Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advances in the Light-assisted Synthesis of Ring Junction Nitrogen Heterocycles

Author(s): Periasamy Vinoth Kumar, Kumar Aravindraj, Gunabalan Madhumitha and Selvaraj Mohana Roopan*

Volume 27, Issue 12, 2023

Published on: 27 September, 2023

Page: [997 - 1009] Pages: 13

DOI: 10.2174/1385272827666230915101920

Price: $65

Abstract

Nitrogen ring junction heterocycles play a crucial role in synthetic organic chemistry due to their remarkable activity. The fused nitrogen ring junction compounds are abundant in nature; they have excellent biological activity and are used against various health issues. To make selective nitrogen ring junction products from the nitrogen ring junction heterocycles, expensive chemicals and catalysts, like expensive transition metal complexes and metal composites, are required. To neglect the drawbacks of conventional synthesis methods like long reaction times, by-product formation, lower selectivity, and low yields, an alternative of nonconventional light-mediated techniques can be opted for. The light source uses a radical mechanism that reduces by-product formation, provides a regio-selective product, increases yield, decreases reaction time, is cost-effective, and does not require special catalysts or chemicals. There are a variety of light sources, viz., UV, visible, IR, laser, and X-ray. The UV, visible light, white, green, and blue LED light sources are widely used in the photochemical method. This review emphasizes the light-mediated synthesis of nitrogen-ring junction heterocyclic compounds.

Graphical Abstract

[1]
Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synth. Commun., 2019, 49(19), 2437-2459.
[http://dx.doi.org/10.1080/00397911.2019.1639755]
[2]
Cagir, A.; Jones, S.H.; Gao, R.; Eisenhauer, B.M.; Hecht, S.M. Luotonin A. A naturally occurring human DNA topoisomerase I poison. J. Am. Chem. Soc., 2003, 125(45), 13628-13629.
[http://dx.doi.org/10.1021/ja0368857] [PMID: 14599178]
[3]
Fukuda, T.; Ishibashi, F.; Iwao, M. Lamellarin alkaloids: Isolation, synthesis, and biological activity. Alkaloids Chem. Biol., 2020, 83, 1-112.
[http://dx.doi.org/10.1016/bs.alkal.2019.10.001] [PMID: 32098648]
[4]
Yu, S.; Huang, Q.Q.; Luo, Y.; Lu, W. Total synthesis of camptothecin and SN-38. J. Org. Chem., 2012, 77(1), 713-717.
[http://dx.doi.org/10.1021/jo201974f] [PMID: 22165912]
[5]
Taylor, P.C.; Abdul Azeez, M.; Kiriakidis, S. Filgotinib for the treatment of rheumatoid arthritis. Expert Opin. Investig. Drugs, 2017, 26(10), 1181-1187.
[http://dx.doi.org/10.1080/13543784.2017.1372422] [PMID: 28838249]
[6]
Jalali Sarvestani, M.R.; Majedi, S. A DFT study on the interaction of alprazolam with fullerene (C20). J. Chem. Lett., 2020, 1(1), 32-38.
[http://dx.doi.org/10.22034/jchemlett.2020.108111]
[7]
Mohana Roopan, S.; Hathwar, V.R.; Khan, F.N.; Kushwaha, A.K. Synthesis, crystal structure and antibacterial activity of 1-((2-chloroquinolin-3-yl)-methyl)-pyridin-2(1H)-one. Chin. J. Struct. Chem., 2010, 29, 1612-1617.
[8]
Roopan, S. M.; Khan, F. R. N. Synthesis, antioxidant, hemolytic and cytotoxic activity of AB ring core of mapping. arkivoc, 2009, 2009, 161-9.
[9]
Sharma, S.; Sharma, P.K.; Kumar, N.; Dudhe, R. A review on various heterocyclic moieties and their antitubercular activity. Biomed. Pharmacother., 2011, 65(4), 244-251.
[http://dx.doi.org/10.1016/j.biopha.2011.04.005] [PMID: 21715130]
[10]
Bharathi, A.; Roopan, S.M.; Vasavi, C.S.; Munusami, P.; Gayathri, G.A.; Gayathri, M. In silico molecular docking and in vitro antidiabetic studies of dihydropyrimido[4,5-a]acridin-2-amines. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/971569] [PMID: 24991576]
[11]
Sompalle, R.; Roopan, S.M. Microwave assisted synthesis of ring junction heterocyclic antioxidants. Res. Chem. Intermed., 2016, 42(6), 5353-5366.
[http://dx.doi.org/10.1007/s11164-015-2371-0]
[12]
Chugh, A.; Kumar, A.; Verma, A.; Kumar, S.; Kumar, P. A review of antimalarial activity of two or three nitrogen atoms containing heterocyclic compounds. Med. Chem. Res., 2020, 29(10), 1723-1750.
[http://dx.doi.org/10.1007/s00044-020-02604-6]
[13]
Obaid, R.J.; Mughal, E.U.; Naeem, N.; Al-Rooqi, M.M.; Sadiq, A.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem., 2022, 120, 250-259.
[http://dx.doi.org/10.1016/j.procbio.2022.06.009]
[14]
Ke, S.Y.; Xue, S.J. Synthesis and herbicidal activity of N-(o-fluorophenoxyacetyl)thioureas derivatives and related fused heterocyclic compounds. ARKIVOC, 2006, 2006(10), 63-68.
[http://dx.doi.org/10.3998/ark.5550190.0007.a08]
[15]
Saini, M.S.; Kumar, A.; Dwivedi, J.; Singh, R.A. Review: Biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res., 2013, 4(3), 66-77.
[16]
Bharathi, A.; Roopan, S.M.; Rahuman, A.A.; Rajakumar, G. In vitro larvicidal and antioxidant activity of dihydrophenanthroline-3-carbonitriles. BioMed Res. Int., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/915797] [PMID: 24868553]
[17]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[18]
Zhang, B.; Studer, A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem. Soc. Rev., 2015, 44(11), 3505-3521.
[http://dx.doi.org/10.1039/C5CS00083A] [PMID: 25882084]
[19]
Shiri, P.; Roosta, A.; Dehaen, W.; Amani, A.M. Recent strategies in transition-metal-catalyzed sequential C-H activation/annulation for one-step construction of functionalized indazole derivatives. Molecules, 2022, 27(15), 4942.
[http://dx.doi.org/10.3390/molecules27154942] [PMID: 35956893]
[20]
Priya, D.D.; Khan, M.M.R.; Roopan, S.M. Fabricating a g-C3N4/CuO heterostructure with improved catalytic activity on the multicomponent synthesis of pyrimidoindazoles. J. Nanostructure Chem., 2020, 10(4), 289-308.
[http://dx.doi.org/10.1007/s40097-020-00350-0]
[21]
Sarkar, T.; Talukdar, K.; Roy, S.; Punniyamurthy, T. Expedient iron-catalyzed stereospecific synthesis of triazines via cycloaddition of aziridines with diaziridines. Chem. Commun., 2020, 56(23), 3381-3384.
[http://dx.doi.org/10.1039/C9CC10089J] [PMID: 32091035]
[22]
Monier, M.; Abdel-Latif, D.; El-Mekabaty, A.; Elattar, K.M. Reactivity and stereoselectivity of oxazolopyridines with a ring‐junction nitrogen atom. J. Heterocycl. Chem., 2019, 56(12), 3172-3196.
[http://dx.doi.org/10.1002/jhet.3727]
[23]
Liao, G.; Zhang, T.; Lin, Z.K.; Shi, B.F. Transition metal‐catalyzed enantioselective C−H functionalization via chiral transient directing group strategies. Angew. Chem. Int. Ed., 2020, 59(45), 19773-19786.
[http://dx.doi.org/10.1002/anie.202008437] [PMID: 32687690]
[24]
Bera, A.; Bera, S.; Banerjee, D. Recent advances in the synthesis of N-heteroarenes via catalytic dehydrogenation of N-heterocycles. Chem. Commun., 2021, 57(97), 13042-13058.
[http://dx.doi.org/10.1039/D1CC04919D] [PMID: 34781335]
[25]
Echevarría, I.; Vaquero, M.; Manzano, B.R.; Jalón, F.A.; Quesada, R.; Espino, G. Photocatalytic aerobic dehydrogenation of N-heterocycles with Ir(III) photosensitizers bearing the 2(2′-Pyridyl)benzimidazole scaffold. Inorg. Chem., 2022, 61(16), 6193-6208.
[http://dx.doi.org/10.1021/acs.inorgchem.2c00358] [PMID: 35394766]
[26]
Parasram, M.; Gevorgyan, V. Visible light-induced transition metal-catalyzed transformations: Beyond conventional photosensitizers. Chem. Soc. Rev., 2017, 46(20), 6227-6240.
[http://dx.doi.org/10.1039/C7CS00226B] [PMID: 28799591]
[27]
Markushyna, Y.; Savateev, A. Light as a tool in organic photocatalysis: Multi‐photon excitation and chromoselective reactions. Eur. J. Org. Chem., 2022, 2022(24)e202200026
[http://dx.doi.org/10.1002/ejoc.202200026]
[28]
Cheng, X.; Cai, B.G.; Mao, H.; Lu, J.; Li, L.; Wang, K.; Xuan, J. Divergent synthesis of aziridine and imidazolidine frameworks under blue LED irradiation. Org. Lett., 2021, 23(11), 4109-4114.
[http://dx.doi.org/10.1021/acs.orglett.1c00979] [PMID: 33989004]
[29]
Wang, H.; He, P.; Yan, H.; Gong, M. Synthesis, characteristics and luminescent properties of a new europium(III) organic complex applied in near UV LED. Sens. Actuators B Chem., 2011, 156(1), 6-11.
[http://dx.doi.org/10.1016/j.snb.2011.04.049]
[30]
Gisbertz, S.; Pieber, B. Front cover: Heterogeneous photocatalysis in organic synthesis (ChemPhotoChem 7/2020). ChemPhotoChem, 2020, 4(7), 451-451.
[http://dx.doi.org/10.1002/cptc.202000138]
[31]
Filippov, I.P.; Agafonova, A.V.; Titov, G.D.; Smetanin, I.A.; Rostovskii, N.V.; Khlebnikov, A.F.; Novikov, M.S. Synthesis of imidazo[1,2-a]pyridines via near UV light-induced cyclization of azirinylpyridinium salts. J. Org. Chem., 2022, 87(9), 6514-6519.
[http://dx.doi.org/10.1021/acs.joc.2c00514] [PMID: 35476415]
[32]
Ismael, A.S.; Amin, N.H.; Elsaadi, M.T.; Ali, M.R.A.; Abdel-Rahman, H.M. Design, synthesis and biological evaluation of new imidazo[1,2-a]pyridine derivatives as selective COX-2 inhibitors. J. Mol. Struct., 2022, 1250131652
[http://dx.doi.org/10.1016/j.molstruc.2021.131652]
[33]
Sun, B.; Tian, H.X.; Ni, Z.G.; Huang, P.Y.; Ding, H.; Li, B.Q.; Jin, C.; Wu, C.L.; Shen, R.P. Photocatalyst-, metal- and additive-free regioselective radical cascade sulfonylation/cyclization of benzimidazole derivatives with sulfonyl chlorides induced by visible light. Org. Chem. Front., 2022, 9(14), 3669-3676.
[http://dx.doi.org/10.1039/D2QO00518B]
[34]
Dong, D.; Chen, W.; Chen, D.; Li, L.; Li, G.; Wang, Z.; Deng, Q.; Long, S. Direct synthesis of sulfonated or sulfenylated pyrazolones mediated by KIO3 and their anti-microbial activity. Youji Huaxue, 2019, 39(11), 3190.
[http://dx.doi.org/10.6023/cjoc201904070]
[35]
Aggarwal, R.; Jain, N.; Sharma, S.; Kumar, P.; Dubey, G.P.; Chugh, H.; Chandra, R. Visible-light driven regioselective synthesis, characterization and binding studies of 2-aroyl-3-methyl-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidines with DNA and BSA using biophysical and computational techniques. Sci. Rep., 2021, 11(1), 22135.
[http://dx.doi.org/10.1038/s41598-021-01037-4] [PMID: 34764313]
[36]
Sekhar, T.; Thriveni, P.; Venkateswarlu, A.; Daveedu, T.; Peddanna, K.; Sainath, S.B. One-pot synthesis of thiazolo[3,2-a]pyrimidine derivatives, their cytotoxic evaluation and molecular docking studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 231118056
[http://dx.doi.org/10.1016/j.saa.2020.118056] [PMID: 32006911]
[37]
Arunachalapandi, M.; Roopan, S.M. Photo-triggered sustainable synthesis of quinazolinone derivatives using visible light active exfoliated g-C3N4/Cu3TiO4 as a heterogeneous photocatalyst. Inorg. Chim. Acta, 2023, 546121322
[http://dx.doi.org/10.1016/j.ica.2022.121322]
[38]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 1-27.
[http://dx.doi.org/10.1155/2014/395637] [PMID: 25692041]
[39]
Arunachalapandi, M.; Roopan, S.M. Visible light-activated Cu3TiO4 photocatalyst for the one-pot multicomponent synthesis of imidazo-pyrimido acridines. Inorg. Chem. Commun., 2023, 148110310
[http://dx.doi.org/10.1016/j.inoche.2022.110310]
[40]
Cholody, W.M.; Martelli, S.; Paradziej-Lukowicz, J.; Konopa, J. 5-[(Aminoalkyl)amino]imidazo[4,5,1-de]acridin-6-ones as a novel class of antineoplastic agents. Synthesis and biological activity. J. Med. Chem., 1990, 33(1), 49-52.
[http://dx.doi.org/10.1021/jm00163a009] [PMID: 2296035]
[41]
Liu, Y.; Zhang, N.; Xu, Y.; Chen, Y. Visible-light-induced radical cascade reaction of 1-Allyl-2-ethynylbenzoimidazoles with thiosulfonates to assemble thiosulfonylated pyrrolo[1,2-a]benzimidazoles. J. Org. Chem., 2021, 86(23), 16882-16891.
[http://dx.doi.org/10.1021/acs.joc.1c02082] [PMID: 34739244]
[42]
Fedotov, V.V.; Rusinov, V.L.; Ulomsky, E.N.; Mukhin, E.M.; Gorbunov, E.B.; Chupakhin, O.N. Pyrimido[1,2-a]benzimidazoles: Synthesis and perspective of their pharmacological use. Chem. Heterocycl. Compd., 2021, 57(4), 383-409.
[http://dx.doi.org/10.1007/s10593-021-02916-4] [PMID: 34024913]
[43]
Mohamadpour, F. New role for photoexcited organic dye, Na2 eosin Y via the direct hydrogen atom transfer (HAT) process in photochemical visible-light-induced synthesis of spiroacenaphthylenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones under air atmosphere. Dyes Pigments, 2021, 194109628
[http://dx.doi.org/10.1016/j.dyepig.2021.109628]
[44]
Grasso, S.; De Sarro, G.; De Sarro, A.; Micale, N.; Zappalà, M.; Puja, G.; Baraldi, M.; De Micheli, C. Synthesis and anticonvulsant activity of novel and potent 6,7-methylenedioxyphthalazin-1(2H)-ones. J. Med. Chem., 2000, 43(15), 2851-2859.
[http://dx.doi.org/10.1021/jm001002x] [PMID: 10956193]
[45]
Si, Y.F.; Chen, X.L.; Fu, X.Y.; Sun, K.; Song, X.; Qu, L.B.; Yu, B. Divergent g-C 3 N 4 -catalyzed reactions of quinoxalin-2(1H)-ones with N -aryl glycines under visible light: Solvent-controlled hydroaminomethylation and annulation. ACS Sustain. Chem. Eng., 2020, 8(29), acssuschemeng.0c02289.
[http://dx.doi.org/10.1021/acssuschemeng.0c02289]
[46]
Issa, D.A.E.; Habib, N.S.; Abdel Wahab, A.E. Design, synthesis and biological evaluation of novel 1,2,4-triazolo and 1,2,4-triazino[4,3-a]quinoxalines as potential anticancer and antimicrobial agents. MedChemComm, 2015, 6(1), 202-211.
[http://dx.doi.org/10.1039/C4MD00257A]
[47]
Tong, J.; Zhan, Y.; Li, J.; Liu, P.; Sun, P. One‐pot synthesis of C3‐alkylated imidazopyridines from α‐bromocarbonyls under photoredox conditions. Eur. J. Org. Chem., 2021, 2021(32), 4541-4545.
[http://dx.doi.org/10.1002/ejoc.202100922]
[48]
Katsura, Y.; Nishino, S.; Takasugi, H. Studies on antiulcer drugs. I. Synthesis and antiulcer activities of imidazo[1,2-alpha]pyridinyl-2-oxobenzoxazolidines-3-oxo-2H-1,4-benzoxaz ines and related compounds. Chem. Pharm. Bull., 1991, 39(11), 2937-2943.
[http://dx.doi.org/10.1248/cpb.39.2937] [PMID: 1799940]
[49]
Wang, C.; Sun, G.; Huang, H.L.; Liu, J.; Tang, H.; Li, Y.; Hu, H.; He, S.; Gao, F. Visible‐light‐driven sulfonylation/cyclization to access sulfonylated Benzo[4,5]imidazo[2,1‐a]isoquinolin‐6(5H)‐ones. Chem. Asian J., 2021, 16(18), 2618-2621.
[http://dx.doi.org/10.1002/asia.202100681] [PMID: 34342941]
[50]
Moriarty, E.; Carr, M.; Bonham, S.; Carty, M.P.; Aldabbagh, F. Synthesis and toxicity towards normal and cancer cell lines of benzimidazolequinones containing fused aromatic rings and 2-aromatic ring substituents. Eur. J. Med. Chem., 2010, 45(9), 3762-3769.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.025] [PMID: 20605274]
[51]
Guo, W.; Xie, Z.; Cai, L.; Liu, G.; Deng, L.; Mei, W.; Zou, X.; Zhong, Y.; Zhuo, X.; Zheng, L.; Fan, X. Synthesis of purine analogues: Photocatalyst-free visible-light-enhanced annulation approach to pyrazolo[1,5-a][1,3,5]triazine-2,4-diamines. J. Org. Chem., 2021, 86(12), 8365-8380.
[http://dx.doi.org/10.1021/acs.joc.1c00783] [PMID: 34097406]
[52]
Nishimura, S.N.M.; Nishimura, M. Biotransformation of the xanthine oxidase inhibitor BOF-4272 and its metabolites in the liver and by the intestinal flora in rat. Xenobiotica, 2000, 30(1), 103-109.
[http://dx.doi.org/10.1080/004982500237866] [PMID: 10659955]
[53]
Li, H.C.; Sun, K.; Li, X.; Wang, S.Y.; Chen, X.L.; He, S.Q.; Qu, L.B.; Yu, B. Metal-free photosynthesis of alkylated benzimidazo[2,1-a]isoquinoline-6(5H)-ones and indolo[2,1-a]isoquinolin-6(5H)-ones in PEG-200. J. Org. Chem., 2021, 86(13), 9055-9066.
[http://dx.doi.org/10.1021/acs.joc.1c01022] [PMID: 34157844]
[54]
Desplat, V.; Moreau, S.; Belisle-Fabre, S.; Thiolat, D.; Uranga, J.; Lucas, R.; Moor, L.; Massip, S.; Jarry, C.; Mossalayi, D.M.; Sonnet, P.; Déléris, G.; Guillon, J. Synthesis and evaluation of the antiproliferative activity of novel isoindolo[2,1-a]quinoxaline and indolo[1,2-a]quinoxaline derivatives. J. Enzyme Inhib. Med. Chem., 2011, 26(5), 657-667.
[http://dx.doi.org/10.3109/14756366.2010.548326] [PMID: 21250818]
[55]
Ramesh, V.; Gangadhar, M.; Nanubolu, J.B.; Adiyala, P.R. Visible-light-induced deaminative alkylation/cyclization of alkyl amines with N-methacryloyl-2-phenylbenzoimidazoles in continuous-flow organo-photocatalysis. J. Org. Chem., 2021, 86(18), 12908-12921.
[http://dx.doi.org/10.1021/acs.joc.1c01555] [PMID: 34477379]
[56]
Rida, S.M.; El-Hawash, S.A.M.; Fahmy, H.T.Y.; Hazzaa, A.A.; El-Meligy, M.M.M. Synthesis of novel benzofuran and related benzimidazole derivatives for evaluation of in vitro anti-HIV-1, anticancer and antimicrobial activities. Arch. Pharm. Res., 2006, 29(10), 826-833.
[http://dx.doi.org/10.1007/BF02973901] [PMID: 17121175]
[57]
Jiang, S.; Tian, X.J.; Feng, S.Y.; Li, J.S.; Li, Z.W.; Lu, C.H.; Li, C.J.; Liu, W.D. Visible-light photoredox catalyzed double C-H functionalization: Radical cascade cyclization of ethers with benzimidazole-based cyanamides. Org. Lett., 2021, 23(3), 692-696.
[http://dx.doi.org/10.1021/acs.orglett.0c03853] [PMID: 33438394]
[58]
Song, Y.L.; Wu, F.; Zhang, C.C.; Liang, G.C.; Zhou, G.; Yu, J.J. Ionic liquid catalyzed synthesis of 2-(indole-3-yl)-thiochroman-4-ones and their novel antifungal activities. Bioorg. Med. Chem. Lett., 2015, 25(2), 259-261.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.056] [PMID: 25499881]
[59]
Huang, A.X.; Zhu, H.L.; Zeng, F.L.; Chen, X.L.; Huang, X.Q.; Qu, L.B.; Yu, B. 1-Acryloyl-2-cyanoindole:askeleton for visible-light-induced cascade annulation. Org. Lett., 2022, 24(16), 3014-3018.
[http://dx.doi.org/10.1021/acs.orglett.2c00927]
[60]
Tanaka, M.; Ubukata, M.; Matsuo, T.; Yasue, K.; Matsumoto, K.; Kajimoto, Y.; Ogo, T.; Inaba, T. One-step synthesis of heteroaromatic-fused pyrrolidines via cyclopropane ring-opening reaction: Application to the PKCbeta inhibitor JTT-010. Org. Lett., 2007, 9(17), 3331-3334.
[http://dx.doi.org/10.1021/ol071336h] [PMID: 17655251]
[61]
Nazeef, M.; Shivhare, K.N.; Ali, S.; Ansari, S.; Siddiqui, I.R. Visible-light-mediated one-pot efficient synthesis of 1-aryl-1H,3H-thiazolo[3,4-a]benzimidazoles:ametal-free photochemical approach in aqueous ethanol. Mol. Divers., 2021, 25(4), 2479-2486.
[http://dx.doi.org/10.1007/s11030-020-10145-8] [PMID: 32980996]
[62]
Fawzy, I.M.; Refaat, H.M.; Attia, R.T.; Ibrahim, H.A.; Mandour, A.A. Synthesis, molecular modeling and biological studies of novel 1-aryl-thiazolo benzimidazole derivatives as cytochrome (CYP51 MTb) type I inhibitors & anticancer agents; Res. Square, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1727366/v1]
[63]
Zeng, F.L.; Zhang, Z.Y.; Yin, P.C.; Cheng, F.K.; Chen, X.L.; Qu, L.B.; Cao, Z.Y.; Yu, B. Visible-light-induced cascade cyclization of 3-(2-(Ethynyl)phenyl)quinazolinones to phosphorylated quinolino[2,1-b]quinazolinones. Org. Lett., 2022, 24(43), 7912-7917.
[http://dx.doi.org/10.1021/acs.orglett.2c02930] [PMID: 36269864]
[64]
Covell, D.G.; Huang, R.; Wallqvist, A. Anticancer medicines in development: Assessment of bioactivity profiles within the National Cancer Institute anticancer screening data. Mol. Cancer Ther., 2007, 6(8), 2261-2270.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0787]
[65]
Pan, F.; Li, H.; Wang, X.; Luo, L.; Lin, Y.; Yu, Q.; Xie, W.; Zhang, L. Synthesis of sulfur-containing benzo[b]pyrrolo[2,1-c][1,4]oxazine-3,9-diones: Blue light promoted radical cyclization process. RSC Advances, 2023, 13(20), 13911-13918.
[http://dx.doi.org/10.1039/D3RA02247A] [PMID: 37197573]
[66]
Ghoshal, A.; Kumar, A.; Yugandhar, D.; Sona, C.; Kuriakose, S.; Nagesh, K.; Rashid, M.; Singh, S.K.; Wahajuddin, M.; Yadav, P.N.; Srivastava, A.K. Identification of novel β-lactams and pyrrolidinone derivatives as selective Histamine-3 receptor (H3R) modulators as possible anti-obesity agents. Eur. J. Med. Chem., 2018, 152(152), 148-159.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.020] [PMID: 29704723]
[67]
Bhanja, R.; Bera, S.K.; Mal, P. Regioselective synthesis of phenanthridine-fused quinazolinones usinga9-mesityl-10-methylacridinium perchlorate photocatalyst. Chem. Commun., 2023, 59(30), 4455-4458.
[http://dx.doi.org/10.1039/D3CC00537B] [PMID: 36943717]
[68]
Gupta, P.K.; Yadav, N.; Jaiswal, S.; Asad, M.; Kant, R.; Hajela, K. Palladium-catalyzed synthesis of phenanthridine/benzoxazine-fused quinazolinones by intramolecular C-H bond activation. Chemistry, 2015, 21(38), 13210-13215.
[http://dx.doi.org/10.1002/chem.201501591] [PMID: 26230355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy