Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Lysosomal Storage Diseases: Natural Products Inducing Autophagy

Author(s): Chandani Chandarana*, Tahib Habshi, Arun Soni and Sanjeev Acharya

Volume 19, Issue 5, 2024

Published on: 26 September, 2023

Page: [546 - 560] Pages: 15

DOI: 10.2174/1574885519666230915103100

Price: $65

Abstract

Background: The link between autophagy and lysosomal function has been wellrecognised in recent decades; defective autophagy and lysosomal function lead to various disorders, notably Lysosomal Storage Disorders (LSDs). The malfunction of multiple mechanistic pathways influences the contribution of LSDs. Different ways are employed in such situations, but one novel approach could resolve the problem by inducing the autophagic pathway, which aids in maintaining proper autophagy and lysosomal degradation function.

Methods: Autophagic Inducer functions on the activation of Transcriptional factor EB (TFEB) and its mechanism; mTOR Complex Inhibition dependently or independently may repair the malfunction of the entire mechanism. Finding a potential autophagic inducer is still a work in progress, but targeting TFEB and mTOR could redefine LSD treatment. The development of experimentally available TFEB modulators could enhance autophagic flux promote lysosomal function and increase lysosomal biogenesis and can be a promising technique for treating illnesses caused by ALP dysfunction, such as lysosomal storage disorder.

Results: MTORC1 suppression causes TFEB to be transported to the nucleus and transcription of multiple genes involved in the formation of autophagosomes and lysosomes, indicating that MTORC1 has positive effects in treating lysosomal storage diseases such as Pompe disease, Batton disease, Fabry disease, etc. thus modulating autophagy attenuates the above condition.

Conclusion: This review comprises autophagy and lysosome association, and their malfunction leads to various lysosomal diseases. Several natural products are also discussed, which can be possible treatment options.

Graphical Abstract

[1]
Yang Z, Klionsky DJ. Mammalian autophagy: Core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22(2): 124-31.
[http://dx.doi.org/10.1016/j.ceb.2009.11.014] [PMID: 20034776]
[2]
Shaid S, Brandts CH, Serve H, Dikic I. Ubiquitination and selective autophagy. Cell Death Differ 2013; 20(1): 21-30.
[http://dx.doi.org/10.1038/cdd.2012.72] [PMID: 22722335]
[3]
Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27(1): 107-32.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154005] [PMID: 21801009]
[4]
Hurley JH, Schulman BA. Atomistic autophagy: The structures of cellular self-digestion. Cell 2014; 157(2): 300-11.
[http://dx.doi.org/10.1016/j.cell.2014.01.070] [PMID: 24725401]
[5]
Levine B, Klionsky DJ. Development by self-digestion. Dev Cell 2004; 6(4): 463-77.
[http://dx.doi.org/10.1016/S1534-5807(04)00099-1] [PMID: 15068787]
[6]
Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol 2010; 12(9): 823-30.
[http://dx.doi.org/10.1038/ncb0910-823] [PMID: 20811354]
[7]
Boya P, Reggiori F, Codogno P. Erratum: Emerging regulation and functions of autophagy. Nat Cell Biol 2013; 15(8): 1017.
[http://dx.doi.org/10.1038/ncb2815]
[8]
Kim KH, Lee MS. Autophagy-a key player in cellular and body metabolism. Nat Rev Endocrinol 2014; 10(6): 322-37.
[http://dx.doi.org/10.1038/nrendo.2014.35] [PMID: 24663220]
[9]
Choi AMK, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013; 368(7): 651-62.
[http://dx.doi.org/10.1056/NEJMra1205406] [PMID: 23406030]
[10]
Jiang P, Mizushima N. Autophagy and human diseases. Cell Res 2014; 24(1): 69-79.
[http://dx.doi.org/10.1038/cr.2013.161] [PMID: 24323045]
[11]
Beau I, Mehrpour M, Codogno P. Autophagosomes and human diseases. Int J Biochem Cell Biol 2011; 43(4): 460-4.
[http://dx.doi.org/10.1016/j.biocel.2011.01.006] [PMID: 21256243]
[12]
Sarkar S. Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington’s disease and other neurodegenerative disorders. Drug Discov Today Technol 2013; 10(1): e137-44.
[http://dx.doi.org/10.1016/j.ddtec.2012.09.010] [PMID: 24050242]
[13]
Schneider JL, Cuervo AM. Autophagy and human disease: Emerging themes. Curr Opin Genet Dev 2014; 26: 16-23.
[http://dx.doi.org/10.1016/j.gde.2014.04.003] [PMID: 24907664]
[14]
Settembre C, Fraldi A, Jahreiss L, et al. A block of autophagy in lysosomal storage disorders. Hum Mol Genet 2008; 17(1): 119-29.
[http://dx.doi.org/10.1093/hmg/ddm289] [PMID: 17913701]
[15]
Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat Rev Mol Cell Biol 2009; 10(9): 623-35.
[http://dx.doi.org/10.1038/nrm2745] [PMID: 19672277]
[16]
Settembre C, Ballabio A. Lysosomal adaptation: How the lysosome responds to external cues. Cold Spring Harb Perspect Biol 2014; 6(6): a016907.
[http://dx.doi.org/10.1101/cshperspect.a016907] [PMID: 24799353]
[17]
Yim WWY, Mizushima N. Lysosome biology in autophagy. Cell Discov 2020; 6(1): 6.
[http://dx.doi.org/10.1038/s41421-020-0141-7] [PMID: 32047650]
[18]
Galati S, Boni C, Gerra MC, Lazzaretti M, Buschini A. Autophagy: A player in response to oxidative stress and DNA damage. Oxid Med Cell Longev 2019; 2019: 1-12.
[http://dx.doi.org/10.1155/2019/5692958] [PMID: 31467633]
[19]
Levine B, Packer M, Codogno P. Development of autophagy inducers in clinical medicine. J Clin Invest 2015; 125(1): 14-24.
[http://dx.doi.org/10.1172/JCI73938] [PMID: 25654546]
[20]
Zhitomirsky B, Assaraf YG. Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat 2016; 24: 23-33.
[http://dx.doi.org/10.1016/j.drup.2015.11.004] [PMID: 26830313]
[21]
Fraldi A, Klein AD, Medina DL, Settembre C. Brain disorders due to lysosomal dysfunction. Annu Rev Neurosci 2016; 39(1): 277-95.
[http://dx.doi.org/10.1146/annurev-neuro-070815-014031] [PMID: 27090953]
[22]
Sun Y, Grabowski GA. Impaired autophagosomes and lysosomes in neuronopathic Gaucher disease. Autophagy 2010; 6(5): 648-9.
[http://dx.doi.org/10.4161/auto.6.5.12047] [PMID: 20458183]
[23]
Fukuda T, Ahearn M, Roberts A, et al. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease. Mol Ther 2006; 14(6): 831-9.
[http://dx.doi.org/10.1016/j.ymthe.2006.08.009] [PMID: 17008131]
[24]
Nishino I, Fu J, Tanji K, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000; 406(6798): 906-10.
[http://dx.doi.org/10.1038/35022604] [PMID: 10972294]
[25]
Vergarajauregui S, Connelly PS, Daniels MP, Puertollano R. Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet 2008; 17(17): 2723-37.
[http://dx.doi.org/10.1093/hmg/ddn174] [PMID: 18550655]
[26]
Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441(7095): 880-4.
[http://dx.doi.org/10.1038/nature04723] [PMID: 16625205]
[27]
Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095): 885-9.
[http://dx.doi.org/10.1038/nature04724] [PMID: 16625204]
[28]
Hamasaki M, Furuta N, Matsuda A, et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013; 495(7441): 389-93.
[http://dx.doi.org/10.1038/nature11910] [PMID: 23455425]
[29]
Rogov V, Dötsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 2014; 53(2): 167-78.
[http://dx.doi.org/10.1016/j.molcel.2013.12.014] [PMID: 24462201]
[30]
Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol 2018; 20(3): 233-42.
[http://dx.doi.org/10.1038/s41556-018-0037-z] [PMID: 29476151]
[31]
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43(1): 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[32]
Hasegawa J, Iwamoto R, Otomo T, Nezu A, Hamasaki M, Yoshimori T. Autophagosome-lysosome fusion in neurons requires INPP 5E, a protein associated with Joubert syndrome. EMBO J 2016; 35(17): 1853-67.
[http://dx.doi.org/10.15252/embj.201593148] [PMID: 27340123]
[33]
Schneider L, Zhang J. Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson’s disease. Mol Neurodegener 2010; 5(1): 14.
[http://dx.doi.org/10.1186/1750-1326-5-14] [PMID: 20388210]
[34]
Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 1992; 119(2): 301-11.
[http://dx.doi.org/10.1083/jcb.119.2.301] [PMID: 1400575]
[35]
Mortimore GE, Pösö AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 1987; 7(1): 539-68.
[http://dx.doi.org/10.1146/annurev.nu.07.070187.002543] [PMID: 3300746]
[36]
Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H, Mizushima N. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 2016; 354(6315): 1036-41.
[http://dx.doi.org/10.1126/science.aaf6136] [PMID: 27885029]
[37]
Kim J, Huang WP, Klionsky DJ. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 2001; 152(1): 51-64.
[http://dx.doi.org/10.1083/jcb.152.1.51] [PMID: 11149920]
[38]
Epple UD, Suriapranata I, Eskelinen EL, Thumm M. Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol 2001; 183(20): 5942-55.
[http://dx.doi.org/10.1128/JB.183.20.5942-5955.2001] [PMID: 11566994]
[39]
Saleeb RS, Kavanagh DM, Dun AR, Dalgarno PA, Duncan RR. A VPS33A-binding motif on syntaxin 17 controls autophagy completion in mammalian cells. J Biol Chem 2019; 294(11): 4188-201.
[http://dx.doi.org/10.1074/jbc.RA118.005947] [PMID: 30655294]
[40]
Ramya V, Rajasekharan R. ATG15 encodes a phospholipase and is transcriptionally regulated by YAP1 in Saccharomyces cerevisiae. FEBS Lett 2016; 590(18): 3155-67.
[http://dx.doi.org/10.1002/1873-3468.12369] [PMID: 27543826]
[41]
Di Paola S, Scotto-Rosato A, Medina DL. TRPML1: The Ca(2+)retaker of the lysosome. Cell Calcium 2018; 69: 112-21.
[http://dx.doi.org/10.1016/j.ceca.2017.06.006] [PMID: 28689729]
[42]
Colacurcio DJ, Nixon RA. Disorders of lysosomal acidification—The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 2016; 32: 75-88.
[http://dx.doi.org/10.1016/j.arr.2016.05.004] [PMID: 27197071]
[43]
Inami Y, Yamashina S, Izumi K, et al. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun 2011; 412(4): 618-25.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.012] [PMID: 21856284]
[44]
Mizushima N. Autophagy: Process and function. Genes Dev 2007; 21(22): 2861-73.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[45]
Yu L, McPhee CK, Zheng L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010; 465(7300): 942-6.
[http://dx.doi.org/10.1038/nature09076] [PMID: 20526321]
[46]
Munson MJ, Allen GFG, Toth R, Campbell DG, Lucocq JM, Ganley IG. mTOR activates the VPS 34– UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J 2015; 34(17): 2272-90.
[http://dx.doi.org/10.15252/embj.201590992] [PMID: 26139536]
[47]
Zhang J, Zhou W, Lin J, et al. Autophagic lysosomal reformation depends on mTOR reactivation in H2O2-induced autophagy. Int J Biochem Cell Biol 2016; 70: 76-81.
[http://dx.doi.org/10.1016/j.biocel.2015.11.009] [PMID: 26589722]
[48]
Cabukusta B, Neefjes J. Mechanisms of lysosomal positioning and movement. Traffic 2018; 19(10): 761-9.
[http://dx.doi.org/10.1111/tra.12587] [PMID: 29900632]
[49]
Du W, Su QP, Chen Y, et al. Kinesin 1 drives autolysosome tubulation. Dev Cell 2016; 37(4): 326-36.
[http://dx.doi.org/10.1016/j.devcel.2016.04.014] [PMID: 27219061]
[50]
de Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 1955; 60(4): 604-17.
[http://dx.doi.org/10.1042/bj0600604] [PMID: 13249955]
[51]
Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14(5): 283-96.
[http://dx.doi.org/10.1038/nrm3565] [PMID: 23609508]
[52]
Bright NA, Davis LJ, Luzio JP. Endolysosomes are the principal intracellular sites of acid hydrolase activity. Curr Biol 2016; 26(17): 2233-45.
[http://dx.doi.org/10.1016/j.cub.2016.06.046] [PMID: 27498570]
[53]
Bouché V, Espinosa AP, Leone L, Sardiello M, Ballabio A, Botas J. Drosophila Mitf regulates the V-ATPase and the lysosomalautophagic pathway. Autophagy 2016; 12(3): 484-98.
[http://dx.doi.org/10.1080/15548627.2015.1134081] [PMID: 26761346]
[54]
Chen JW, Murphy TL, Willingham MC, Pastan I, August JT. Identification of two lysosomal membrane glycoproteins. J Cell Biol 1985; 101(1): 85-95.
[http://dx.doi.org/10.1083/jcb.101.1.85] [PMID: 2409098]
[55]
Kundra R, Kornfeld S. Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis. J Biol Chem 1999; 274(43): 31039-46.
[http://dx.doi.org/10.1074/jbc.274.43.31039] [PMID: 10521503]
[56]
Roczniak-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 2012; 5(228): ra42.
[http://dx.doi.org/10.1126/scisignal.2002790] [PMID: 22692423]
[57]
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141(2): 290-303.
[http://dx.doi.org/10.1016/j.cell.2010.02.024] [PMID: 20381137]
[58]
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an insideout mechanism that requires the vacuolar H(+)-ATPase. Science 2011; 334(6056): 678-83.
[http://dx.doi.org/10.1126/science.1207056] [PMID: 22053050]
[59]
Arias E, Koga H, Diaz A, Mocholi E, Patel B, Cuervo AM. Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. Mol Cell 2015; 59(2): 270-84.
[http://dx.doi.org/10.1016/j.molcel.2015.05.030] [PMID: 26118642]
[60]
Palmieri M, Impey S, Kang H, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011; 20(19): 3852-66.
[http://dx.doi.org/10.1093/hmg/ddr306] [PMID: 21752829]
[61]
Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012; 8(6): 903-14.
[http://dx.doi.org/10.4161/auto.19653] [PMID: 22576015]
[62]
Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31(5): 1095-108.
[http://dx.doi.org/10.1038/emboj.2012.32] [PMID: 22343943]
[63]
Medina DL, Di Paola S, Peluso I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 2015; 17(3): 288-99.
[http://dx.doi.org/10.1038/ncb3114] [PMID: 25720963]
[64]
Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment. Antioxid Redox Signal 2009; 11(4): 777-90.
[http://dx.doi.org/10.1089/ars.2008.2270] [PMID: 18828708]
[65]
Chen Y, Henson ES, Xiao W, et al. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy 2016; 12(6): 1029-46.
[http://dx.doi.org/10.1080/15548627.2016.1164357] [PMID: 27166522]
[66]
Hasegawa J, Maejima I, Iwamoto R, Yoshimori T. Selective autophagy: Lysophagy Methods 2015; 75: 128-32.
[http://dx.doi.org/10.1016/j.ymeth.2014.12.014] [PMID: 25542097]
[67]
Liu Y, Shoji-Kawata S, Sumpter RM Jr, et al. Autosis is a Na +, K + -ATPase-regulated form of cell death triggered by autophagyinducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci 2013; 110(51): 20364-71.
[http://dx.doi.org/10.1073/pnas.1319661110] [PMID: 24277826]
[68]
Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011; 332(6036): 1429-33.
[http://dx.doi.org/10.1126/science.1204592] [PMID: 21617040]
[69]
Settembre C, Medina DL. TFEB and the CLEAR network. In: Platt F, Platt N, Eds. Methods in Cell Biology. Elsevier 2015; pp. 45-62.
[70]
Xu Y, Ren J, He X, Chen H, Wei T, Feng W. YWHA/14-3-3 proteins recognize phosphorylated TFEB by a noncanonical mode for controlling TFEB cytoplasmic localization. Autophagy 2019; 15(6): 1017-30.
[http://dx.doi.org/10.1080/15548627.2019.1569928] [PMID: 30653408]
[71]
Wang W, Gao Q, Yang M, et al. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc Natl Acad Sci 2015; 112(11): E1373-81.
[http://dx.doi.org/10.1073/pnas.1419669112] [PMID: 25733853]
[72]
Zhang W, Li X, Wang S, Chen Y, Liu H. Regulation of TFEB activity and its potential as a therapeutic target against kidney diseases. Cell Death Discov 2020; 6(1): 32.
[http://dx.doi.org/10.1038/s41420-020-0265-4] [PMID: 32377395]
[73]
Shin HJR, Kim H, Oh S, et al. AMPK–SKP2–CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 2016; 534(7608): 553-7.
[http://dx.doi.org/10.1038/nature18014] [PMID: 27309807]
[74]
Palmieri M, Pal R, Nelvagal HR, et al. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 2017; 8(1): 14338.
[http://dx.doi.org/10.1038/ncomms14338] [PMID: 28165011]
[75]
Li Y, Xu M, Ding X, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol 2016; 18(10): 1065-77.
[http://dx.doi.org/10.1038/ncb3407] [PMID: 27617930]
[76]
de Pablo-Latorre R, Saide A, Polishhuck EV, Nusco E, Fraldi A, Ballabio A. Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases. Hum Mol Genet 2012; 21(8): 1770-81.
[http://dx.doi.org/10.1093/hmg/ddr610] [PMID: 22215441]
[77]
Fraldi A, Annunziata F, Lombardi A, et al. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J 2010; 29(21): 3607-20.
[http://dx.doi.org/10.1038/emboj.2010.237] [PMID: 20871593]
[78]
Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A. Autophagy in lysosomal storage disorders. Autophagy 2012; 8(5): 719-30.
[http://dx.doi.org/10.4161/auto.19469] [PMID: 22647656]
[79]
Curcio-Morelli C, Charles FA, Micsenyi MC, et al. Macroautophagy is defective in mucolipin-1-deficient mouse neurons. Neurobiol Dis 2010; 40(2): 370-7.
[http://dx.doi.org/10.1016/j.nbd.2010.06.010] [PMID: 20600908]
[80]
Shen D, Wang X, Li X, et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 2012; 3(1): 731.
[http://dx.doi.org/10.1038/ncomms1735] [PMID: 22415822]
[81]
Velayati A, DePaolo J, Gupta N, et al. A mutation in SCARB2 is a modifier in gaucher disease. Hum Mutat 2011; 32(11): 1232-8.
[http://dx.doi.org/10.1002/humu.21566] [PMID: 21796727]
[82]
Ivanova MM, Changsila E, Iaonou C, Goker-Alpan O. Impaired autophagic and mitochondrial functions are partially restored by ERT in Gaucher and Fabry diseases. PLoS One 2019; 14(1): e0210617.
[http://dx.doi.org/10.1371/journal.pone.0210617] [PMID: 30633777]
[83]
Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, et al. LIMP-2 Is a receptor for lysosomal mannose-6-phosphateindependent targeting of x3b2;-. Glucocerebrosidase Cell 2007; 131(4): 770-83.
[http://dx.doi.org/10.1016/j.cell.2007.10.018] [PMID: 18022370]
[84]
Liou B, Haffey WD, Greis KD, Grabowski GA. The LIMP-2/SCARB2 binding motif on acid β-glucosidase. J Biol Chem 2014; 289(43): 30063-74.
[http://dx.doi.org/10.1074/jbc.M114.593616] [PMID: 25202012]
[85]
Kinghorn KJ, Grönke S, Castillo-Quan JI, et al. A drosophila model of neuronopathic gaucher disease demonstrates lysosomalautophagic defects and altered mTOR signalling and is functionally rescued by rapamycin. J Neurosci 2016; 36(46): 11654-70.
[http://dx.doi.org/10.1523/JNEUROSCI.4527-15.2016] [PMID: 27852774]
[86]
Takamura A, Higaki K, Kajimaki K, et al. Enhanced autophagy and mitochondrial aberrations in murine GM1-gangliosidosis. Biochem Biophys Res Commun 2008; 367(3): 616-22.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.187] [PMID: 18190792]
[87]
Chévrier M, Brakch N, Céline L, et al. Autophagosome maturation is impaired in Fabry disease. Autophagy 2010; 6(5): 589-99.
[http://dx.doi.org/10.4161/auto.6.5.11943] [PMID: 20431343]
[88]
Palmer DN, Fearnley IM, Walker JE, et al. Mitochondrial ATP synthase subunitc storage in the ceroid-lipofuscinoses (Batten disease). Am J Med Genet 1992; 42(4): 561-7.
[http://dx.doi.org/10.1002/ajmg.1320420428] [PMID: 1535179]
[89]
Anderson GW, Goebel HH, Simonati A. Human pathology in NCL. Biochim Biophys Acta Mol Basis Dis 2013; 1832(11): 1807-26.
[http://dx.doi.org/10.1016/j.bbadis.2012.11.014]
[90]
Yasa S, Modica G, Sauvageau E, Kaleem A, Hermey G, Lefrancois S. CLN3 regulates endosomal function by modulating Rab7A effector interactions. J Cell Sci 2020; 133(6): jcs.234047.
[http://dx.doi.org/10.1242/jcs.234047] [PMID: 32034082]
[91]
Reuser AJJ, Hirschhorn R, Kroos MA. Pompe disease: Glycogen storage disease type II, acid α-glucosidase (Acid Maltase) deficiency. In: Valle DL, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA, Eds. The Online Metabolic and Molecular Bases of Inherited Disease. New York, NY: McGraw-Hill Education 2019.
[92]
Raben N, Schreiner C, Baum R, et al. Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder-murine Pompe disease. Autophagy 2010; 6(8): 1078-89.
[http://dx.doi.org/10.4161/auto.6.8.13378] [PMID: 20861693]
[93]
Spampanato C, Feeney E, Li L, et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 2013; 5(5): 691-706.
[http://dx.doi.org/10.1002/emmm.201202176] [PMID: 23606558]
[94]
Danon MJ, Oh SJ, DiMauro S, et al. Lysosomal glycogen storage disease with normal acid maltase. Neurology 1981; 31(1): 51-7.
[http://dx.doi.org/10.1212/WNL.31.1.51] [PMID: 6450334]
[95]
Eskelinen EL, Illert AL, Tanaka Y, et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell 2002; 13(9): 3355-68.
[http://dx.doi.org/10.1091/mbc.e02-02-0114] [PMID: 12221139]
[96]
Chi C, Leonard A, Knight WE, et al. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome–lysosome fusion. Proc Natl Acad Sci 2019; 116(2): 556-65.
[http://dx.doi.org/10.1073/pnas.1808618116] [PMID: 30584088]
[97]
Naureckiene S, Sleat DE, Lackland H, et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science 2000; 290(5500): 2298-301.
[http://dx.doi.org/10.1126/science.290.5500.2298] [PMID: 11125141]
[98]
Carstea ED, Morris JA, Coleman KG, et al. Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis. Science 1997; 277(5323): 228-31.
[http://dx.doi.org/10.1126/science.277.5323.228] [PMID: 9211849]
[99]
Ioannou YA. Multidrug permeases and subcellular cholesterol transport. Nat Rev Mol Cell Biol 2001; 2(9): 657-68.
[http://dx.doi.org/10.1038/35089558] [PMID: 11533723]
[100]
Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci 2008; 105(40): 15287-92.
[http://dx.doi.org/10.1073/pnas.0807328105] [PMID: 18772377]
[101]
Scott C, Ioannou YA. The NPC1 protein: Structure implies function. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1685(1-3): 8-13.
[http://dx.doi.org/10.1016/j.bbalip.2004.08.006]
[102]
Karten B, Peake KB, Vance JE. Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791(7): 659-70.
[http://dx.doi.org/10.1016/j.bbalip.2009.01.025] [PMID: 19416638]
[103]
Tiede S, Storch S, Lübke T, et al. Mucolipidosis II is caused by mutations in GNPTA encoding the α/β GlcNAc-1-phosphotransferase. Nat Med 2005; 11(10): 1109-12.
[http://dx.doi.org/10.1038/nm1305] [PMID: 16200072]
[104]
Kudo M, Brem MS, Canfield WM, Mucolipidosis II. I-cell disease) and mucolipidosis IIIA (classical pseudo-hurler Polydystrophy) are caused by mutations in the glcnac-phosphotransferase; subunits precursor gene. Am J Hum Genet 2006; 78(3): 451-63.
[http://dx.doi.org/10.1086/500849] [PMID: 16465621]
[105]
Hickman S, Neufeld EF. A hypothesis for I-cell disease: Defective hydrolases that do not enter lysosomes. Biochem Biophys Res Commun 1972; 49(4): 992-9.
[http://dx.doi.org/10.1016/0006-291X(72)90310-5] [PMID: 4345092]
[106]
Paik KH, Song SM, Ki CS, et al. Identification of mutations in the GNPTA (MGC4170) gene coding for GlcNAc-phosphotransferase α/β subunits in Korean patients with mucolipidosis type II or type IIIA. Hum Mutat 2005; 26(4): 308-14.
[http://dx.doi.org/10.1002/humu.20205] [PMID: 16116615]
[107]
Maetzel D, Sarkar S, Wang H, et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patientspecific iPS cells. Stem Cell Reports 2014; 2(6): 866-80.
[http://dx.doi.org/10.1016/j.stemcr.2014.03.014] [PMID: 24936472]
[108]
Sarkar S, Carroll B, Buganim Y, et al. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep 2013; 5(5): 1302-15.
[http://dx.doi.org/10.1016/j.celrep.2013.10.042] [PMID: 24290752]
[109]
Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans: Cell survival in the land of plenty. Nat Rev Mol Cell Biol 2005; 6(6): 439-48.
[http://dx.doi.org/10.1038/nrm1660] [PMID: 15928708]
[110]
Ryter SW, Mizumura K, Choi AMK. The impact of autophagy on cell death modalities. Int J Cell Biol 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/502676] [PMID: 24639873]
[111]
Medina DL, Fraldi A, Bouche V, et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 2011; 21(3): 421-30.
[http://dx.doi.org/10.1016/j.devcel.2011.07.016] [PMID: 21889421]
[112]
Samie M, Wang X, Zhang X, et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell 2013; 26(5): 511-24.
[http://dx.doi.org/10.1016/j.devcel.2013.08.003] [PMID: 23993788]
[113]
Moskot M, Montefusco S, Jakóbkiewicz-Banecka J, et al. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. J Biol Chem 2014; 289(24): 17054-69.
[http://dx.doi.org/10.1074/jbc.M114.555300] [PMID: 24770416]
[114]
Xu J, Zhang XQ, Zhang Z. Transcription factor EB agonists from natural products for treating human diseases with impaired autophagy-lysosome pathway. Chin Med 2020; 15(1): 123.
[http://dx.doi.org/10.1186/s13020-020-00402-1] [PMID: 33292395]
[115]
Miceli C, Santin Y, Manzella N, et al. Oleuropein aglycone protects against MAO-A-induced autophagy impairment and cardiomyocyte death through activation of TFEB. Oxid Med Cell Longev 2018; 2018: 8067592.
[http://dx.doi.org/10.1155/2018/8067592]
[116]
Chandra S, Roy A, Jana M, Pahan K. Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer’s disease mouse model. Neurobiol Dis 2019; 124: 379-95.
[http://dx.doi.org/10.1016/j.nbd.2018.12.007] [PMID: 30578827]
[117]
Gao L, Li X, Meng S, Ma T, Wan L, Xu S. Chlorogenic acid alleviates Aβ25-35-induced autophagy and cognitive impairment via the mTOR/TFEB signaling pathway. Drug Des Devel Ther 2020; 14: 1705-16.
[http://dx.doi.org/10.2147/DDDT.S235969] [PMID: 32440096]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy