins: Implications of a comprehensive genomic analysis. BMC Biol., 2012, 10(1), 71.
[http://dx.doi.org/10.1186/1741-7007-10-71] [PMID: 22873208]
[10]
Randazzo, P.A.; Nie, Z.; Miura, K.; Hsu, V.W. Molecular aspects of the cellular activities of ADP-ribosylation factors. Sci. STKE, 2000, 2000(59), re1.
[http://dx.doi.org/10.1126/stke.2000.59.re1] [PMID: 11752622]
[11]
Donaldson, J.G.; Jackson, C.L. Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol., 2000, 12(4), 475-482.
[http://dx.doi.org/10.1016/S0955-0674(00)00119-8] [PMID: 10873831]
[12]
Adarska, P.; Wong-Dilworth, L.; Bottanelli, F. ARF GTPases and their ubiquitous role in intracellular trafficking beyond the golgi. Front. Cell Dev. Biol., 2021, 9(7), 679046.
[http://dx.doi.org/10.3389/fcell.2021.679046] [PMID: 34368129]
[13]
Kalab, P.; Weis, K.; Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science, 2002, 295(5564), 2452-2456.
[http://dx.doi.org/10.1126/science.1068798] [PMID: 11923538]
[14]
Moore, M.S.; Blobel, G. The two steps of nuclear import, targeting to the nuclear envelope and translocation through the nuclear pore, require different cytosolic factors. Cell, 1992, 69(6), 939-950.
[http://dx.doi.org/10.1016/0092-8674(92)90613-H] [PMID: 1606616]
[15]
Kjeldgaard, M.; Nyborg, J.; Clark, B.F.C. The GTP binding motif: Variations on a theme. FASEB J., 1996, 10(12), 1347-1368.
[http://dx.doi.org/10.1096/fasebj.10.12.8903506] [PMID: 8903506]
[16]
Zhang, B.; Zhang, Y.; Wang, Z.; Zheng, Y. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J. Biol. Chem., 2000, 275(33), 25299-25307.
[http://dx.doi.org/10.1074/jbc.M001027200] [PMID: 10843989]
[17]
Brunsveld, L.; Kuhlmann, J.; Alexandrov, K.; Wittinghofer, A.; Goody, R.S.; Waldmann, H. Lipidated ras and rab peptides and proteins-synthesis, structure, and function. Angew. Chem. Int. Ed., 2006, 45(40), 6622-6646.
[http://dx.doi.org/10.1002/anie.200600855] [PMID: 17031879]
[18]
Peurois, F.; Veyron, S.; Ferrandez, Y.; Ladid, I.; Benabdi, S.; Zeghouf, M.; Peyroche, G.; Cherfils, J. Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering. Biochem. J., 2017, 474(7), 1259-1272.
[http://dx.doi.org/10.1042/BCJ20170015] [PMID: 28196833]
[19]
Klooster, J.P.; Hordijk, P.L. Targeting and localized signalling by small GTPases. Biol. Cell, 2007, 99(1), 1-12.
[http://dx.doi.org/10.1042/BC20060071] [PMID: 17155934]
[20]
Kahn, R.A.; Cherfils, J.; Elias, M.; Lovering, R.C.; Munro, S.; Schurmann, A. Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J. Cell Biol., 2006, 172(5), 645-650.
[http://dx.doi.org/10.1083/jcb.200512057] [PMID: 16505163]
[21]
Donaldson, J.G.; Jackson, C.L. ARF family G proteins and their regulators: Roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol., 2011, 12(6), 362-375.
[http://dx.doi.org/10.1038/nrm3117] [PMID: 21587297]
[22]
Memon, A.R. The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants. Biochim. Biophys. Acta Biomembr., 2004, 1664(1), 9-30.
[http://dx.doi.org/10.1016/j.bbamem.2004.04.005] [PMID: 15238254]
[23]
Wu, M.; Lu, L.; Hong, W.; Song, H. Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat. Struct. Mol. Biol., 2004, 11(1), 86-94.
[http://dx.doi.org/10.1038/nsmb714] [PMID: 14718928]
[24]
Bartolini, F.; Bhamidipati, A.; Thomas, S.; Schwahn, U.; Lewis, S.A.; Cowan, N.J. Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. J. Biol. Chem., 2002, 277(17), 14629-14634.
[http://dx.doi.org/10.1074/jbc.M200128200] [PMID: 11847227]
[25]
Bhamidipati, A.; Lewis, S.A.; Cowan, N.J. ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J. Cell Biol., 2000, 149(5), 1087-1096.
[http://dx.doi.org/10.1083/jcb.149.5.1087] [PMID: 10831612]
[26]
Bowzard, J.B.; Cheng, D.; Peng, J.; Kahn, R.A. ELMOD2 is an Arl2 GTPase-activating protein that also acts on Arfs. J. Biol. Chem., 2007, 282(24), 17568-17580.
[http://dx.doi.org/10.1074/jbc.M701347200] [PMID: 17452337]
[27]
Cai, X.B.; Wu, K.C.; Zhang, X.; Lv, J.N.; Jin, G.H.; Xiang, L.; Chen, J.; Huang, X.F.; Pan, D.; Lu, B.; Lu, F.; Qu, J.; Jin, Z.B. Whole‐exome sequencing identified ARL2 as a novel candidate gene for MRCS (microcornea, rod‐cone dystrophy, cataract, and posterior staphyloma) syndrome. Clin. Genet., 2019, 96(1), 61-71.
[http://dx.doi.org/10.1111/cge.13541] [PMID: 30945270]
[28]
Muromoto, R.; Sekine, Y.; Imoto, S.; Ikeda, O.; Okayama, T.; Sato, N.; Matsuda, T. BART is essential for nuclear retention of STAT3. Int. Immunol., 2008, 20(3), 395-403.
[http://dx.doi.org/10.1093/intimm/dxm154] [PMID: 18234692]
[29]
Sharer, J.D.; Kahn, R.A. The ARF-like 2 (ARL2)-binding protein, BART. J. Biol. Chem., 1999, 274(39), 27553-27561.
[http://dx.doi.org/10.1074/jbc.274.39.27553] [PMID: 10488091]
[30]
Tian, G.; Thomas, S.; Cowan, N.J. Effect of TBCD and its regulatory interactor Arl2 on tubulin and microtubule integrity. Cytoskeleton, 2010, 67(11), 706-714.
[http://dx.doi.org/10.1002/cm.20480] [PMID: 20740604]
[31]
Van Valkenburgh, H.; Shern, J.F.; Sharer, J.D.; Zhu, X.; Kahn, R.A. ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: Characterizing ARL1-binding proteins. J. Biol. Chem., 2001, 276(25), 22826-22837.
[http://dx.doi.org/10.1074/jbc.M102359200] [PMID: 11303027]
[32]
Veltel, S.; Kravchenko, A.; Ismail, S.; Wittinghofer, A. Specificity of Arl2/Arl3 signaling is mediated by a ternary Arl3-effector-GAP complex. FEBS Lett., 2008, 582(17), 2501-2507.
[http://dx.doi.org/10.1016/j.febslet.2008.05.053] [PMID: 18588884]
[33]
Zhou, C.; Cunningham, L.; Marcus, A.I.; Li, Y.; Kahn, R.A. Arl2 and Arl3 regulate different microtubule-dependent processes. Mol. Biol. Cell, 2006, 17(5), 2476-2487.
[http://dx.doi.org/10.1091/mbc.e05-10-0929] [PMID: 16525022]
[34]
Kühnel, K.; Veltel, S.; Schlichting, I.; Wittinghofer, A. Crystal structure of the human retinitis pigmentosa 2 protein and its interaction with Arl3. Structure, 2006, 14(2), 367-378.
[http://dx.doi.org/10.1016/j.str.2005.11.008] [PMID: 16472755]
[35]
Wright, K.J.; Baye, L.M.; Olivier-Mason, A.; Mukhopadhyay, S.; Sang, L.; Kwong, M.; Wang, W.; Pretorius, P.R.; Sheffield, V.C.; Sengupta, P.; Slusarski, D.C.; Jackson, P.K. An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Genes Dev., 2011, 25(22), 2347-2360.
[http://dx.doi.org/10.1101/gad.173443.111] [PMID: 22085962]
[36]
Hofmann, I.; Thompson, A.; Sanderson, C.M.; Munro, S. The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr. Biol., 2007, 17(8), 711-716.
[http://dx.doi.org/10.1016/j.cub.2007.03.007] [PMID: 17398095]
[37]
Lin, C.Y.; Huang, P.H.; Liao, W.L.; Cheng, H.J.; Huang, C.F.; Kuo, J.C.; Patton, W.A.; Massenburg, D.; Moss, J.; Lee, F.J.S. ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J. Biol. Chem., 2000, 275(48), 37815-37823.
[http://dx.doi.org/10.1074/jbc.M002470200] [PMID: 10980193]
[38]
Engel, T.; Lueken, A.; Bode, G.; Hobohm, U.; Lorkowski, S.; Schlueter, B.; Rust, S.; Cullen, P.; Pech, M.; Assmann, G.; Seedorf, U. ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS Lett., 2004, 566(1-3), 241-246.
[http://dx.doi.org/10.1016/j.febslet.2004.04.048] [PMID: 15147902]
[39]
Wei, S.; Xie, C.; Abe, Y.; Cai, J. ADP-ribosylation factor like 7 (ARL7) interacts with α-tubulin and modulates intracellular vesicular transport. Biochem. Biophys. Res. Commun., 2009, 384(3), 352-356.
[http://dx.doi.org/10.1016/j.bbrc.2009.04.125] [PMID: 19409876]
[40]
Ishida, M.; Bonifacino, J.S. ARFRP1 functions upstream of ARL1 and ARL5 to coordinate recruitment of distinct tethering factors to the trans-golgi network. J. Cell Biol., 2019, 218(11), 3880.
[http://dx.doi.org/10.1083/jcb.20190509710072019c] [PMID: 31604800]
[41]
Lin, C.Y.; Li, C.C.; Huang, P.H.; Lee, F.J.S. A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J. Cell Sci., 2002, 115(23), 4433-4445.
[http://dx.doi.org/10.1242/jcs.00123] [PMID: 12414990]
[42]
Shi, M.; Chen, B.; Mahajan, D.; Boh, B.K.; Zhou, Y.; Dutta, B.; Tie, H.C.; Sze, S.K.; Wu, G.; Lu, L. Amino acids stimulate the endosome-to-Golgi trafficking through Ragulator and small GTPase Arl5. Nat. Commun., 2018, 9(1), 4987.
[http://dx.doi.org/10.1038/s41467-018-07444-y] [PMID: 30478271]
[43]
Houghton, F.J.; Bellingham, S.A.; Hill, A.F.; Bourges, D.; Ang, D.K.Y.; Gemetzis, T.; Gasnereau, I.; Gleeson, P.A. Arl5b is a Golgi-localised small G protein involved in the regulation of retrograde transport. Exp. Cell Res., 2012, 318(5), 464-477.
[http://dx.doi.org/10.1016/j.yexcr.2011.12.023] [PMID: 22245584]
[44]
Jaimon, E.; Tripathi, A.; Khurana, A.; Ghosh, D.; Sugatha, J.; Datta, S. Binding with heat shock cognate protein HSC70 fine-tunes the Golgi association of the small GTPase ARL5B. J. Biol. Chem., 2021, 297(6), 101422.
[http://dx.doi.org/10.1016/j.jbc.2021.101422] [PMID: 34798070]
[45]
Rosa-Ferreira, C.; Christis, C.; Torres, I.L.; Munro, S. The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi. Biol. Open, 2015, 4(4), 474-481.
[http://dx.doi.org/10.1242/bio.201410975] [PMID: 25795912]
[46]
Toh, W.H.; Tan, J.Z.A.; Zulkefli, K.L.; Houghton, F.J.; Gleeson, P.A. Amyloid precursor protein traffics from the Golgi directly to early endosomes in an Arl5b- and AP4-dependent pathway. Traffic, 2017, 18(3), 159-175.
[http://dx.doi.org/10.1111/tra.12465] [PMID: 28000370]
[47]
Jin, H.; White, S.R.; Shida, T.; Schulz, S.; Aguiar, M.; Gygi, S.P.; Bazan, J.F.; Nachury, M.V. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell, 2010, 141(7), 1208-1219.
[http://dx.doi.org/10.1016/j.cell.2010.05.015] [PMID: 20603001]
[48]
Liew, G.M.; Ye, F.; Nager, A.R.; Murphy, J.P.; Lee, J.S.; Aguiar, M.; Breslow, D.K.; Gygi, S.P.; Nachury, M.V. The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Dev. Cell, 2014, 31(3), 265-278.
[http://dx.doi.org/10.1016/j.devcel.2014.09.004] [PMID: 25443296]
[49]
Seo, S.; Zhang, Q.; Bugge, K.; Breslow, D.K.; Searby, C.C.; Nachury, M.V.; Sheffield, V.C. A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened. PLoS Genet., 2011, 7(11), e1002358.
[http://dx.doi.org/10.1371/journal.pgen.1002358] [PMID: 22072986]
[50]
Wiens, C.J.; Tong, Y.; Esmail, M.A.; Oh, E.; Gerdes, J.M.; Wang, J.; Tempel, W.; Rattner, J.B.; Katsanis, N.; Park, H.W.; Leroux, M.R. Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J. Biol. Chem., 2010, 285(21), 16218-16230.
[http://dx.doi.org/10.1074/jbc.M109.070953] [PMID: 20207729]
[51]
Bagshaw, R.D.; Callahan, J.W.; Mahuran, D.J. The Arf-family protein, Arl8b, is involved in the spatial distribution of lysosomes. Biochem. Biophys. Res. Commun., 2006, 344(4), 1186-1191.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.221] [PMID: 16650381]
[52]
Marwaha, R.; Arya, S.B.; Jagga, D.; Kaur, H.; Tuli, A.; Sharma, M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J. Cell Biol., 2017, 216(4), 1051-1070.
[http://dx.doi.org/10.1083/jcb.201607085] [PMID: 28325809]
[53]
Okai, T.; Araki, Y.; Tada, M.; Tateno, T.; Kontani, K.; Katada, T. Novel small GTPase subfamily capable of associating with tubulin is required for chromosome segregation. J. Cell Sci., 2004, 117(20), 4705-4715.
[http://dx.doi.org/10.1242/jcs.01347] [PMID: 15331635]
[54]
Rosa-Ferreira, C.; Munro, S. Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev. Cell, 2011, 21(6), 1171-1178.
[http://dx.doi.org/10.1016/j.devcel.2011.10.007] [PMID: 22172677]
[55]
Garg, S.; Sharma, M.; Ung, C.; Tuli, A.; Barral, D.C.; Hava, D.L.; Veerapen, N.; Besra, G.S.; Hacohen, N.; Brenner, M.B. Lysosomal trafficking, antigen presentation, and microbial killing are controlled by the Arf-like GTPase Arl8b. Immunity, 2011, 35(2), 182-193.
[http://dx.doi.org/10.1016/j.immuni.2011.06.009] [PMID: 21802320]
[56]
Hofmann, I.; Munro, S. An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J. Cell Sci., 2006, 119(8), 1494-1503.
[http://dx.doi.org/10.1242/jcs.02958] [PMID: 16537643]
[57]
Khatter, D.; Raina, V.B.; Dwivedi, D.; Sindhwani, A.; Bahl, S.; Sharma, M. The small GTPase Arl8b regulates assembly of the mammalian HOPS complex to lysosomes. J. Cell Sci., 2015, 128(9), jcs.162651.
[http://dx.doi.org/10.1242/jcs.162651] [PMID: 25908847]
[58]
Michelet, X.; Tuli, A.; Gan, H.; Geadas, C.; Sharma, M.; Remold, H.G.; Brenner, M.B. Lysosome-mediated plasma membrane repair is dependent on the small GTPase Arl8b and determines cell death type in mycobacterium tuberculosis infection. J. Immunol., 2018, 200(9), 3160-3169.
[http://dx.doi.org/10.4049/jimmunol.1700829] [PMID: 29592961]
[59]
Tuli, A.; Thiery, J.; James, A.M.; Michelet, X.; Sharma, M.; Garg, S.; Sanborn, K.B.; Orange, J.S.; Lieberman, J.; Brenner, M.B. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity. Mol. Biol. Cell, 2013, 24(23), 3721-3735.
[http://dx.doi.org/10.1091/mbc.e13-05-0259] [PMID: 24088571]
[60]
Arya, S.B.; Kumar, G.; Kaur, H.; Kaur, A.; Tuli, A. ARL11 regulates lipopolysaccharide-stimulated macrophage activation by promoting mitogen-activated protein kinase (MAPK) signaling. J. Biol. Chem., 2018, 293(25), 9892-9909.
[http://dx.doi.org/10.1074/jbc.RA117.000727] [PMID: 29618517]
[61]
Calin, G.A.; Trapasso, F.; Shimizu, M.; Dumitru, C.D.; Yendamuri, S.; Godwin, A.K.; Ferracin, M.; Bernardi, G.; Chatterjee, D.; Baldassarre, G.; Rattan, S.; Alder, H.; Mabuchi, H.; Shiraishi, T.; Hansen, L.L.; Overgaard, J.; Herlea, V.; Mauro, F.R.; Dighiero, G.; Movsas, B.; Rassenti, L.; Kipps, T.; Baffa, R.; Fusco, A.; Mori, M.; Russo, G.; Liu, C.G.; Neuberg, D.; Bullrich, F.; Negrini, M.; Croce, C.M. Familial cancer associated with a polymorphism in ARLTS1. N. Engl. J. Med., 2005, 352(16), 1667-1676.
[http://dx.doi.org/10.1056/NEJMoa042280] [PMID: 15843669]
[62]
Barral, D.C.; Garg, S.; Casalou, C.; Watts, G.F.M.; Sandoval, J.L.; Ramalho, J.S.; Hsu, V.W.; Brenner, M.B. Arl13b regulates endocytic recycling traffic. Proc. Natl. Acad. Sci., 2012, 109(52), 21354-21359.
[http://dx.doi.org/10.1073/pnas.1218272110] [PMID: 23223633]
[63]
Casalou, C.; Seixas, C.; Portelinha, A.; Pintado, P.; Barros, M.; Ramalho, J.S.; Lopes, S.S.; Barral, D.C. Arl13b and the nonmuscle myosin heavy chain IIA are required for circular dorsal ruffle formation and cell migration. J. Cell Sci., 2014, 127(Pt 12), jcs.143446.
[http://dx.doi.org/10.1242/jcs.143446] [PMID: 24777479]
[64]
Caspary, T.; Larkins, C.E.; Anderson, K.V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell, 2007, 12(5), 767-778.
[http://dx.doi.org/10.1016/j.devcel.2007.03.004] [PMID: 17488627]
[65]
Cevik, S.; Sanders, A.A.W.M.; Van Wijk, E.; Boldt, K.; Clarke, L.; van Reeuwijk, J.; Hori, Y.; Horn, N.; Hetterschijt, L.; Wdowicz, A.; Mullins, A.; Kida, K.; Kaplan, O.I.; van Beersum, S.E.C.; Man Wu, K.; Letteboer, S.J.F.; Mans, D.A.; Katada, T.; Kontani, K.; Ueffing, M.; Roepman, R.; Kremer, H.; Blacque, O.E. Active transport and diffusion barriers restrict Joubert Syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain. PLoS Genet., 2013, 9(12), e1003977.
[http://dx.doi.org/10.1371/journal.pgen.1003977] [PMID: 24339792]
[66]
Duldulao, N.A.; Lee, S.; Sun, Z. Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/Scorpion. Development, 2009, 136(23), 4033-4042.
[http://dx.doi.org/10.1242/dev.036350] [PMID: 19906870]
[67]
Hori, Y.; Kobayashi, T.; Kikko, Y.; Kontani, K.; Katada, T. Domain architecture of the atypical Arf-family GTPase Arl13b involved in cilia formation. Biochem. Biophys. Res. Commun., 2008, 373(1), 119-124.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.001] [PMID: 18554500]
[68]
Humbert, M.C.; Weihbrecht, K.; Searby, C.C.; Li, Y.; Pope, R.M.; Sheffield, V.C.; Seo, S. ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc. Natl. Acad. Sci., 2012, 109(48), 19691-19696.
[http://dx.doi.org/10.1073/pnas.1210916109] [PMID: 23150559]
[69]
Kinzel, D.; Boldt, K.; Davis, E.E.; Burtscher, I.; Trümbach, D.; Diplas, B.; Attié-Bitach, T.; Wurst, W.; Katsanis, N.; Ueffing, M.; Lickert, H. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev. Cell, 2010, 19(1), 66-77.
[http://dx.doi.org/10.1016/j.devcel.2010.06.005] [PMID: 20643351]
[70]
Paridaen, J.T.M.L.; Wilsch-Bräuninger, M.; Huttner, W.B. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell, 2013, 155(2), 333-344.
[http://dx.doi.org/10.1016/j.cell.2013.08.060] [PMID: 24120134]
[71]
Thomas, S.; Cantagrel, V.; Mariani, L.; Serre, V.; Lee, J.E.; Elkhartoufi, N.; de Lonlay, P.; Desguerre, I.; Munnich, A.; Boddaert, N.; Lyonnet, S.; Vekemans, M.; Lisgo, S.N.; Caspary, T.; Gleeson, J.; Attié-Bitach, T. Identification of a novel ARL13B variant in a Joubert syndrome-affected patient with retinal impairment and obesity. Eur. J. Hum. Genet., 2015, 23(5), 621-627.
[http://dx.doi.org/10.1038/ejhg.2014.156] [PMID: 25138100]
[72]
Paul, P.; van den Hoorn, T.; Jongsma, M.L.M.; Bakker, M.J.; Hengeveld, R.; Janssen, L.; Cresswell, P.; Egan, D.A.; van Ham, M.; ten Brinke, A.; Ovaa, H.; Beijersbergen, R.L.; Kuijl, C.; Neefjes, J. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation. Cell, 2011, 145(2), 268-283.
[http://dx.doi.org/10.1016/j.cell.2011.03.023] [PMID: 21458045]
[73]
Yang, F.; Li, T.; Peng, Z.; Liu, Y.; Guo, Y. The amphipathic helices of Arfrp1 and Arl14 are sufficient to determine subcellular localizations. J. Biol. Chem., 2020, 295(49), 16643-16654.
[http://dx.doi.org/10.1074/jbc.RA120.014999] [PMID: 32972971]
[74]
Zhao, J.; Wang, M.; Deng, W.; Zhong, D.; Jiang, Y.; Liao, Y.; Chen, B.; Zhang, X. ADP-ribosylation factor-like GTPase 15 enhances insulin-induced AKT phosphorylation in the IR/IRS1/AKT pathway by interacting with ASAP2 and regulating PDPK1 activity. Biochem. Biophys. Res. Commun., 2017, 486(4), 865-871.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.079] [PMID: 28322786]
[75]
Zolotarov, Y.; Ma, C.; González-Recio, I.; Hardy, S.; Franken, G.A.C.; Uetani, N.; Latta, F.; Kostantin, E.; Boulais, J.; Thibault, M.P.; Côté, J.F.; Díaz-Moreno, I.; Quintana, A.D.; Hoenderop, J.G.J.; Martínez-Cruz, L.A.; Tremblay, M.L.; de Baaij, J.H.F. ARL15 modulates magnesium homeostasis through N-glycosylation of CNNMs. Cell. Mol. Life Sci., 2021, 78(13), 5427-5445.
[http://dx.doi.org/10.1007/s00018-021-03832-8] [PMID: 34089346]
[76]
Yang, Y.K.; Qu, H.; Gao, D.; Di, W.; Chen, H.W.; Guo, X.; Zhai, Z.H.; Chen, D.Y. ARF-like protein 16 (ARL16) inhibits RIG-I by binding with its C-terminal domain in a GTP-dependent manner. J. Biol. Chem., 2011, 286(12), 10568-10580.
[http://dx.doi.org/10.1074/jbc.M110.206896] [PMID: 21233210]
[77]
Behnia, R.; Panic, B.; Whyte, J.R.C.; Munro, S. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat. Cell Biol., 2004, 6(5), 405-413.
[http://dx.doi.org/10.1038/ncb1120] [PMID: 15077113]
[78]
Setty, S.R.G.; Shin, M.E.; Yoshino, A.; Marks, M.S.; Burd, C.G. Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr. Biol., 2003, 13(5), 401-404.
[http://dx.doi.org/10.1016/S0960-9822(03)00089-7] [PMID: 12620188]
[79]
Panic, B.; Whyte, J.R.C.; Munro, S. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol., 2003, 13(5), 405-410.
[http://dx.doi.org/10.1016/S0960-9822(03)00091-5] [PMID: 12620189]
[80]
Shin, H.W.; Kobayashi, H.; Kitamura, M.; Waguri, S.; Suganuma, T.; Uchiyama, Y.; Nakayama, K. Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. J. Cell Sci., 2005, 118(17), 4039-4048.
[http://dx.doi.org/10.1242/jcs.02524] [PMID: 16129887]
[81]
Richards, J.B.; Waterworth, D.; O’Rahilly, S.; Hivert, M.F.; Loos, R.J.F.; Perry, J.R.B.; Tanaka, T.; Timpson, N.J.; Semple, R.K.; Soranzo, N.; Song, K.; Rocha, N.; Grundberg, E.; Dupuis, J.; Florez, J.C.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Sladek, R.; Aulchenko, Y.; Evans, D.; Waeber, G.; Erdmann, J.; Burnett, M.S.; Sattar, N.; Devaney, J.; Willenborg, C.; Hingorani, A.; Witteman, J.C.M.; Vollenweider, P.; Glaser, B.; Hengstenberg, C.; Ferrucci, L.; Melzer, D.; Stark, K.; Deanfield, J.; Winogradow, J.; Grassl, M.; Hall, A.S.; Egan, J.M.; Thompson, J.R.; Ricketts, S.L.; König, I.R.; Reinhard, W.; Grundy, S.; Wichmann, H.E.; Barter, P.; Mahley, R.; Kesaniemi, Y.A.; Rader, D.J.; Reilly, M.P.; Epstein, S.E.; Stewart, A.F.R.; Van Duijn, C.M.; Schunkert, H.; Burling, K.; Deloukas, P.; Pastinen, T.; Samani, N.J.; McPherson, R.; Davey Smith, G.; Frayling, T.M.; Wareham, N.J.; Meigs, J.B.; Mooser, V.; Spector, T.D. A genome-wide association study reveals variants in ARL15 that influence adiponectin levels. PLoS Genet., 2009, 5(12), e1000768.
[http://dx.doi.org/10.1371/journal.pgen.1000768] [PMID: 20011104]
[82]
Gorski, M.; van der Most, P.J.; Teumer, A.; Chu, A.Y.; Li, M.; Mijatovic, V.; Nolte, I.M.; Cocca, M.; Taliun, D.; Gomez, F.; Li, Y.; Tayo, B.; Tin, A.; Feitosa, M.F.; Aspelund, T.; Attia, J.; Biffar, R.; Bochud, M.; Boerwinkle, E.; Borecki, I.; Bottinger, E.P.; Chen, M.H.; Chouraki, V.; Ciullo, M.; Coresh, J.; Cornelis, M.C.; Curhan, G.C.; d’Adamo, A.P.; Dehghan, A.; Dengler, L.; Ding, J.; Eiriksdottir, G.; Endlich, K.; Enroth, S.; Esko, T.; Franco, O.H.; Gasparini, P.; Gieger, C.; Girotto, G.; Gottesman, O.; Gudnason, V.; Gyllensten, U.; Hancock, S.J.; Harris, T.B.; Helmer, C.; Höllerer, S.; Hofer, E.; Hofman, A.; Holliday, E.G.; Homuth, G.; Hu, F.B.; Huth, C.; Hutri-Kähönen, N.; Hwang, S.J.; Imboden, M.; Johansson, Å.; Kähönen, M.; König, W.; Kramer, H.; Krämer, B.K.; Kumar, A.; Kutalik, Z.; Lambert, J.C.; Launer, L.J.; Lehtimäki, T.; de Borst, M.H.; Navis, G.; Swertz, M.; Liu, Y.; Lohman, K.; Loos, R.J.F.; Lu, Y.; Lyytikäinen, L.P.; McEvoy, M.A.; Meisinger, C.; Meitinger, T.; Metspalu, A.; Metzger, M.; Mihailov, E.; Mitchell, P.; Nauck, M.; Oldehinkel, A.J.; Olden, M.; WJH Penninx, B.; Pistis, G.; Pramstaller, P.P.; Probst-Hensch, N.; Raitakari, O.T.; Rettig, R.; Ridker, P.M.; Rivadeneira, F.; Robino, A.; Rosas, S.E.; Ruderfer, D.; Ruggiero, D.; Saba, Y.; Sala, C.; Schmidt, H.; Schmidt, R.; Scott, R.J.; Sedaghat, S.; Smith, A.V.; Sorice, R.; Stengel, B.; Stracke, S.; Strauch, K.; Toniolo, D.; Uitterlinden, A.G.; Ulivi, S.; Viikari, J.S.; Völker, U.; Vollenweider, P.; Völzke, H.; Vuckovic, D.; Waldenberger, M.; Jin Wang, J.; Yang, Q.; Chasman, D.I.; Tromp, G.; Snieder, H.; Heid, I.M.; Fox, C.S.; Köttgen, A.; Pattaro, C.; Böger, C.A.; Fuchsberger, C. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function. Sci. Rep., 2017, 7(1), 45040.
[http://dx.doi.org/10.1038/srep45040] [PMID: 28452372]
[83]
Corre, T.; Arjona, F.J.; Hayward, C.; Youhanna, S.; de Baaij, J.H.F.; Belge, H.; Nägele, N.; Debaix, H.; Blanchard, M.G.; Traglia, M.; Harris, S.E.; Ulivi, S.; Rueedi, R.; Lamparter, D.; Macé, A.; Sala, C.; Lenarduzzi, S.; Ponte, B.; Pruijm, M.; Ackermann, D.; Ehret, G.; Baptista, D.; Polasek, O.; Rudan, I.; Hurd, T.W.; Hastie, N.D.; Vitart, V.; Waeber, G.; Kutalik, Z.; Bergmann, S.; Vargas-Poussou, R.; Konrad, M.; Gasparini, P.; Deary, I.J.; Starr, J.M.; Toniolo, D.; Vollenweider, P.; Hoenderop, J.G.J.; Bindels, R.J.M.; Bochud, M.; Devuyst, O. Genome-wide meta-analysis unravels interactions between magnesium homeostasis and metabolic phenotypes. J. Am. Soc. Nephrol., 2018, 29(1), 335-348.
[http://dx.doi.org/10.1681/ASN.2017030267] [PMID: 29093028]
[84]
Domínguez-Cruz, M.G.; Muñoz, M.L.; Totomoch-Serra, A.; García-Escalante, M.G.; Burgueño, J.; Valadez-González, N.; Pinto-Escalantes, D.; Díaz-Badillo, Á. Pilot genome-wide association study identifying novel risk loci for type 2 diabetes in a Maya population. Gene, 2018, 677, 324-331.
[http://dx.doi.org/10.1016/j.gene.2018.08.041] [PMID: 30130595]
[85]
Li, Y.; Yang, Y.; Yao, Y.; Li, X.; Shi, L.; Zhang, Y.; Xiong, Y.; Yan, M.; Yao, Y.; Xiao, C. Association study of ARL15 and CDH13 with T2DM in a han chinese population. Int. J. Med. Sci., 2014, 11(5), 522-527.
[http://dx.doi.org/10.7150/ijms.8206] [PMID: 24688318]
[86]
Shen, J.; Liu, M.; Xu, J.; Sun, B.; Xu, H.; Zhang, W. ARL15 overexpression attenuates high glucose-induced impairment of insulin signaling and oxidative stress in human umbilical vein endothelial cells. Life Sci., 2019, 220(1), 127-135.
[http://dx.doi.org/10.1016/j.lfs.2019.01.030] [PMID: 30682341]
[87]
Negi, S.; Juyal, G.; Senapati, S.; Prasad, P.; Gupta, A.; Singh, S.; Kashyap, S.; Kumar, A.; Kumar, U.; Gupta, R.; Kaur, S.; Agrawal, S.; Aggarwal, A.; Ott, J.; Jain, S.; Juyal, R.C.; Thelma, B.K. A genome-wide association study reveals ARL15, a novel non-HLA susceptibility gene for rheumatoid arthritis in North Indians. Arthritis Rheum., 2013, 65(12), 3026-3035.
[http://dx.doi.org/10.1002/art.38110] [PMID: 23918589]
[88]
Wu, Y.; Bai, Y.; McEwan, D.G.; Bentley, L.; Aravani, D.; Cox, R.D. Palmitoylated small GTPase ARL15 is translocated within Golgi network during adipogenesis. Biol. Open, 2021, 10(12), bio058420.
[http://dx.doi.org/10.1242/bio.058420] [PMID: 34779483]
[89]
Thomsen, S.K.; Ceroni, A.; van de Bunt, M.; Burrows, C.; Barrett, A.; Scharfmann, R.; Ebner, D.; McCarthy, M.I.; Gloyn, A.L. Systematic functional characterization of candidate causal genes for type 2 diabetes risk variants. Diabetes, 2016, 65(12), 3805-3811.
[http://dx.doi.org/10.2337/db16-0361] [PMID: 27554474]
[90]
Sun, J.Q.; Yin, R.X.; Shi, G.Y.; Shen, S.W.; Chen, X.; Bin, Y.; Huang, F.; Wang, W.; Lin, W.X.; Pan, S.L. Association of the ARL15 rs6450176 SNP and serum lipid levels in the Jing and Han populations. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12977-12994.
[PMID: 26722494]
[91]
Gillingham, A.K.; Munro, S. The small G proteins of the Arf family and their regulators. Annu. Rev. Cell Dev. Biol., 2007, 23(1), 579-611.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123209] [PMID: 17506703]
[92]
Oparil, S.; Acelajado, M.C.; Bakris, G.L.; Berlowitz, D.R.; Cífková, R.; Dominiczak, A.F.; Grassi, G.; Jordan, J.; Poulter, N.R.; Rodgers, A.; Whelton, P.K. Hypertension. Nat. Rev. Dis. Primers, 2018, 4(1), 18014.
[http://dx.doi.org/10.1038/nrdp.2018.14] [PMID: 29565029]
[93]
Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation, 2005, 111(25), 3481-3488.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.537878] [PMID: 15983262]
[94]
Rocha, N.; Payne, F.; Huang-Doran, I.; Sleigh, A.; Fawcett, K.; Adams, C.; Stears, A.; Saudek, V.; O’Rahilly, S.; Barroso, I.; Semple, R.K. The metabolic syndrome- associated small G protein ARL15 plays a role in adipocyte differentiation and adiponectin secretion. Sci. Rep., 2017, 7(1), 17593.
[http://dx.doi.org/10.1038/s41598-017-17746-8] [PMID: 29242557]
[95]
Chen, Z.; Yu, H.; Shi, X.; Warren, C.R.; Lotta, L.A.; Friesen, M.; Meissner, T.B.; Langenberg, C.; Wabitsch, M.; Wareham, N.; Benson, M.D.; Gerszten, R.E.; Cowan, C.A. Functional screening of candidate causal genes for insulin resistance in human preadipocytes and adipocytes. Circ. Res., 2020, 126(3), 330-346.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315246] [PMID: 31739742]
[96]
Oparil, S.; Schmieder, R.E. New approaches in the treatment of hypertension. Circ. Res., 2015, 116(6), 1074-1095.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303603] [PMID: 25767291]
[97]
Li, C.; He, J.; Chen, J.; Zhao, J.; Gu, D.; Hixson, J.E.; Rao, D.C.; Jaquish, C.E.; Rice, T.K.; Sung, Y.J.; Kelly, T.N. Genome-wide gene-potassium interaction analyses on blood pressure. Circ. Cardiovasc. Genet., 2017, 10(6), e001811.
[http://dx.doi.org/10.1161/CIRCGENETICS.117.001811] [PMID: 29212900]
[98]
Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Luan, J. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet., 2012, 44(9), 991-1005.
[http://dx.doi.org/10.1038/ng.2385] [PMID: 22885924]
[99]
Taneera, J.; Prasad, R.B.; Dhaiban, S.; Mohammed, A.K.; Haataja, L.; Arvan, P.; Hamad, M.; Groop, L.; Wollheim, C.B. Silencing of the FTO gene inhibits insulin secretion: An in vitro study using GRINCH cells. Mol. Cell. Endocrinol., 2018, 472, 10-17.
[http://dx.doi.org/10.1016/j.mce.2018.06.003] [PMID: 29890211]
[100]
Frühbeck, G. Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol. Biol., 2008, 456, 1-22.
[http://dx.doi.org/10.1007/978-1-59745-245-8_1] [PMID: 18516549]
[101]
Klimentidis, Y.C.; Arora, A. Interaction of insulin resistance and related genetic variants with triglyceride-associated genetic variants. Circ. Cardiovasc. Genet., 2016, 9(2), 154-161.
[http://dx.doi.org/10.1161/CIRCGENETICS.115.001246] [PMID: 26850992]
[102]
Glessner, J.T.; Bradfield, J.P.; Wang, K.; Takahashi, N.; Zhang, H.; Sleiman, P.M.; Mentch, F.D.; Kim, C.E.; Hou, C.; Thomas, K.A.; Garris, M.L.; Deliard, S.; Frackelton, E.C.; Otieno, F.G.; Zhao, J.; Chiavacci, R.M.; Li, M.; Buxbaum, J.D.; Berkowitz, R.I.; Hakonarson, H.; Grant, S.F.A. A genome-wide study reveals copy number variants exclusive to childhood obesity cases. Am. J. Hum. Genet., 2010, 87(5), 661-666.
[http://dx.doi.org/10.1016/j.ajhg.2010.09.014] [PMID: 20950786]
[103]
Benabdelkamel, H.; Masood, A.; Okla, M.; Al-Naami, M.Y.; Alfadda, A.A. A proteomics-based approach reveals differential regulation of urine proteins between metabolically healthy and unhealthy obese patients. Int. J. Mol. Sci., 2019, 20(19), 4905.
[http://dx.doi.org/10.3390/ijms20194905] [PMID: 31623319]
[104]
Ried, J.S.; Jeff, M.J.; Chu, A.Y.; Bragg-Gresham, J.L.; van Dongen, J.; Huffman, J.E.; Ahluwalia, T.S.; Cadby, G.; Eklund, N.; Eriksson, J.; Esko, T.; Feitosa, M.F.; Goel, A.; Gorski, M.; Hayward, C.; Heard-Costa, N.L.; Jackson, A.U.; Jokinen, E.; Kanoni, S.; Kristiansson, K.; Kutalik, Z.; Lahti, J.; Luan, J.; Mägi, R.; Mahajan, A.; Mangino, M.; Medina-Gomez, C.; Monda, K.L.; Nolte, I.M.; Pérusse, L.; Prokopenko, I.; Qi, L.; Rose, L.M.; Salvi, E.; Smith, M.T.; Snieder, H.; Stančáková, A.; Ju Sung, Y.; Tachmazidou, I.; Teumer, A.; Thorleifsson, G.; van der Harst, P.; Walker, R.W.; Wang, S.R.; Wild, S.H.; Willems, S.M.; Wong, A.; Zhang, W.; Albrecht, E.; Couto Alves, A.; Bakker, S.J.L.; Barlassina, C.; Bartz, T.M.; Beilby, J.; Bellis, C.; Bergman, R.N.; Bergmann, S.; Blangero, J.; Blüher, M.; Boerwinkle, E.; Bonnycastle, L.L.; Bornstein, S.R.; Bruinenberg, M.; Campbell, H.; Chen, Y.D.I.; Chiang, C.W.K.; Chines, P.S.; Collins, F.S.; Cucca, F.; Cupples, L.A.; D’Avila, F.; de Geus, E.J.C.; Dedoussis, G.; Dimitriou, M.; Döring, A.; Eriksson, J.G.; Farmaki, A.E.; Farrall, M.; Ferreira, T.; Fischer, K.; Forouhi, N.G.; Friedrich, N.; Gjesing, A.P.; Glorioso, N.; Graff, M.; Grallert, H.; Grarup, N.; Gräßler, J.; Grewal, J.; Hamsten, A.; Harder, M.N.; Hartman, C.A.; Hassinen, M.; Hastie, N.; Hattersley, A.T.; Havulinna, A.S.; Heliövaara, M.; Hillege, H.; Hofman, A.; Holmen, O.; Homuth, G.; Hottenga, J.J.; Hui, J.; Husemoen, L.L.; Hysi, P.G.; Isaacs, A.; Ittermann, T.; Jalilzadeh, S.; James, A.L.; Jørgensen, T.; Jousilahti, P.; Jula, A.; Marie Justesen, J.; Justice, A.E.; Kähönen, M.; Karaleftheri, M.; Tee Khaw, K.; Keinanen-Kiukaanniemi, S.M.; Kinnunen, L.; Knekt, P.B.; Koistinen, H.A.; Kolcic, I.; Kooner, I.K.; Koskinen, S.; Kovacs, P.; Kyriakou, T.; Laitinen, T.; Langenberg, C.; Lewin, A.M.; Lichtner, P.; Lindgren, C.M.; Lindström, J.; Linneberg, A.; Lorbeer, R.; Lorentzon, M.; Luben, R.; Lyssenko, V.; Männistö, S.; Manunta, P.; Leach, I.M.; McArdle, W.L.; Mcknight, B.; Mohlke, K.L.; Mihailov, E.; Milani, L.; Mills, R.; Montasser, M.E.; Morris, A.P.; Müller, G.; Musk, A.W.; Narisu, N.; Ong, K.K.; Oostra, B.A.; Osmond, C.; Palotie, A.; Pankow, J.S.; Paternoster, L.; Penninx, B.W.; Pichler, I.; Pilia, M.G.; Polašek, O.; Pramstaller, P.P.; Raitakari, O.T.; Rankinen, T.; Rao, D.C.; Rayner, N.W.; Ribel-Madsen, R.; Rice, T.K.; Richards, M.; Ridker, P.M.; Rivadeneira, F.; Ryan, K.A.; Sanna, S.; Sarzynski, M.A.; Scholtens, S.; Scott, R.A.; Sebert, S.; Southam, L.; Sparsø, T.H.; Steinthorsdottir, V.; Stirrups, K.; Stolk, R.P.; Strauch, K.; Stringham, H.M.; Swertz, M.A.; Swift, A.J.; Tönjes, A.; Tsafantakis, E.; van der Most, P.J.; Van Vliet-Ostaptchouk, J.V.; Vandenput, L.; Vartiainen, E.; Venturini, C.; Verweij, N.; Viikari, J.S.; Vitart, V.; Vohl, M.C.; Vonk, J.M.; Waeber, G.; Widén, E.; Willemsen, G.; Wilsgaard, T.; Winkler, T.W.; Wright, A.F.; Yerges-Armstrong, L.M.; Hua Zhao, J.; Carola Zillikens, M.; Boomsma, D.I.; Bouchard, C.; Chambers, J.C.; Chasman, D.I.; Cusi, D.; Gansevoort, R.T.; Gieger, C.; Hansen, T.; Hicks, A.A.; Hu, F.; Hveem, K.; Jarvelin, M.R.; Kajantie, E.; Kooner, J.S.; Kuh, D.; Kuusisto, J.; Laakso, M.; Lakka, T.A.; Lehtimäki, T.; Metspalu, A.; Njølstad, I.; Ohlsson, C.; Oldehinkel, A.J.; Palmer, L.J.; Pedersen, O.; Perola, M.; Peters, A.; Psaty, B.M.; Puolijoki, H.; Rauramaa, R.; Rudan, I.; Salomaa, V.; Schwarz, P.E.H.; Shudiner, A.R.; Smit, J.H.; Sørensen, T.I.A.; Spector, T.D.; Stefansson, K.; Stumvoll, M.; Tremblay, A.; Tuomilehto, J.; Uitterlinden, A.G.; Uusitupa, M.; Völker, U.; Vollenweider, P.; Wareham, N.J.; Watkins, H.; Wilson, J.F.; Zeggini, E.; Abecasis, G.R.; Boehnke, M.; Borecki, I.B.; Deloukas, P.; van Duijn, C.M.; Fox, C.; Groop, L.C.; Heid, I.M.; Hunter, D.J.; Kaplan, R.C.; McCarthy, M.I.; North, K.E.; O’Connell, J.R.; Schlessinger, D.; Thorsteinsdottir, U.; Strachan, D.P.; Frayling, T.; Hirschhorn, J.N.; Müller-Nurasyid, M.; Loos, R.J.F A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nat. Commun., 2016, 7(1), 13357.
[http://dx.doi.org/10.1038/ncomms13357] [PMID: 27876822]
[105]
Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; Johansen, C.T.; Fouchier, S.W.; Isaacs, A.; Peloso, G.M.; Barbalic, M.; Ricketts, S.L.; Bis, J.C.; Aulchenko, Y.S.; Thorleifsson, G.; Feitosa, M.F.; Chambers, J.; Orho-Melander, M.; Melander, O.; Johnson, T.; Li, X.; Guo, X.; Li, M.; Shin Cho, Y.; Jin Go, M.; Jin Kim, Y.; Lee, J.Y.; Park, T.; Kim, K.; Sim, X.; Twee-Hee Ong, R.; Croteau-Chonka, D.C.; Lange, L.A.; Smith, J.D.; Song, K.; Zhao, H. Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466(7307), 707-713.
[http://dx.doi.org/10.1038/nature09270] [PMID: 20686565]
[106]
Kapoor, M.; Wang, J.C.; Wetherill, L.; Le, N.; Bertelsen, S.; Hinrichs, A.L.; Budde, J.; Agrawal, A.; Almasy, L.; Bucholz, K.; Dick, D.M.; Harari, O.; Xiaoling, X.; Hesselbrock, V.; Kramer, J.; Nurnberger, J.I., Jr; Rice, J.; Schuckit, M.; Tischfield, J.; Porjesz, B.; Edenberg, H.J.; Bierut, L.; Foroud, T.; Goate, A. Genome-wide survival analysis of age at onset of alcohol dependence in extended high-risk COGA families. Drug Alcohol Depend., 2014, 142, 56-62.
[http://dx.doi.org/10.1016/j.drugalcdep.2014.05.023] [PMID: 24962325]
[107]
Mahajan, A.; Go, M.J.; Zhang, W.; Below, J.E.; Gaulton, K.J.; Ferreira, T.; Horikoshi, M.; Johnson, A.D.; Ng, M.C.Y.; Prokopenko, I.; Saleheen, D.; Wang, X.; Zeggini, E.; Abecasis, G.R.; Adair, L.S.; Almgren, P.; Atalay, M.; Aung, T.; Baldassarre, D.; Balkau, B.; Bao, Y.; Barnett, A.H.; Barroso, I.; Basit, A.; Been, L.F.; Beilby, J.; Bell, G.I.; Benediktsson, R.; Bergman, R.N.; Boehm, B.O.; Boerwinkle, E.; Bonnycastle, L.L.; Burtt, N.; Cai, Q.; Campbell, H.; Carey, J.; Cauchi, S.; Caulfield, M.; Chan, J.C.N.; Chang, L.C.; Chang, T.J.; Chang, Y.C.; Charpentier, G.; Chen, C.H.; Chen, H.; Chen, Y.T.; Chia, K.S.; Chidambaram, M.; Chines, P.S.; Cho, N.H.; Cho, Y.M.; Chuang, L.M.; Collins, F.S.; Cornelis, M.C.; Couper, D.J.; Crenshaw, A.T.; van Dam, R.M.; Danesh, J.; Das, D.; de Faire, U.; Dedoussis, G.; Deloukas, P.; Dimas, A.S.; Dina, C.; Doney, A.S.F.; Donnelly, P.J.; Dorkhan, M.; van Duijn, C.; Dupuis, J.; Edkins, S.; Elliott, P.; Emilsson, V.; Erbel, R.; Eriksson, J.G.; Escobedo, J.; Esko, T.; Eury, E.; Florez, J.C.; Fontanillas, P.; Forouhi, N.G.; Forsen, T.; Fox, C.; Fraser, R.M.; Frayling, T.M.; Froguel, P.; Frossard, P.; Gao, Y.; Gertow, K.; Gieger, C.; Gigante, B.; Grallert, H.; Grant, G.B.; Groop, L.C.; Groves, C.J.; Grundberg, E.; Guiducci, C.; Hamsten, A.; Han, B.G.; Hara, K.; Hassanali, N.; Hattersley, A.T.; Hayward, C.; Hedman, A.K.; Herder, C.; Hofman, A.; Holmen, O.L.; Hovingh, K.; Hreidarsson, A.B.; Hu, C.; Hu, F.B.; Hui, J.; Humphries, S.E.; Hunt, S.E.; Hunter, D.J.; Hveem, K.; Hydrie, Z.I.; Ikegami, H.; Illig, T.; Ingelsson, E.; Islam, M.; Isomaa, B.; Jackson, A.U.; Jafar, T.; James, A.; Jia, W.; Jöckel, K.H.; Jonsson, A.; Jowett, J.B.M.; Kadowaki, T.; Kang, H.M.; Kanoni, S.; Kao, W.H.L.; Kathiresan, S.; Kato, N.; Katulanda, P.; Keinanen-Kiukaanniemi, S.M.; Kelly, A.M.; Khan, H.; Khaw, K.T.; Khor, C.C.; Kim, H.L.; Kim, S.; Kim, Y.J.; Kinnunen, L.; Klopp, N.; Kong, A.; Korpi-Hyövälti, E.; Kowlessur, S.; Kraft, P.; Kravic, J.; Kristensen, M.M.; Krithika, S.; Kumar, A.; Kumate, J.; Kuusisto, J.; Kwak, S.H.; Laakso, M.; Lagou, V.; Lakka, T.A.; Langenberg, C.; Langford, C.; Lawrence, R.; Leander, K.; Lee, J.M.; Lee, N.R.; Li, M.; Li, X.; Li, Y.; Liang, J.; Liju, S.; Lim, W.Y.; Lind, L.; Lindgren, C.M.; Lindholm, E.; Liu, C.T.; Liu, J.J.; Lobbens, S.; Long, J.; Loos, R.J.F.; Lu, W.; Luan, J.; Lyssenko, V.; Ma, R.C.W.; Maeda, S.; Mägi, R.; Männistö, S.; Matthews, D.R.; Meigs, J.B.; Melander, O.; Metspalu, A.; Meyer, J.; Mirza, G.; Mihailov, E.; Moebus, S.; Mohan, V.; Mohlke, K.L.; Morris, A.D.; Mühleisen, T.W.; Müller-Nurasyid, M.; Musk, B.; Nakamura, J.; Nakashima, E.; Navarro, P.; Ng, P.K.; Nica, A.C.; Nilsson, P.M.; Njølstad, I.; Nöthen, M.M.; Ohnaka, K.; Ong, T.H.; Owen, K.R.; Palmer, C.N.A.; Pankow, J.S.; Park, K.S.; Parkin, M.; Pechlivanis, S.; Pedersen, N.L.; Peltonen, L.; Perry, J.R.B.; Peters, A.; Pinidiyapathirage, J.M.; Platou, C.G.P.; Potter, S.; Price, J.F.; Qi, L.; Radha, V.; Rallidis, L.; Rasheed, A.; Rathmann, W.; Rauramaa, R.; Raychaudhuri, S.; Rayner, N.W.; Rees, S.D.; Rehnberg, E.; Ripatti, S.; Robertson, N.; Roden, M.; Rossin, E.J.; Rudan, I.; Rybin, D.; Saaristo, T.E.; Salomaa, V.; Saltevo, J.; Samuel, M.; Sanghera, D.K.; Saramies, J.; Scott, J.; Scott, L.J.; Scott, R.A.; Segrè, A.V.; Sehmi, J.; Sennblad, B.; Shah, N.; Shah, S.; Shera, A.S.; Shu, X.O.; Shuldiner, A.R.; Sigurðsson, G.; Sijbrands, E.; Silveira, A.; Sim, X.; Sivapalaratnam, S.; Small, K.S.; So, W.Y.; Stančáková, A.; Stefansson, K.; Steinbach, G.; Steinthorsdottir, V.; Stirrups, K.; Strawbridge, R.J.; Stringham, H.M.; Sun, Q.; Suo, C.; Syvänen, A.C.; Takayanagi, R.; Takeuchi, F.; Tay, W.T.; Teslovich, T.M.; Thorand, B.; Thorleifsson, G.; Thorsteinsdottir, U.; Tikkanen, E.; Trakalo, J.; Tremoli, E.; Trip, M.D.; Tsai, F.J.; Tuomi, T.; Tuomilehto, J.; Uitterlinden, A.G.; Valladares-Salgado, A.; Vedantam, S.; Veglia, F.; Voight, B.F.; Wang, C.; Wareham, N.J.; Wennauer, R.; Wickremasinghe, A.R.; Wilsgaard, T.; Wilson, J.F.; Wiltshire, S.; Winckler, W.; Wong, T.Y.; Wood, A.R.; Wu, J.Y.; Wu, Y.; Yamamoto, K.; Yamauchi, T.; Yang, M.; Yengo, L.; Yokota, M.; Young, R.; Zabaneh, D.; Zhang, F.; Zhang, R.; Zheng, W.; Zimmet, P.Z.; Altshuler, D.; Bowden, D.W.; Cho, Y.S.; Cox, N.J.; Cruz, M.; Hanis, C.L.; Kooner, J.; Lee, J.Y.; Seielstad, M.; Teo, Y.Y.; Boehnke, M.; Parra, E.J.; Chambers, J.C.; Tai, E.S.; McCarthy, M.I.; Morris, A.P. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet., 2014, 46(3), 234-244.
[http://dx.doi.org/10.1038/ng.2897] [PMID: 24509480]
[108]
viatte, S.; Plant, D.; Han, B.; Fu, B.; Yarwood, A.; Thomson, W.; Symmons, D.P.M.; Worthington, J.; Young, A.; Hyrich, K.L.; Morgan, A.W.; Wilson, A.G.; Isaacs, J.D.; Raychaudhuri, S.; Barton, A. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA, 2015, 313(16), 1645-1656.
[http://dx.doi.org/10.1001/jama.2015.3435] [PMID: 25919528]
[109]
Anaya, J-M.; Castiblanco, J.; Lessard, C. Chapter 18Non-HLA genes and autoimmune diseases. In: Autoimmunity: From Bench to Bedside; El Rosario University Press: Bogota, (Colombia), 2013.
[110]
El-Gabalawy, H.S.; Robinson, D.B.; Daha, N.A.; Oen, K.G.; Smolik, I.; Elias, B.; Hart, D.; Bernstein, C.N.; Sun, Y.; Lu, Y.; Houwing-Duistermaat, J.J.; Siminovitch, K.A. Non-HLA genes modulate the risk of rheumatoid arthritis associated with HLA-DRB1 in a susceptible North American Native population. Genes Immun., 2011, 12(7), 568-574.
[http://dx.doi.org/10.1038/gene.2011.30] [PMID: 21614018]
[111]
Carrión, M.; Frommer, K.W.; Pérez-García, S.; Müller-Ladner, U.; Gomariz, R.P.; Neumann, E. The adipokine network in rheumatic joint diseases. Int. J. Mol. Sci., 2019, 20(17), 4091.
[http://dx.doi.org/10.3390/ijms20174091] [PMID: 31443349]
[112]
Pandey, A.K.; Saxena, A.; Dey, S.K.; Kanjilal, M.; Kumar, U.; Thelma, B.K. Correlation between an intronic SNP genotype and ARL15 level in rheumatoid arthritis. J. Genet., 2021, 100(2), 26.
[http://dx.doi.org/10.1007/s12041-021-01286-2] [PMID: 34187973]
[113]
Wang, J.; Qi, X.; Zhang, X.; Yan, W.; You, C. [Genetic polymorphisms of ARL15 and HLA-DMA are associated with rheumatoid arthritis in Han population from northwest China]. Xibao Yu Fenzi Mianyixue Zazhi, 2017, 33(12), 1681-1685.
[PMID: 29382430]
[114]
Smolen, J.S.; Aletaha, D.; Koeller, M.; Weisman, M.H.; Emery, P. New therapies for treatment of rheumatoid arthritis. Lancet, 2007, 370(9602), 1861-1874.
[http://dx.doi.org/10.1016/S0140-6736(07)60784-3] [PMID: 17570481]
[115]
Chaudhari, K.; Rizvi, S.; Syed, B.A. Rheumatoid arthritis: Current and future trends. Nat. Rev. Drug Discov., 2016, 15(5), 305-306.
[http://dx.doi.org/10.1038/nrd.2016.21] [PMID: 27080040]
[116]
Scott, D.L.; Wolfe, F.; Huizinga, T.W.J. Rheumatoid arthritis. Lancet, 2010, 376(9746), 1094-1108.
[http://dx.doi.org/10.1016/S0140-6736(10)60826-4] [PMID: 20870100]
[117]
Symmons, D.P.M. What is rheumatoid arthritis? Br. Med. Bull., 1995, 51(2), 243-248.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072958] [PMID: 7552061]
[118]
Schett, G.; Gravallese, E. Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol., 2012, 8(11), 656-664.
[http://dx.doi.org/10.1038/nrrheum.2012.153] [PMID: 23007741]
[119]
Ngian, G.S. Rheumatoid arthritis. Aust. Fam. Physician, 2010, 39(9), 626-628.
[PMID: 20877764]
[120]
Ridgley, L.A.; Anderson, A.E.; Pratt, A.G. What are the dominant cytokines in early rheumatoid arthritis? Curr. Opin. Rheumatol., 2018, 30(2), 207-214.
[http://dx.doi.org/10.1097/BOR.0000000000000470] [PMID: 29206659]
[121]
Wasserman, A.M. Diagnosis and management of rheumatoid arthritis. Am. Fam. Physician, 2011, 84(11), 1245-1252.
[122]
Svendsen, A.J.; Kyvik, K.O.; Houen, G.; Junker, P.; Christensen, K.; Christiansen, L.; Nielsen, C.; Skytthe, A.; Hjelmborg, J.V. On the origin of rheumatoid arthritis: The impact of environment and genes--a population based twin study. PLoS One, 2013, 8(2), e57304.
[http://dx.doi.org/10.1371/journal.pone.0057304] [PMID: 23468964]
[123]
Liao, K.P.; Alfredsson, L.; Karlson, E.W. Environmental influences on risk for rheumatoid arthritis. Curr. Opin. Rheumatol., 2009, 21(3), 279-283.
[http://dx.doi.org/10.1097/BOR.0b013e32832a2e16] [PMID: 19318947]
[124]
Clements, J.N. Treatment of rheumatoid arthritis: A review of recommendations and emerging therapy. Formulary, 2011, 46(12), 532-545.
[125]
Heidari, B. Rheumatoid Arthritis: Early diagnosis and treatment outcomes. Caspian J. Intern. Med., 2011, 2(1), 161-170.
[PMID: 24024009]
[126]
Demoruelle, M.K.; Deane, K.D. Treatment strategies in early rheumatoid arthritis and prevention of rheumatoid arthritis. Curr. Rheumatol. Rep., 2012, 14(5), 472-480.
[http://dx.doi.org/10.1007/s11926-012-0275-1] [PMID: 22773387]
[127]
Burmester, G.R.; Pope, J.E. Novel treatment strategies in rheumatoid arthritis. Lancet, 2017, 389(10086), 2338-2348.
[http://dx.doi.org/10.1016/S0140-6736(17)31491-5] [PMID: 28612748]
[128]
Dale, J.; Alcorn, N.; Capell, H.; Madhok, R. Combination therapy for rheumatoid arthritis: Methotrexate and sulfasalazine together or with other DMARDs. Nat. Clin. Pract. Rheumatol., 2007, 3(8), 450-458.
[http://dx.doi.org/10.1038/ncprheum0562] [PMID: 17664952]
[129]
Kahlenberg, J.M.; Fox, D.A. Advances in the medical treatment of rheumatoid arthritis. Hand Clin., 2011, 27(1), 11-20.
[http://dx.doi.org/10.1016/j.hcl.2010.09.002] [PMID: 21176795]
[130]
Sergeant, J.C.; Hyrich, K.L.; Anderson, J.; Kopec-Harding, K.; Hope, H.F.; Symmons, D.P.M.; Barton, A.; Verstappen, S.M.M. Prediction of primary non-response to methotrexate therapy using demographic, clinical and psychosocial variables: Results from the UK Rheumatoid Arthritis Medication Study (RAMS). Arthritis Res. Ther., 2018, 20(1), 147.
[http://dx.doi.org/10.1186/s13075-018-1645-5] [PMID: 30005689]
[131]
Curtis, J.R.; Singh, J.A. Use of biologics in rheumatoid arthritis: Current and emerging paradigms of care. Clin. Ther., 2011, 33(6), 679-707.
[http://dx.doi.org/10.1016/j.clinthera.2011.05.044] [PMID: 21704234]
[132]
Baldasseroni, S.; Antenore, A.; Di Serio, C.; Orso, F.; Lonetto, G.; Bartoli, N.; Foschini, A.; Marella, A.; Pratesi, A.; Scarantino, S.; Fumagalli, S.; Monami, M.; Mannucci, E.; Marchionni, N.; Tarantini, F. Adiponectin, diabetes and ischemic heart failure: A challenging relationship. Cardiovasc. Diabetol., 2012, 11(1), 151.
[http://dx.doi.org/10.1186/1475-2840-11-151] [PMID: 23249664]
[133]
Chen, X.; Lu, J.; Bao, J.; Guo, J.; Shi, J.; Wang, Y. Adiponectin: A biomarker for rheumatoid arthritis? Cytokine Growth Factor Rev., 2013, 24(1), 83-89.
[http://dx.doi.org/10.1016/j.cytogfr.2012.07.004] [PMID: 22910140]
[134]
Tan, W.; Wang, F.; Zhang, M.; Guo, D.; Zhang, Q.; He, S. High adiponectin and adiponectin receptor 1 expression in synovial fluids and synovial tissues of patients with rheumatoid arthritis. Semin. Arthritis Rheum., 2009, 38(6), 420-427.
[http://dx.doi.org/10.1016/j.semarthrit.2008.01.017] [PMID: 18395775]
[135]
Frommer, K.W.; Schäffler, A.; Büchler, C.; Steinmeyer, J.; Rickert, M.; Rehart, S.; Brentano, F.; Gay, S.; Müller-Ladner, U.; Neumann, E. Adiponectin isoforms: A potential therapeutic target in rheumatoid arthritis? Ann. Rheum. Dis., 2012, 71(10), 1724-1732.
[http://dx.doi.org/10.1136/annrheumdis-2011-200924] [PMID: 22532632]
[136]
Kusunoki, N.; Kitahara, K.; Kojima, F.; Tanaka, N.; Kaneko, K.; Endo, H.; Suguro, T.; Kawai, S. Adiponectin stimulates prostaglandin E2 production in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum., 2010, 62(6), 1641-1649.
[http://dx.doi.org/10.1002/art.27450] [PMID: 20222108]
[137]
Kashyap, S.; Kumar, U.; Pandey, A.K.; Kanjilal, M.; Chattopadhyay, P.; Yadav, C.; Thelma, B.K. Functional characterisation of ADP ribosylation factor-like protein 15 in rheumatoid arthritis synovial fibroblasts. Clin. Exp. Rheumatol., 2018, 36(4), 581-588.
[PMID: 29465355]
[138]
Srirangan, S.; Choy, E.H. The role of Interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis., 2010, 2(5), 247-256.
[http://dx.doi.org/10.1177/1759720X10378372] [PMID: 22870451]
[139]
Kim, G.W.; Lee, N.R.; Pi, R.H.; Lim, Y.S.; Lee, Y.M.; Lee, J.M.; Jeong, H.S.; Chung, S.H. IL-6 inhibitors for treatment of rheumatoid arthritis: Past, present, and future. Arch. Pharm. Res., 2015, 38(5), 575-584.
[http://dx.doi.org/10.1007/s12272-015-0569-8] [PMID: 25648633]
[140]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[141]
Hwang, S.Y.; Kim, J.Y.; Kim, K.W.; Park, M.K.; Moon, Y.; Kim, W.U.; Kim, H.Y. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res., 2004, 6(2), R120-R128.
[http://dx.doi.org/10.1186/ar1038] [PMID: 15059275]
[142]
Burrage, P. S.; Mix, K. S.; Brinckerhoff, C. E. Matrix metalloproteinases: Role in arthritis. Front. Biosci., 2006, 11((1 P.447-888)), 529-543.
[http://dx.doi.org/10.2741/1817]
[143]
Tong, K.M.; Chen, C.P.; Huang, K.C.; Shieh, D.C.; Cheng, H.C.; Tzeng, C.Y.; Chen, K.H.; Chiu, Y.C.; Tang, C.H. Adiponectin increases MMP-3 expression in human chondrocytes through adipor1 signaling pathway. J. Cell. Biochem., 2011, 112(5), 1431-1440.
[http://dx.doi.org/10.1002/jcb.23059] [PMID: 21321996]
[144]
Araki, Y.; Mimura, T. Matrix metalloproteinase gene activation resulting from disordred epigenetic mechanisms in rheumatoid arthritis. Int. J. Mol. Sci., 2017, 18(5), 905.
[http://dx.doi.org/10.3390/ijms18050905] [PMID: 28441353]
[145]
Robinson, D.R.; Tashjian, A.H., Jr; Levine, L. Prostaglandin-stimulated bone resorption by rheumatoid synovia. A possible mechanism for bone destruction in rheumatoid arthritis. J. Clin. Invest., 1975, 56(5), 1181-1188.
[http://dx.doi.org/10.1172/JCI108195] [PMID: 1184744]
[146]
McCoy, J.M.; Wicks, J.R.; Audoly, L.P. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J. Clin. Invest., 2002, 110(5), 651-658.
[http://dx.doi.org/10.1172/JCI0215528] [PMID: 12208866]
[147]
Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature, 2003, 423(6937), 356-361.
[http://dx.doi.org/10.1038/nature01661] [PMID: 12748655]
[148]
Thakur, S.; Riyaz, B.; Patil, A.; Kaur, A.; Kapoor, B.; Mishra, V. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview. Biomed. Pharmacother., 2018, 106, 1011-1023.
[http://dx.doi.org/10.1016/j.biopha.2018.07.027] [PMID: 30119166]
[149]
Sharma, A.; Saini, M.; Kundu, S.; Thelma, B.K. Computational insight into the three-dimensional structure of ADP ribosylation factor like protein 15, a novel susceptibility gene for rheumatoid arthritis. J. Biomol. Struct. Dyn., 2020, 0(0), 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1860826] [PMID: 33356902]
[150]
Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1), W174-W181.
[http://dx.doi.org/10.1093/nar/gkv342] [PMID: 25883148]
[151]
Zhang, C.; Mortuza, S.M.; He, B.; Wang, Y.; Zhang, Y. Template‐based and free modeling of I‐TASSER and QUARK pipelines using predicted contact maps in CASP12. Proteins, 2018, 86(S1), 136-151.
[http://dx.doi.org/10.1002/prot.25414] [PMID: 29082551]
[152]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[153]
Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server (S2)), W407-W410.
[http://dx.doi.org/10.1093/nar/gkm290] [PMID: 17517781]
[154]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy