Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Research Article

Formulation and Evaluation of Cola acuminata Gum-based Mucoadhesive Sustained-release Matrix Tablets of Diclofenac Sodium

Author(s): Emmanuel Adelaja Bamigbola*, Anthony Amaechi Attama, Franklin Chimaobi Kenechukwu and Jude Nkemjika Oraeluno

Volume 17, Issue 3, 2023

Published on: 25 September, 2023

Page: [228 - 240] Pages: 13

DOI: 10.2174/2667387817666230914104152

Price: $65

Abstract

Objective: This study aimed to evaluate Cola acuminata gum (CAG) for the formulation of mucoadhesive sustained-release matrix tablets of diclofenac sodium.

Methods: Different batches of granules containing CAG and 100 mg of DS in ratios 0.5:1, 1:1, 2:1, and 3:1 were prepared, compressed into tablets, and evaluated for mucoadhesive strength, swelling index, and drug release in SGF (pH 1.2) and SIF (pH 7.4).

Results: Swelling indices and mucoadhesive strengths of the tablets were pH-dependent. Swelling indices of 56 ± 2.03 to 121 ± 2.19% and mucoadhesive strengths of 7.25 ± 1.45 to 15.43 ± 2.71 g/cm2 obtained at pH 7.4 were significantly higher (p<0.05) than swelling indices of 25 ± 2.43 to 47 ± 3.15% and mucoadhesive strengths of 5.52 ± 0.76 to 9.22 ± 1.95 g/cm2 obtained at pH 1.2. The percentage release of DS from the matrix tablets at pH 1.2 after 2 h (T2h) was insignificant. However, the percentage of drug release at pH 7.4 was significant for all the batches and dependent on the CAG concentration. The drug release was in the order of batches containing 3 g (80.44 ± 7.75) < 2 g (86.35 ± 5.65) < 1 g (90.08 ± 6.14) < 0.5 g (99.70 ± 3.90). The time for maximum drug release was 7 h (T7h) for CAG containing 0.5 g and 10 h (T10h) for other batches.

Conclusion: This study showed that CAG could be useful for mucoadhesive sustained drug delivery.

Graphical Abstract

[1]
Awasthi R, Sharma B, Kulkarni GT. Plant derived polysaccharides as pharmaceutical excipients: An overview. In: Sen S, Chakraborty R, Eds Herbal Medicine in India. Singapore: Springer 2020.
[http://dx.doi.org/10.1007/978-981-13-7248-3_13]
[2]
Beneke C, Viljoen A, Hamman J. Polymeric plant-derived excipients in drug delivery. Molecules 2009; 14(7): 2602-20.
[http://dx.doi.org/10.3390/molecules14072602] [PMID: 19633627]
[3]
Hamman JH, Tarirai C. Funct excip. Chem Tod 2006; 24: 57-62.
[4]
Kulkarni GT, Gowthamarajan K, Dhobe RR, Yohanan F, Suresh B. Development of controlled release spheroids using natural polysaccharide as release modifier. Drug Deliv 2005; 12(4): 201-6.
[http://dx.doi.org/10.1080/10717540590952537] [PMID: 16036714]
[5]
Bamigbola EA, Oluwayemisi AO, Uzim DA. Evaluation of the suspending properties of Cola acuminata gum on calamine suspension. J Phytomed Ther 2017; 16: 96-116.
[6]
Bamigbola EA, Momoh MA, Ikebudu O. Isolation and characterization of Cola acuminata gum as a potential pharmaceutical excipient. J Pharm Res Int 2018; 24(1): 1-14.
[http://dx.doi.org/10.9734/JPRI/2018/14526]
[7]
Bamigbola EA, Attama AA, Ogeh PC. Evaluation of physico-mechanical and mucoadhesive properties of biopolymer films from Cola Acuminata gum. Nig J Pharm Res 2018; 14: 1-3.
[8]
Onunkwo GC. Binding properties of a polymeric gum from Cola acuminata. Glob J Pure Appl Sci 2005; 11(2): 234-5.
[http://dx.doi.org/10.4314/gjpas.v11i2.16491]
[9]
Gohel MC, Amin AF. Formulation optimization of controlled release diclofenac sodium microspheres using factorial design. J Control Release 1998; 51(2-3): 115-22.
[http://dx.doi.org/10.1016/S0168-3659(97)00102-8] [PMID: 9685908]
[10]
Tunçay M, Caliş S, Kaş HS, Ercan MT, Peksoy I, Hincal AA. In vitro and in vivo evaluation of diclofenac sodium loaded album in microspheres. J Microencapsul 2000; 17(2): 145-55.
[http://dx.doi.org/10.1080/026520400288382] [PMID: 10738690]
[11]
Tunçay M, Çaliş S, Kaş HS, Ercan MT, Peksoy İ, Hincal AA. Diclofenac sodium incorporated PLGA (50:50) microspheres: formulation considerations and in vitro/in vivo evaluation. Int J Pharm 2000; 195(1-2): 179-88.
[http://dx.doi.org/10.1016/S0378-5173(99)00394-4] [PMID: 10675695]
[12]
Kumbar SG, Kulkarni AR, Aminabhavi TM. Crosslinked chitosan microspheres for encapsulation of diclofenac sodium: effect of crosslinking agent. J Microencapsul 2002; 19(2): 173-80.
[http://dx.doi.org/10.1080/02652040110065422] [PMID: 11837972]
[13]
Ofokansi KC, Kenechukwu FC. Diclofenac sodium-loaded chitosan microparticles: formulation, characterization and targeted drug delivery properties. Afric J Pharm Res Dev 2011; 3: 61-70.
[14]
Hinz B, Rau T, Auge D, et al. Aceclofenac spares cyclooxygenase 1 as a result of limited but sustained biotransformation to diclofenac. Clin Pharmacol Ther 2003; 74(3): 222-35.
[http://dx.doi.org/10.1016/S0009-9236(03)00167-X] [PMID: 12966366]
[15]
Kenechukwu FC, Ofokansi KC. Investigation of solid dispersions based on Eudraginated-PEG as novel carriers for dissolution enhancement and delivery of diclofenac. Int J Bioinform 2013; 6(1): 1-2.
[16]
Chime S, Attama AA, Kenechukwu FC, Umeyor EC, Onunkwo GC. Formulation, in vitro and in vivo characterisation of diclofenac potassium sustained release tablets based on solidified reverse micellar solution (SRMS). Br J Pharm Res 2013; 3(1): 90-107.
[http://dx.doi.org/10.9734/BJPR/2013/1567]
[17]
Brundig P, Börner RH, Haerting R, Janitzky V, Schlichter A. Glycose aminoglycane excretion and concentration in the urine of patients with frequently recurrent calcium-oxalate lithiasis prior to and following Diclofenac-Na therapy. Urol Res 1990; 18(1): 21-4.
[http://dx.doi.org/10.1007/BF00294576] [PMID: 2316068]
[18]
Novartis. Prescribing information of cataflam. 2005. Available from: www.pharma.us.novartis.com/product/pi/pdf/Cataflam. pdf
[19]
Miazi MM, Choudhury MMA, Rahman MH, Rahman A. Effects of magnesium hydroxide on disintegration time and dissolution rate of diclofenac sodium plain tablet. Journal of Bangladesh Society of Physiologist 1970; 2: 42-8.
[http://dx.doi.org/10.3329/jbsp.v2i0.984]
[20]
Davies NM, Anderson KE. Clinical pharmacokinetics of diclofenac. Therapeutic insights and pitfalls. Clin Pharmacokinet 1997; 33(3): 184-213.
[http://dx.doi.org/10.2165/00003088-199733030-00003] [PMID: 9314611]
[21]
Nakhat PD, Yeole PG, Galgatte UC, Babla IB. Design and evaluation of Xanthan gum-based sustained release Matrix tablets of Diclofenac sodium. Indian J Pharm Sci 2006; 68(2): 185-9.
[http://dx.doi.org/10.4103/0250-474X.25712]
[22]
Jain N, Valli KS, Devi VK. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev 2010; 4(7): 27-31.
[http://dx.doi.org/10.4103/0973-7847.65322] [PMID: 22228938]
[23]
Bravo SA, Lamas MC, Salomon CJ. Swellable matrices for the controlled-release of diclofenac sodium: formulation and in vitro studies. Pharm Dev Technol 2004; 9(1): 75-83.
[http://dx.doi.org/10.1081/PDT-120027420] [PMID: 15000468]
[24]
Madhusudan Rao Y, Veni JK, Jayasagar G. Formulation and evaluation of diclofenac sodium using hydrophilic matrices. Drug Dev Ind Pharm 2001; 27(8): 759-66.
[http://dx.doi.org/10.1081/DDC-100107239] [PMID: 11699827]
[25]
Ngwuluka NC, Idiakhoa BA, Nep EI, Ogaji I, Okafor IS. Formulation and evaluation of paracetamol tablets manufactured using the dried fruit of Phoenix dactylifera Linn as an excipient. Res Pharm Biotechnol 2010; 2: 25-32.
[26]
United States Pharmacopeia National Formulary USP 23/NF 18. Rockville, MD: United States Pharmacopeial Convention Inc. 1995; p. 323.
[27]
Fichtner F, Rasmuson Å, Alderborn G. Particle size distribution and evolution in tablet structure during and after compaction. Int J Pharm 2005; 292(1-2): 211-25.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.003] [PMID: 15725568]
[28]
Virtanen S, Antikainen O, Räikkönen H, Yliruusi J. Granule size distribution of tablets. J Pharm Sci 2010; 99(4): 2061-9.
[http://dx.doi.org/10.1002/jps.21945] [PMID: 19780134]
[29]
Staniforth J. Powder flow. In: Aulton ME, Ed Pharmaceutics The Science of Dosage Form Design. (2nd ed.). Churchill Livingstone London 2002; pp. 197-210.
[30]
Sun CC, Himmelspach MW. Reduced tabletability of roller compacted granules as a result of granule size enlargement. J Pharm Sci 2006; 95(1): 200-6.
[http://dx.doi.org/10.1002/jps.20531] [PMID: 16315244]
[31]
Ramu G, Mohan GK, Jayaveera KN. Preliminary investigation of patchaippasali mucilage (Basella alba) as tablet binder. International Journal of Green Pharmacy 2011; 5(1): 24.
[http://dx.doi.org/10.4103/0973-8258.82091]
[32]
Reus-Medina M, Lanz M, Kumar V, Leuenberger H. Comparative evaluation of the powder properties and compression behaviour of a new cellulose-based direct compression excipient and Avicel PH-102. J Pharm Pharmacol 2010; 56(8): 951-6.
[http://dx.doi.org/10.1211/0022357043987] [PMID: 15285837]
[33]
Panda DS, Choudhury NSK, Yedukondalu M, Si S, Gupta R. Evaluation of gum of Moringa oleifera as a binder and release retardant in tablet formulation. Indian J Pharm Sci 2008; 70(5): 614-8.
[http://dx.doi.org/10.4103/0250-474X.45400] [PMID: 21394258]
[34]
Musa H, Ochu SN, Bhatia PG. Evaluation of the tablet binding properties of barley (Hordeum vulgare) Starch. Int J Appl Pharm 2010; 2: 4-7.
[35]
Bacher C, Olsen PM, Bertelsen P, Sonnergaard JM. Compressibility and compactibility of granules produced by wet and dry granulation. Int J Pharm 2008; 358(1-2): 69-74.
[http://dx.doi.org/10.1016/j.ijpharm.2008.02.013] [PMID: 18407441]
[36]
Mohammed S, Mohammed S, Bijja S, Ashraf B. Evaluation of tablets by friability apparatus. Int J Res Pharm Chem 2014; 4: 837-40.
[37]
Esezobo S, Ambujam V. An evaluation of starch obtained from plantain Musa paradisiaca as a binder and disintegrant for compressed tablets. J Pharm Pharmacol 2011; 34(12): 761-5.
[http://dx.doi.org/10.1111/j.2042-7158.1982.tb06221.x]
[38]
Chirico S, Dalmoro A, Lamberti G, Russo G, Titomanlio G. Analysis and modeling of swelling and erosion behavior for pure hydroxypropylmethycellulose (HPMC) tablet. J Control Release 2007; 122: 181-8.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.001] [PMID: 17706830]
[39]
Viridén A, Wittgren B, Larsson A. Investigation of critical polymer properties for polymer release and swelling of HPMC matrix tablets. Eur J Pharm Sci 2009; 36(2-3): 297-309.
[http://dx.doi.org/10.1016/j.ejps.2008.10.021] [PMID: 19038336]
[40]
Sujja-areevath J, Munday DL, Cox PJ, Khan KA. Relationship between swelling, erosion and drug release in hydrophillic natural gum mini-matrix formulations. Eur J Pharm Sci 1998; 6(3): 207-17.
[http://dx.doi.org/10.1016/S0928-0987(97)00072-9] [PMID: 9795062]
[41]
Acosta N, Aranaz I, Peniche C, Heras A. Peniche, Heras A. Tramadol release from a delivery system based on alginate-chitosan microcapsules. Macromol Biosci 2003; 3(10): 546-51.
[http://dx.doi.org/10.1002/mabi.200300009]
[42]
Pandit JK, Singh S, Muthu MS. Controlled release formulations in neurology practice. Ann Indian Acad Neurol 2006; 9(4): 207-16.
[http://dx.doi.org/10.4103/0972-2327.29202]
[43]
Lee WF, Lin YH. Effect of porosigen on the swelling behavior and drug release of porousN-isopropylacrylamide/poly(ethylene glycol) monomethylether acrylate copolymeric hydrogels. J Appl Polym Sci 2006; 102(6): 5490-9.
[http://dx.doi.org/10.1002/app.23912]
[44]
Ghimire M, Mcinnes F, Mullen A, Stevens H. In vitro erosion and dissolution of HPMC tablet coating indomethacin. AAPS PharmSciTech 2007; 9: 54.
[45]
Phaechamud T, Mesnukul A, Yodkhum K. Solid dispersion matrix tablet comprising indomethacin-PEG-HPMC fabricated with fusion and mold technique. Indian J Pharm Sci 2009; 71(4): 413-20.
[http://dx.doi.org/10.4103/0250-474X.57290] [PMID: 20502547]
[46]
Varshosaz J, Tavakoli N, Kheirolahi F. Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride. AAPS PharmSciTech 2006; 7(1): E168-74.
[http://dx.doi.org/10.1208/pt070124]
[47]
Kumar SV, Sasmal D, Pal SC. Rheological characterization and drug release studies of gum exudates of Terminalia catappa Linn. AAPS PharmSciTech 2008; 9(3): 885-90.
[http://dx.doi.org/10.1208/s12249-008-9101-5] [PMID: 18661243]
[48]
Aidoo S. Bioadhesive polymers. Drug Dev Ind Pharm 1997; 23: 489-95.
[49]
Amrutkar JR, Gattani SG. Chitosan-chondroitin sulfate based matrix tablets for colon specific delivery of indomethacin. AAPS PharmSciTech 2009; 10(2): 670-7.
[http://dx.doi.org/10.1208/s12249-009-9253-y] [PMID: 19459052]
[50]
Trease GE, Evans WC. Pharmacognosy. (12th ed.), London: Bailler-Tinal 1983.
[51]
Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm 2009; 71(3): 505-18.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.028] [PMID: 18984051]
[52]
Smart J. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 2005; 57(11): 1556-68.
[http://dx.doi.org/10.1016/j.addr.2005.07.001] [PMID: 16198441]
[53]
Solomonidou D, Cremer K, Krumme M, Kreuter J. Effect of carbomer concentration and degree of neutralization on the mucoadhesive properties of polymer films. J Biomater Sci Polym Ed 2001; 12(11): 1191-205.
[http://dx.doi.org/10.1163/156856201753395743] [PMID: 11853386]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy