Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Traditional uses, Phytochemistry, Pharmacology, and Toxicology of the Genus Artemisia L. (Asteraceae): A High-value Medicinal Plant

Author(s): Manzoor Hussain, Rakesh Kr Thakur, Jabeena Khazir, Sajad Ahmed, Mohammad Imtiyaj Khan, Praveen Rahi, Latif Ahmad Peer, Pragadheesh Vppalayam Shanmugam, Satwinderjeet Kaur, Soom Nath Raina, Zafar Ahmad Reshi, Deepmala Sehgal*, Vijay Rani Rajpal* and Bilal Ahmad Mir*

Volume 24, Issue 4, 2024

Published on: 27 September, 2023

Page: [301 - 342] Pages: 42

DOI: 10.2174/1568026623666230914104141

Price: $65

Abstract

Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.

Graphical Abstract

[1]
World Health Organization. WHO establishes the global centre for traditional medicine in india., Available from:https://www.who.int/news/item/25-03-2022-who-establishes-the-global-centre-for-traditional-medicine-in-india
[2]
World Health Organization. The use of herbal medicines in primary health care., 2009. Available from:https://www.who.int/publications/i/item/SEA-HSD-322
[3]
Nadimuthu, L.P.R.; Victor, K. Optimization of energy-intensive process in ayurvedic medicine manufacturing unit—a case study. Process Integration Optimization Sustainab., 2021, 5(4), 975-992.
[http://dx.doi.org/10.1007/s41660-021-00194-3]
[4]
Pandey, A.K.; Singh, P.; Litscher, G.; Skaltsa, E. The Genus Artemisia: A 2012-2017 literature review on chemical composition, antimicrobial, insecticidal and antioxidant activities of essential oils. Medicines, 2017, 4(3), 68.
[http://dx.doi.org/10.3390/medicines4030068] [PMID: 28930281]
[5]
Amidon, C.; Barnett, R.; Cathers, J.; Chambers, B.; Hamilton, L.; Kellett, A.; Kennel, E.; Montowski, J.; Thomas, M.A.; Watson, B. Artemisia: An essential guide; The Herb Society of America, 2014.
[6]
Shah, N.C. The economic and medicinal Artemisia species in India. Scitech J., 2014, 1, 29-38.
[7]
Vallès, J.; Garcia, S.; Hidalgo, O.; Martín, J.; Pellicer, J.; Sanz, M.; Garnatje, T. Biology, genome evolution, biotechnological issues and research including applied perspectives in Artemisia (Asteraceae). Adv. Bot. Res., 2011, 60, 349-419.
[http://dx.doi.org/10.1016/B978-0-12-385851-1.00015-9]
[8]
Kaul, M.K.; Bakshi, S.K. Studies on the genus Artemisia L. in North-West Himalaya with particular reference to Kashmir. Folia Geobot. Phytotaxon., 1984, 19(3), 299-316.
[http://dx.doi.org/10.1007/BF02853095]
[9]
POWO. Plants of the world online | Kew Science. Available from:https://powo.science.kew.org/about (Accessed Jun 6, 2022)
[10]
Numonov, S.; Sharopov, F.; Salimov, A.; Sukhrobov, P.; Atolikshoeva, S.; Safarzoda, R.; Habasi, M.; Aisa, H. Assessment of artemisinin contents in selected artemisia species from tajikistan (Central Asia). Medicines, 2019, 6(1), 23.
[http://dx.doi.org/10.3390/medicines6010023] [PMID: 30709043]
[11]
Li, T.; Chen, H.; Wei, N.; Mei, X.; Zhang, S.; Liu, D.; Gao, Y.; Bai, S.; Liu, X.; Zhou, Y. Anti-inflammatory and immunomodulatory mechanisms of artemisinin on contact hypersensitivity. Int. Immunopharmacol., 2012, 12(1), 144-150.
[http://dx.doi.org/10.1016/j.intimp.2011.11.004] [PMID: 22122827]
[12]
Soni, R.; Shankar, G.; Mukhopadhyay, P.; Gupta, V. A concise review on Artemisia annua L.: A major source of diverse medicinal compounds. Ind. Crops Prod., 2022, 184, 115072.
[http://dx.doi.org/10.1016/j.indcrop.2022.115072]
[13]
Ekiert, H.; Świątkowska, J.; Knut, E.; Klin, P.; Rzepiela, A.; Tomczyk, M.; Szopa, A. Artemisia dracunculus (Tarragon): A Review of Its Traditional Uses, Phytochemistry and Pharmacology. Front. Pharmacol., 2021, 12, 653993.
[http://dx.doi.org/10.3389/fphar.2021.653993] [PMID: 33927629]
[14]
Liu, J.; Xiong, P.; Huang, L.; Zhang, W.; Song, L.; Hu, H.; Jia, B.; Liu, X. Artemisia anomala S. Moore: A review of botany, traditional uses, phytochemistry, pharmacology and quality control. J. Ethnopharmacol., 2023, 315, 116663.
[http://dx.doi.org/10.1016/j.jep.2023.116663] [PMID: 37245709]
[15]
Batiha, G.E.S.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Alghamdi, S.; Zahoor, M.; Magdy Beshbishy, A.; Murata, T.; Zaragoza-Bastida, A.; Rivero-Perez, N. Bioactive compounds, pharmacological actions, and pharmacokinetics of Wormwood (Artemisia absinthium). Antibiotics, 2020, 9(6), 353.
[http://dx.doi.org/10.3390/antibiotics9060353] [PMID: 32585887]
[16]
Siwan, D.; Nandave, D.; Nandave, M. Artemisia vulgaris Linn: An updated review on its multiple biological activities. Futur. J. Pharm. Sci., 2022, 81(8), 1-14.
[17]
Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus artemisia. Arch. Pharm. Res., 2021, 44(5), 439-474.
[http://dx.doi.org/10.1007/s12272-021-01328-4] [PMID: 33893998]
[18]
Pellicer, J.; Garnatje, T.; Vallès, J. Artemisia (Asteraceae): Understanding its evolution using cytogenetic and molecular systematic tools, with emphasis on subgenus Dracunculus. Recent Adv. Pharm. Sci., 2011, 37, 199-222.
[19]
Vallès, J.; Mcarthur, E. Artemisia systematics and phylogeny: Cytogenetic and molecular insights. Proceedings of the Shrubland ecosystem genetics and biodiversity: Proceedings; Department of Agriculture, Forest Service, Rocky Mountain Research Station., United States, 2001, pp. 67-74.
[20]
Ghahraman, A.; Nourbakhsh, N.; Mehdi, G.K.; Atar, F. Pollen morphology of Artemisia L. (Asteraceae) in Iran. Iran. J. Bot., 2007, 13, 21-29.
[21]
Jiao, B.; Chen, C.; Wei, M.; Niu, G.; Zheng, J.; Zhang, G.; Shen, J.; Vitales, D.; Vallès, J.; Verloove, F.; Erst, A.S.; Soejima, A.; Mehregan, I.; Kokubugata, G.; Chung, G.Y.; Ge, X.; Gao, L.; Yuan, Y.; Joly, C.; Jabbour, F.; Wang, W.; Shultz, L.M.; Gao, T. Phylogenomics and morphological evolution of the mega-diverse genus Artemisia(Asteraceae: Anthemideae): Implications for its circumscription and infrageneric taxonomy. Ann. Bot., 2023, 131(5), 867-883.
[http://dx.doi.org/10.1093/aob/mcad051] [PMID: 36976653]
[22]
Vallès, J.; Garnatje, T. Artemisia and its allies: Genome organization and evolution and their biosystematic, taxonomic and phylogenetic implications in the Artemisiinae and related subtribes (Asteraceae, Anthemideae). In: Plant genome: Biodiversity and Evolution; Science: Enfield, 2005; pp. 255-285.
[23]
Pellicer, J.; Garcia, S.; Garnatje, T.; Hidalgo, O.; Korobkov, A.A.; Dariimaa, S.; Vallès, J. Chromosome counts in Asian Artemisia L. (Asteraceae) species: From diploids to the first report of the highest polyploid in the genus. Bot. J. Linn. Soc., 2007, 153(3), 301-310.
[http://dx.doi.org/10.1111/j.1095-8339.2007.00611.x]
[24]
Tantray, Y.R.; Jan, I.; Wani, M.S.; Singhal, V.K.; Gupta, R.C. Chromosome numbers and meiotic behavior in some species of Asteraceae from high altitudinal regions of Kashmir Himalayas. J. Asia-Pac. Biodivers., 2021, 14(4), 590-606.
[http://dx.doi.org/10.1016/j.japb.2021.07.002]
[25]
Wiens, D.; Richter, J.A. Artemisia pattersonii: A 14-chromosome species of Alpine stage. Am. J. Bot., 1966, 53(10), 981-986.
[http://dx.doi.org/10.1002/j.1537-2197.1966.tb06862.x]
[26]
Donald, A.L.; Brian, G.P.R.; Neil, J.; Robert, T. Phyletic hot spots for B chromosomes in angiosperms. Evolution, 2005, 962-969.
[27]
Soltis, D.E.; Segovia-Salcedo, M.C.; Jordon-Thaden, I.; Majure, L.; Miles, N.M.; Mavrodiev, E.V.; Mei, W.; Cortez, M.B.; Soltis, P.S.; Gitzendanner, M.A. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytol., 2014, 202(4), 1105-1117.
[http://dx.doi.org/10.1111/nph.12756] [PMID: 24754325]
[28]
Torrell, M.; Vallès, J.; Garcia-Jacas, N.; Mozaffarian, V.; Gabrielian, E. New or rare chromosome counts in the genus Artemisia L. (Asteraceae, Anthemideae) from Armenia and Iran. Bot. J. Linn. Soc., 2001, 135(1), 51-60.
[http://dx.doi.org/10.1111/j.1095-8339.2001.tb02368.x]
[29]
Sharma, V.; Singh, B.; Gupta, R.C.; Dhaliwal, H.S.; Srivastava, D.K. in vitro antimicrobial activity and GCMS analysis of essential oil of Artemisia maritima (Linn.) from Lahaul & Spiti (Cold Desert) region of North-Indian higher altitude Himalayas. J. Med. Plants Stud. Year, 2014, 2, 45-52.
[30]
Tantray, Y.R.; Singhal, V.K.; Gupta, R.C. Deciphering the meiotic behaviour in species of genus Artemisia from Cold Deserts of Ladakh (Jammu & Kashmir). Flora, 2020, 262, 151520.
[http://dx.doi.org/10.1016/j.flora.2019.151520]
[31]
Pellicer, J.; Garcia, S.; Canela, M.Á.; Garnatje, T.; Korobkov, A.A.; Twibell, J.D.; Vallès, J. Genome size dynamics in Artemisia L. (Asteraceae): Following the track of polyploidy. Plant Biol., 2010, 12(5), 820-830.
[http://dx.doi.org/10.1111/j.1438-8677.2009.00268.x] [PMID: 20701707]
[32]
Yoshikazu, H.; Matoba, H.; Kondo, K. Physical mapping of ribosomal RNA genes in the genus Artemisia L. (Asteraceae). Firenze Univ. Press, 2014, 59, 312-318.
[33]
Mas de Xaxars, G.; Garnatje, T.; Pellicer, J.; Siljak-Yakovlev, S.; Vallès, J.; Garcia, S. Impact of dysploidy and polyploidy on the diversification of high mountain Artemisia (Asteraceae) and allies. Alp. Bot., 2016, 126(1), 35-48.
[http://dx.doi.org/10.1007/s00035-015-0159-x]
[34]
Hayat, M.Q.; Khan, M.A.; Ashraf, M.; Jabeen, S. Ethnobotany of the genus artemisia L. (Asteraceae) in pakistan. Ethnobot. Res. Appl., 2009, 7, 147-162.
[http://dx.doi.org/10.17348/era.7.0.147-162]
[35]
Crawford, M.S.; Handley, J.; Tronstad, L.M. An insect-pollinated species in a wind-pollinated genus: Case study of the endemic plant, Laramie chickensage Artemisia simplex. Nord. J. Bot., 2022, 2022(11), e03708.
[http://dx.doi.org/10.1111/njb.03708]
[36]
Bharti, U.; Sharma, E.; Parihar, J.; Sharma, N. Genetic System of Artemisia maritima L.: An Overexploited Medicinal Species Under Stress. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2019, 89(4), 1373-1378.
[http://dx.doi.org/10.1007/s40011-018-1057-y]
[37]
Vallès, J. Dadessobre la biologiad’espe‘ciesibe’rico-balea`riquesd’Artemisia L. Collect. Bot., 1989, 17, 237-245.
[38]
Evans, R.D.; Black, R.A.; Link, S.O. Reproductive growth during drought in Artemisia tridentata Nutt. Funct. Ecol., 1991, 5(5), 676.
[http://dx.doi.org/10.2307/2389488]
[39]
Sharma, I.; Bharti, U.; Parihar, J.; Sharma, N. Sex-expression and reproductive output in three species of artemisia L. abounding Jammu province (J&K), India. Natl. Acad. Sci. Lett., 2014, 37(3), 285-288.
[http://dx.doi.org/10.1007/s40009-014-0233-8]
[40]
Obolskiy, D.; Pischel, I.; Feistel, B.; Glotov, N.; Heinrich, M. Artemisia dracunculus L. (tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety. J. Agric. Food Chem., 2011, 59(21), 11367-11384.
[http://dx.doi.org/10.1021/jf202277w] [PMID: 21942448]
[41]
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, 2015.
[42]
Nigam, M.; Atanassova, M.; Mishra, A.P.; Pezzani, R.; Devkota, H.P.; Plygun, S.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J. Bioactive compounds and health benefits of Artemisia species. Nat. Prod. Commun., 2019, 14(7), 1934578X1985035.
[http://dx.doi.org/10.1177/1934578X19850354]
[43]
Motti, R.; Bonanomi, G.; de Falco, B. Wild and cultivated plants used in traditional alcoholic beverages in Italy: An ethnobotanical review. Eur. Food Res. Technol., 2022, 248(4), 1089-1106.
[http://dx.doi.org/10.1007/s00217-021-03948-y]
[44]
Zoubi, Ez.; Lairini, Y.; Amrani, S. Ethnobotanical survey of herbs used in the preservation of food products in Fez, Morocco. J. Ethn. Foods, 2022, 9, 1-11.
[45]
Benlarbi, F.; Mimoune, N.; Chaachouay, N.; Souttou, K.; Saidi, R.; Mokhtar, M.R.; Kaidi, R.; Benaissa, M.H. Ethnobotanical survey of the traditional antiparasitic use of medicinal plants in humans and animals in Laghouat (Southern Algeria). Vet. World, 2023, 16(2), 357-368.
[http://dx.doi.org/10.14202/vetworld.2023.357-368] [PMID: 37041995]
[46]
Birhan, Y.S. Medicinal plants utilized in the management of epilepsy in Ethiopia: Ethnobotany, pharmacology and phytochemistry. Chin. Med., 2022, 17(1), 129.
[http://dx.doi.org/10.1186/s13020-022-00686-5] [PMID: 36403053]
[47]
Yineger, H.; Kelbessa, E.; Bekele, T.; Lulekal, E. Plants used in traditional management of human ailments at Bale Mountains National Park; Southeastern Ethiopia, 2008. vol. 2.
[48]
Guo, C.A.; Ding, X.; Hu, H.; Zhang, Y.; Bianba, C.; Bian, B.; Wang, Y. A comparison of traditional plant knowledge between Daman people and Tibetans in Gyirong River Valley, Tibet, China. J. Ethnobiol. Ethnomed., 2023, 19(1), 14.
[http://dx.doi.org/10.1186/s13002-023-00583-7]
[49]
Xie, J.; Luo, C.; Yang, X.; Ren, Y.; Zhang, X.; Chen, H.; Zhao, Y.; Liu, S.; Wu, F. Study on wild medicinal plant resources and their applied ethnology in multiethnic areas of the Gansu–Ningxia–Inner Mongolia intersection zone. J. Ethnobiol. Ethnomed., 2023, 19(1), 18.
[http://dx.doi.org/10.1186/s13002-023-00585-5] [PMID: 37210577]
[50]
Khan, M.; Kumar, S.; Hamal, I. Medicinal plants of Sewa river catchment area in the Northwest Himalaya and its implication for conservation. Ethnobot. Leafl., 2009, 13, 1113-1139.
[51]
Rana, C.S.; Sharma, A.; Dangwal, L.R.; Tiwari, J.K.; Kumar, N. Ethnopharmacology of some important medicinal plants of Nanda Devi National Park, Uttarakhand, India. Nat. Sci. Sleep, 2010, 8, 11-16.
[52]
Rokaya, M.B.; Münzbergová, Z.; Timsina, B. Ethnobotanical study of medicinal plants from the Humla district of western Nepal. J. Ethnopharmacol., 2010, 130(3), 485-504.
[http://dx.doi.org/10.1016/j.jep.2010.05.036] [PMID: 20553834]
[53]
Singh, K.; Lal, B.; Todaria, N. Ethnobotany of higher plants in Spiti cold desert of Western Himalaya. J. Nat. Sci., 2012, 10, 7-14.
[54]
Joshi, R.; Satyal, P.; Setzer, W. Himalayan aromatic medicinal plants: A review of their ethnopharmacology, volatile phytochemistry, and biological activities. Medicines, 2016, 3(1), 6.
[http://dx.doi.org/10.3390/medicines3010006] [PMID: 28930116]
[55]
Hussain, S.; Ali, M.; Jeelani, R.; Abass, M. Cancer burden in high altitude Kargil Ladakh: Ten year single centre descriptive study. Int. J. Cancer Treat., 2019, 2, 4-10.
[56]
Wali, R.; Khan, M.F.; Mahmood, A.; Mahmood, M.; Qureshi, R.; Ahmad, K.S.; Mashwani, Z.R. Ethnomedicinal appraisal of plants used for the treatment of gastrointestinal complaints by tribal communities living in Diamir district, Western Himalayas, Pakistan. PLoS One, 2022, 17(6), e0269445.
[http://dx.doi.org/10.1371/journal.pone.0269445] [PMID: 35675300]
[57]
Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The artemisia L. Genus: A review of bioactive essential oils. Molecules, 2012, 17(3), 2542-2566.
[http://dx.doi.org/10.3390/molecules17032542] [PMID: 22388966]
[58]
Benevenuto, R.F.; Seldal, T.; Moe, S.R.; Rodriguez-Saona, C.; Hegland, S.J. Neighborhood effects of herbivore-induced plant resistance vary along an elevational gradient. Front. Ecol. Evol., 2020, 8, 117.
[http://dx.doi.org/10.3389/fevo.2020.00117]
[59]
Karban, R.; Yang, L.H.; Edwards, K.F. Volatile communication between plants that affects herbivory: A meta-analysis. Ecol. Lett., 2014, 17(1), 44-52.
[http://dx.doi.org/10.1111/ele.12205] [PMID: 24165497]
[60]
Bhakuni, R.S.; Jain, D.C.; Sharma, R.P.; Kumar, S.S. Secondary metabolites of Artemisia annua and their biological activity. Curr. Sci., 2001, 80, 35-48.
[61]
Liu, H.; Guo, S.S.; Lu, L.; Li, D.; Liang, J.; Huang, Z.H.; Zhou, Y.M.; Zhang, W.J.; Du, S. Essential oil from Artemisia annua aerial parts: Composition and repellent activity against two storage pests. Nat. Prod. Res., 2021, 35(5), 822-825.
[http://dx.doi.org/10.1080/14786419.2019.1599887] [PMID: 30961365]
[62]
Zhigzhitzhapova, S.V.; Dylenova, E.P.; Gulyaev, S.M.; Randalova, T.E.; Taraskin, V.V.; Tykheev, Z.A.; Radnaeva, L.D. Composition and antioxidant activity of the essential oil of Artemisia annua L. Nat. Prod. Res., 2020, 34(18), 2668-2671.
[http://dx.doi.org/10.1080/14786419.2018.1548461] [PMID: 30663350]
[63]
Jaitak, V.; Singh, B.; Kaul, V.K. Variability of volatile constituents in Artemisia maritima in western Himalaya. Nat. Prod. Res., 2008, 22(7), 565-568.
[http://dx.doi.org/10.1080/14786410701592653] [PMID: 18569692]
[64]
Stojanović, G.S.; Ickovski, J.D.; Đorđević, A.S.; Petrović, G.M.; Stepić, K.D.; Palić, I.R.; Stamenković, J.G. The first report on chemical composition and antimicrobial activity of Artemisia scoparia Waldst. et Kit. extracts. Nat. Prod. Commun., 2020, 15(3), 1934578X2091503.
[http://dx.doi.org/10.1177/1934578X20915034]
[65]
Nguyen, H.T.; Németh, Z.É. Sources of variability of wormwood (Artemisia absinthium L.) essential oil. J. Appl. Res. Med. Aromat. Plants, 2016, 3(4), 143-150.
[http://dx.doi.org/10.1016/j.jarmap.2016.07.005]
[66]
Özek, G.; Suleimen, Y.; Tabanca, N.; Doudkin, R.; Gorovoy, P.G.; Göger, F.; Wedge, D.E.; Ali, A.; Khan, I.A.; Başer, K.H.C. Chemical diversity and biological activity of the volatiles of five Artemisia species from Far East Russia. Rec. Nat. Prod., 2014, 8, 242-261.
[67]
Nataraj, N.; Hussain, M.; Ibrahim, M.; Hausmann, A.E.; Rao, S.; Kaur, S.; Khazir, J.; Mir, B.A.; Olsson, S.B. Effect of altitude on volatile organic and phenolic compounds of artemisia brevifolia wall ex dc. from the western himalayas. Front. Ecol. Evol., 2022, 10, 864728.
[http://dx.doi.org/10.3389/fevo.2022.864728]
[68]
Qadir, M.; Dangroo, N.A.; Agnihotri, V.K.; Shah, W.A. Isolation, characterisation, antifungal activity and validated UPLC/MS/MS method for quantification of novel compound from Artemisia tournefortiana Reichb. Nat. Prod. Res., 2022, 36(19), 4990-5000.
[http://dx.doi.org/10.1080/14786419.2021.1915310] [PMID: 33951993]
[69]
Shah, A.J.; Gilani, A.H.; Abbas, K.; Rasheed, M.; Ahmed, A.; Ahmad, V.U. Studies on the chemical composition and possible mechanisms underlying the antispasmodic and bronchodilatory activities of the essential oil of Artemisia maritima L. Arch. Pharm. Res., 2011, 34(8), 1227-1238.
[http://dx.doi.org/10.1007/s12272-011-0801-0] [PMID: 21910043]
[70]
Stappen, I.; Wanner, J.; Tabanca, N.; Wedge, D.; Ali, A.; Khan, I.; Kaul, V.; Lal, B.; Jaitak, V.; Gochev, V.; Girova, T.; Stoyanova, A.; Schmidt, E.; Jirovetz, L. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plants of western Himalaya. Planta Med., 2014, 80(13), 1079-1087.
[http://dx.doi.org/10.1055/s-0034-1382957] [PMID: 25127023]
[71]
Verma, M.K.; Anand, R.; Chisti, A.M.; Kitchlu, S.; Chandra, S.; Shawl, A.S.; Khajuria, R.K. Essential oil composition of Artemisia dracunculus L. (Tarragon) growing in Kashmir -India. J. Essent. Oil-Bear. Plants, 2010, 13(3), 331-335.
[http://dx.doi.org/10.1080/0972060X.2010.10643830]
[72]
Ardakani, P.N.; Masoudi, S. Comparison of the volatile oils of Artemisia tournefortiana Reichenb. obtained by two different methods of extraction. Trends Phytochem. Res., 2017, 1, 47-54.
[73]
Qadir, M.; Maurya, A.K.; Agnihotri, V.K.; Shah, W.A. Volatile composition, antibacterial and antioxidant activities of artemisia tournefortiana Reichb. from Kashmir, India. Nat. Prod. Res., 2021, 35(1), 152-156.
[http://dx.doi.org/10.1080/14786419.2019.1613990] [PMID: 31135230]
[74]
Kazemi, M.; Akhavani, S. Chemical composition, antimicrobial activity of artemisia tournefortiana rchb. Essential oil. Asian J. Chem., 2013, 25(6), 2985-2988.
[http://dx.doi.org/10.14233/ajchem.2013.13461]
[75]
Andola, H.C.; Mohan, M.; Haider, S.Z. Constituents of Artemisia gmelinii Weber ex Stechm. from Uttarakhand Himalaya: A source of artemisia ketone. Indian J. Pharm. Sci., 2012, 74(3), 265-267.
[http://dx.doi.org/10.4103/0250-474X.106074] [PMID: 23439844]
[76]
Hao, X.; Zhong, Y.; Fu, X.; Lv, Z.; Shen, Q.; Yan, T.; Shi, P.; Ma, Y.; Chen, M.; Lv, X.; Wu, Z.; Zhao, J.; Sun, X.; Li, L.; Tang, K. Transcriptome analysis of genes associated with the artemisinin biosynthesis by jasmonic acid treatment under the light in artemisia annua. Front. Plant Sci., 2017, 8, 971.
[http://dx.doi.org/10.3389/fpls.2017.00971] [PMID: 28642777]
[77]
Liu, K.; Rossi, P.G.; Ferrari, B.; Berti, L.; Casanova, J.; Tomi, F. Composition, irregular terpenoids, chemical variability and antibacterial activity of the essential oil from Santolina corsica Jordan et Fourr. Phytochemistry, 2007, 68(12), 1698-1705.
[http://dx.doi.org/10.1016/j.phytochem.2007.04.027] [PMID: 17544463]
[78]
Czechowski, T.; Larson, T.R.; Catania, T.M.; Harvey, D.; Wei, C.; Essome, M.; Brown, G.D.; Graham, I.A. Detailed phytochemical analysis of high- and low artemisinin-producing chemotypes of Artemisia annua. Front. Plant Sci., 2018, 9, 641.
[http://dx.doi.org/10.3389/fpls.2018.00641] [PMID: 29868094]
[79]
Noori, S.; Taghikhani, M.; Hassan, Z.M.; Allameha, A.; Mostafaei, A. Tehranolide molecule modulates the immune response, reduce regulatory T cell and inhibits tumor growth in vivo. Mol. Immunol., 2010, 47(7-8), 1579-1584.
[http://dx.doi.org/10.1016/j.molimm.2010.01.007] [PMID: 20138670]
[80]
Lone, S.H.; Bhat, K.A.; Khuroo, M.A. Arglabin: From isolation to antitumor evaluation. Chem. Biol. Interact., 2015, 240, 180-198.
[http://dx.doi.org/10.1016/j.cbi.2015.08.015] [PMID: 26327249]
[81]
Ivanescu, B.; Miron, A.; Corciova, A. Sesquiterpene lactones from Artemisia genus: Biological activities and methods of analysis. J. Anal. Methods Chem., 2015, 2015, 1-21.
[http://dx.doi.org/10.1155/2015/247685] [PMID: 26495156]
[82]
Lee, S.H.; Lee, M.Y.; Kang, H.M.; Han, D.C.; Son, K.H.; Yang, D.C.; Sung, N.D.; Lee, C.W.; Kim, H.M.; Kwon, B.M. Anti-tumor activity of the farnesyl-protein transferase inhibitors arteminolides, isolated from Artemisa. Bioorg. Med. Chem., 2003, 11(21), 4545-4549.
[http://dx.doi.org/10.1016/j.bmc.2003.08.008] [PMID: 14527550]
[83]
Jin, H.Z.; Lee, J.H.; Lee, D.; Hong, Y.S.; Kim, Y.H.; Lee, J.J. Inhibitors of the LPS-induced NF-kappaB activation from Artemisia sylvatica. Phytochemistry, 2004, 65(15), 2247-2253.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.034] [PMID: 15587709]
[84]
Kumar, D.; Bhat, Z.A.; Kumar, V.; Zargar, M.I. A short review on Artemisia maritima Linn. Int. J. Res. Phytochem. Pharmacol., 2011, 1, 201-206.
[85]
Qadir, M.; A Dangroo, N.; Amin Shah, S.W. Bioactivity-guided phytochemical investigations of Artemisia maritima: Isolation and characterization of chemical constituents. Asian J. Pharm. Clin. Res., 2019, 12(1), 269-274.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i1.28600]
[86]
Natividad, G.M.; Broadley, K.J.; Kariuki, B.; Kidd, E.J.; Ford, W.R.; Simons, C. Actions of Artemisia vulgaris extracts and isolated sesquiterpene lactones against receptors mediating contraction of guinea pig ileum and trachea. J. Ethnopharmacol., 2011, 137(1), 808-816.
[http://dx.doi.org/10.1016/j.jep.2011.06.042] [PMID: 21762766]
[87]
Jeong, S.H.; Koo, S.J.; Ha, J.H.; Ryu, S.Y.; Park, H.J.; Lee, K.T. Induction of apoptosis by yomogin in human promyelocytic leukemic HL-60 cells. Biol. Pharm. Bull., 2004, 27(7), 1106-1111.
[http://dx.doi.org/10.1248/bpb.27.1106] [PMID: 15256749]
[88]
Lone, S.H.; Bhat, K.A.; Naseer, S.; Rather, R.A.; Khuroo, M.A.; Tasduq, S.A. Isolation, cytotoxicity evaluation and HPLC-quantification of the chemical constituents from Artemisia amygdalina Decne. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 940, 135-141.
[http://dx.doi.org/10.1016/j.jchromb.2013.09.027] [PMID: 24148842]
[89]
Zeng, Y.T.; Jiang, J.M.; Lao, H.Y.; Guo, J.W.; Lun, Y.N.; Yang, M. Antitumor and apoptotic activities of the chemical constituents from the ethyl acetate extract of Artemisia indica. Mol. Med. Rep., 2015, 11(3), 2234-2240.
[http://dx.doi.org/10.3892/mmr.2014.3012] [PMID: 25434991]
[90]
Cho, S.H.; Na, Y.E.; Ahn, Y.J. Growth-inhibiting effects of seco- tanapartholides identified in Artemisia princeps var. orientalis whole plant on human intestinal bacteria. J. Appl. Microbiol., 2003, 95(1), 7-12.
[http://dx.doi.org/10.1046/j.1365-2672.2003.01998.x] [PMID: 12807448]
[91]
Beauhaire, J.; Fourrey, J.L.; Vuilhorgne, M.; Lallemand, J.Y. Dimeric sesquiterpene lactones : Structure of absinthin. Tetrahedron Lett., 1980, 21(33), 3191-3194.
[http://dx.doi.org/10.1016/S0040-4039(00)77442-9]
[92]
Sanchez-Carranza, J.N.; González-Maya, L.; Razo-Hernández, R.S.; Salas-Vidal, E.; Nolasco-Quintana, N.Y.; Clemente-Soto, A.F.; García-Arizmendi, L.; Sánchez-Ramos, M.; Marquina, S.; Alvarez, L. Achillin increases chemosensitivity to paclitaxel, overcoming resistance and enhancing apoptosis in human hepatocellular carcinoma cell line resistant to paclitaxel (Hep3B/PTX). Pharmaceutics, 2019, 11(10), 512.
[http://dx.doi.org/10.3390/pharmaceutics11100512] [PMID: 31590262]
[93]
Jung, H.A.; Park, J.J.; Islam, M.N.; Jin, S.E.; Min, B.S.; Lee, J.H.; Sohn, H.S.; Choi, J.S. Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation. Arch. Pharm. Res., 2012, 35(6), 1021-1035.
[http://dx.doi.org/10.1007/s12272-012-0610-0] [PMID: 22870812]
[94]
Yim, S.H.; Tabassum, N.; Kim, W.H.; Cho, H.; Lee, J.H.; Batkhuu, G.J.; Kim, H.J.; Oh, W.K.; Jung, D.W.; Williams, D.R. Isolation and characterization of isofraxidin 7-O-(6′-O-p-Coumaroyl)-β-glucopyranoside from Artemisia capillaris Thunberg: A novel, nontoxic hyperpigmentation agent that is effective in vivo. Evidence-based Complement. Altern. Med., 2017, 2017, 1-12.
[95]
Fu, C.; Yu, P.; Wang, M.; Qiu, F. Phytochemical analysis and geographic assessment of flavonoids, coumarins and sesquiterpenes in Artemisia annua L. based on HPLC-DAD quantification and LC-ESI-QTOF-MS/MS confirmation. Food Chem., 2020, 312, 126070.
[http://dx.doi.org/10.1016/j.foodchem.2019.126070] [PMID: 31911352]
[96]
Govorko, D.; Logendra, S.; Wang, Y.; Esposito, D.; Komarnytsky, S.; Ribnicky, D.; Poulev, A.; Wang, Z.; Cefalu, W.T.; Raskin, I. Polyphenolic compounds from Artemisia dracunculus L. inhibit PEPCK gene expression and gluconeogenesis in an H4IIE hepatoma cell line. Am. J. Physiol. Endocrinol. Metab., 2007, 293(6), E1503-E1510.
[http://dx.doi.org/10.1152/ajpendo.00420.2007] [PMID: 17848630]
[97]
Khezrilu Bandli, J.; Heidari, R. The evaluation of antioxidant activities and phenolic compounds in leaves and inflorescence of Artemisia dracunculus L. by HPLC. Faslnamah-i Giyahan-i Daruyi, 2014, 13, 41-50.
[98]
Hofer, O.; Szabó, G.; Greger, H. 2-Hydroxy-4-methoxy-trans-cinnamic acid as a precursor of herniarin in Artemisia dracunculus. Monatsh. Chem., 1986, 117(10), 1219-1222.
[http://dx.doi.org/10.1007/BF00811334]
[99]
Zheng, W.; Tan, R.; Yang, L.; Liu, Z. Two flavones from Artemisia giraldii and their antimicrobial activity. Planta Med., 1996, 62(2), 160-162.
[http://dx.doi.org/10.1055/s-2006-957841] [PMID: 8657751]
[100]
Ivanescu, B.; Vlase, L.; Corciova, A.; Lazar, M.I. HPLC- DAD-MS study of polyphenols from Artemisia absinthium, A. annua, and A. vulgaris. Chem. Nat. Compd., 2010, 46(3), 468-470.
[http://dx.doi.org/10.1007/s10600-010-9648-8]
[101]
Zeng, W.; Liang, H. Flavonoids from Artemisia gmelinii Web. ex Stechm. J. Chin. Pharm. Sci., 2014, 23(7), 496-499.
[http://dx.doi.org/10.5246/jcps.2014.08.065]
[102]
Mamatova, A.S.; Korona-Glowniak, I.; Skalicka-Woźniak, K.; Józefczyk, A.; Wojtanowski, K.K.; Baj, T.; Sakipova, Z.B.; Malm, A. Phytochemical composition of wormwood (Artemisia gmelinii) extracts in respect of their antimicrobial activity. BMC Complement. Altern. Med., 2019, 19(1), 288.
[http://dx.doi.org/10.1186/s12906-019-2719-x] [PMID: 31660943]
[103]
Khan, K.; Fatima, H.; Taqi, M.M.; Zia, M.; ur-Rehman, T.; Mirza, B.; Haq, I. Phytochemical and in vitro biological evaluation of Artemisia scoparia Waldst. & Kit for enhanced extraction of commercially significant bioactive compounds. J. Appl. Res. Med. Aromat. Plants, 2015, 2(3), 77-86.
[http://dx.doi.org/10.1016/j.jarmap.2015.04.002]
[104]
Liu, S.J.; Liao, Z.X.; Tang, Z.S.; Cui, C.L.; Liu, H.B.; Liang, Y.N.; Zhang, Y.; Shi, H.X.; Liu, Y.R. Phytochemicals and biological activities of Artemisia sieversiana. Phytochem. Rev., 2017, 16(3), 441-460.
[http://dx.doi.org/10.1007/s11101-016-9475-z]
[105]
Zhou, X.D.; Xu, X.W.; Shi, L.Y.; Chen, S.H.; Zeng, K.W.; Tu, P.F. Two new ditetrahydrofuran lignans from Artemisia sieversiana. Nat. Prod. Res., 2021, 35(21), 3528-3534.
[http://dx.doi.org/10.1080/14786419.2020.1712384] [PMID: 31937140]
[106]
Rashid, M.; Alamzeb, M.; Ali, S.; Ullah, Z.; Shah, Z.A.; Naz, I.; Khan, M.R. The chemistry and pharmacology of alkaloids and allied nitrogen compounds from Artemisia species: A review. Phytother. Res., 2019, 33(10), 2661-2684.
[http://dx.doi.org/10.1002/ptr.6466] [PMID: 31453659]
[107]
Sham’yanov, I.D.; Tashkhodzhaev, B.; Mukhamatkhanova, R.F.; Sultankhodzhaev, M.N.; Levkovich, M.G.; Abdullaev, N.D.; Antipin, M.Y. Sesquiterpene lactones and new diterpenoid alkaloids from Artemisia korshinskyi. Chem. Nat. Compd., 2012, 48(4), 616-621.
[http://dx.doi.org/10.1007/s10600-012-0326-x]
[108]
Srividya, N.; Heidorn, D.B.; Lange, B.M. Rapid purification of gram quantities of β-sitosterol from a commercial phytosterol mixture. BMC Res. Notes, 2014, 7(1), 182.
[http://dx.doi.org/10.1186/1756-0500-7-182] [PMID: 24674386]
[109]
Chebbac, K.; Benziane Ouaritini, Z.; El Moussaoui, A.; Chalkha, M.; Lafraxo, S.; Bin Jardan, Y.A.; Nafidi, H.A.; Bourhia, M.; Guemmouh, R. Antimicrobial and antioxidant properties of chemically analyzed essential oil of artemisia annua L. (Asteraceae) native to mediterranean area. Life (Basel), 2023, 13(3), 807.
[http://dx.doi.org/10.3390/life13030807] [PMID: 36983962]
[110]
Ćavar, S.; Maksimović, M.; Vidic, D.; Parić, A. Chemical composition and antioxidant and antimicrobial activity of essential oil of Artemisia annua L. from Bosnia. Ind. Crops Prod., 2012, 37(1), 479-485.
[http://dx.doi.org/10.1016/j.indcrop.2011.07.024]
[111]
Dylenova, E.P.; Zhigzhitzhapova, S.V.; Emelyanova, E.A.; Tykheev, Z.A.; Chimitov, D.G.; Goncharova, D.B.; Taraskin, V.V. Chemical diversity of artemisia rutifolia essential oil, antimicrobial and antiradical activity. Plants, 2023, 12(6), 1289.
[http://dx.doi.org/10.3390/plants12061289] [PMID: 36986977]
[112]
Raeisi, M.; Ghorbani Bidkorpeh, F.; Hashemi, M.; Tepe, B.; Moghaddam, Z.; Aman Mohammadi, M.; Noori, S.M.A.; Bidkorpeh, G.F.; Mohammadi, A.M. Chemical composition and antibacterial and antioxidant properties of essential oils of Zataria multiflora, Artemisia deracunculus and Mentha piperita. Med. Lab. J., 2019, 13(2), 1-7.
[http://dx.doi.org/10.29252/mlj.13.2.1]
[113]
Liu, X.; Renzengwangdui; Tang, S.; Zhu, Y.; Wang, M.; Cao, B.; Wang, J.; Zhao, B.; Lu, H. Metabolomic analysis and antibacterial and antioxidant activities of three species of Artemisia plants in Tibet. BMC Plant Biol., 2023, 23(1), 208.
[http://dx.doi.org/10.1186/s12870-023-04219-6] [PMID: 37081377]
[114]
Ahmed-Laloui, H.; Zaak, H.; Rahmani, A.; Kashi, I.; Chemat, S.; Miara, M.D.; Cherb, N.; Derdour, M. Assessment of artemisinin and antioxidant activities of three wild Artemisia species of Algeria. Nat. Prod. Res., 2022, 36(24), 6344-6352.
[http://dx.doi.org/10.1080/14786419.2022.2025803] [PMID: 35001764]
[115]
Shahrivari, S.; Alizadeh, S.; Ghassemi-Golezani, K.; Aryakia, E. A comprehensive study on essential oil compositions, antioxidant, anticholinesterase and antityrosinase activities of three Iranian Artemisia species. Sci. Rep., 2022, 12(1), 7234.
[http://dx.doi.org/10.1038/s41598-022-11375-6] [PMID: 35508595]
[116]
Hussain, M.; Ahmed, S.; Ibrahim, M.; Khazir, J.; Ahmad, S.S.; Thakur, R.K.; Bhardwaj, R.; Gandhi, S.G.; Peer, L.A.; Kaur, S.; Mir, B.A. Phenolic content, antioxidant and allelopathic potential of Artemisia brevifolia Wall. ex DC. across the elevations of Western Himalayan region of Ladakh. S. Afr. J. Bot., 2023, 157, 508-519.
[http://dx.doi.org/10.1016/j.sajb.2023.04.039]
[117]
Kamarauskaite, J.; Baniene, R.; Raudone, L.; Vilkickyte, G.; Vainoriene, R.; Motiekaityte, V.; Trumbeckaite, S. Antioxidant and mitochondria-targeted activity of caffeoylquinic-acid-rich fractions of wormwood (Artemisia absinthium L.) and silver wormwood (Artemisia ludoviciana Nutt.). Antioxidants, 2021, 10(9), 1405.
[http://dx.doi.org/10.3390/antiox10091405] [PMID: 34573037]
[118]
Dhameliya, T.M.; Kathuria, D.; Patel, M. A quinquennial review on recent advancements and developments in search of anti- malarial agents. Curr. Top. Med. Chem., 2023, 23.
[119]
Tu, Y. Artemisinin-a gift from traditional chinese medicine to the world (Nobel Lecture). Angew. Chem. Int. Ed., 2016, 55(35), 10210-10226.
[http://dx.doi.org/10.1002/anie.201601967] [PMID: 27488942]
[120]
Su, X.Z.; Miller, L.H. The discovery of artemisinin and the nobel prize in physiology or medicine. Sci. China Life Sci., 2015, 58(11), 1175-1179.
[http://dx.doi.org/10.1007/s11427-015-4948-7] [PMID: 26481135]
[121]
Mancuso, R.I.; Foglio, M.A.; Olalla Saad, S.T. Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother. Pharmacol., 2021, 87(1), 1-22.
[http://dx.doi.org/10.1007/s00280-020-04170-5] [PMID: 33141328]
[122]
Yang, T.; Xie, S.C.; Cao, P.; Giannangelo, C.; McCaw, J.; Creek, D.J.; Charman, S.A.; Klonis, N.; Tilley, L. Comparison of the exposure time dependence of the activities of synthetic ozonide antimalarials and dihydroartemisinin against K13 wild-type and mutant Plasmodium falciparum strains. Antimicrob. Agents Chemother., 2016, 60(8), 4501-4510.
[http://dx.doi.org/10.1128/AAC.00574-16] [PMID: 27161632]
[123]
Baumgärtner, F.; Jourdan, J.; Scheurer, C.; Blasco, B.; Campo, B.; Mäser, P.; Wittlin, S. in vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate. Malar. J., 2017, 16(1), 45.
[http://dx.doi.org/10.1186/s12936-017-1696-0] [PMID: 28122617]
[124]
Abdou, A.M.; Seddek, A.S.; Abdelmageed, N.; Badry, M.O.; Nishikawa, Y. Wild Egyptian medicinal plants show in vitro and in vivo cytotoxicity and antimalarial activities. BMC Complement. Med. Therapies, 2022, 22(1), 130.
[http://dx.doi.org/10.1186/s12906-022-03566-5]
[125]
Gogoi, N.; Gogoi, B.; Chetia, D. in vitro antimalarial activity evaluation of two ethnomedicinal plants against chloroquine sensitive and resistant strains of Plasmodium falciparum. Clin. Phytosci., 2021, 7(1), 42.
[http://dx.doi.org/10.1186/s40816-021-00269-1]
[126]
Kane, N.F.; Kyama, M.C.; Nganga, J.K.; Hassanali, A.; Diallo, M.; Kimani, F.T. Comparison of phytochemical profiles and antimalarial activities of Artemisia afra plant collected from five countries in Africa. S. Afr. J. Bot., 2019, 125, 126-133.
[http://dx.doi.org/10.1016/j.sajb.2019.07.001]
[127]
Kane, N.F.; Kyama, M.C.; Nganga, J.K.; Hassanali, A.; Diallo, M.; Kimani, F.T. Expression of the Fab enzymes (Fab I and Fab Z) from Plasmodium falciparum after exposure to Artemisia afra plant extracts and drugs screening. J. Parasit. Dis., 2023, 47(1), 46-58.
[http://dx.doi.org/10.1007/s12639-022-01537-8] [PMID: 36910309]
[128]
Bamunuarachchi, G.S.; Ratnasooriya, W.D.; Premakumara, S.; Udagama, P.V. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a Plasmodium berghei murine malaria model. J. Vector Borne Dis., 2013, 50(4), 278-284.
[PMID: 24499850]
[129]
Daskum, A.M.; Chessed, G. Repository and curative antimalarial activities of Artemisia absinthium in mice experimentally infected with P. berghei (NK 65). J. Med. Plants Stud., 2022, 10, 47-53.
[130]
Bhat, K.A.; Naseer, S.; Gani, I.; Jameel, S.; Amin, H.; Bhat, S.A.; Gupta, A.P. Isolation and identification of cytotoxic and antimalarial constituents from artemisia moorcroftiana. ChemistrySelect, 2021, 6(5), 962-967.
[http://dx.doi.org/10.1002/slct.202003944]
[131]
Rustaiyan, A.; Nahrevanian, H.; Kazemi, M.; Larijani, K. A new antimalarial agent; effects of extracts of Artemisia diffusa against Plasmodium berghei. Planta Med., 2007, 73(9), 219.
[http://dx.doi.org/10.1055/s-2007-987000]
[132]
Pierre Lutgen. The antimalarial davanone in several Artemisia species | MalariaWorld. Available from:https://malariaworld.org/blog/antimalarial-davanone-several-artemisia-species (Accessed Jul 10, 2022).
[133]
Santomauro, F.; Donato, R.; Pini, G.; Sacco, C.; Ascrizzi, R.; Bilia, A. Liquid and vapor-phase activity of Artemisia annua essential oil against pathogenic Malassezia spp. Planta Med., 2018, 84(3), 160-167.
[http://dx.doi.org/10.1055/s-0043-118912] [PMID: 28877539]
[134]
Khan, F.A.; Khan, N.M.; Ahmad, S.; Nasruddin; Aziz, R.; Ullah, I.; Almehmadi, M.; Allahyani, M.; Alsaiari, A.A.; Aljuaid, A. Phytochemical profiling, antioxidant, antimicrobial and cholinesterase inhibitory effects of essential oils isolated from the Leaves of artemisia scoparia and artemisia absinthium. Pharmaceuticals, 2022, 15(10), 1221.
[http://dx.doi.org/10.3390/ph15101221] [PMID: 36297333]
[135]
Azizkhani, M.; Jafari Kiasari, F.; Tooryan, F.; Shahavi, M.H.; Partovi, R. Preparation and evaluation of food-grade nanoemulsion of tarragon (Artemisia dracunculus L.) essential oil: Antioxidant and antibacterial properties. J. Food Sci. Technol., 2021, 58(4), 1341-1348.
[http://dx.doi.org/10.1007/s13197-020-04645-6] [PMID: 33746262]
[136]
Huang, X.; Liu, T.; Zhou, C.; Huang, Y.; Liu, X.; Yuan, H. Antifungal activity of essential oils from three artemisia species against colletotrichum gloeosporioides of Mango. Antibiotics, 2021, 10(11), 1331.
[http://dx.doi.org/10.3390/antibiotics10111331] [PMID: 34827269]
[137]
Chung, E.Y.; Byun, Y.H.; Shin, E.J.; Chung, H.S.; Lee, Y.H.; Shin, S. Antibacterial effects of vulgarone B from Artemisia iwayomogi alone and in combination with oxacillin. Arch. Pharm. Res., 2009, 32(12), 1711-1719.
[http://dx.doi.org/10.1007/s12272-009-2208-8] [PMID: 20162399]
[138]
Goswami, S.; Bhakuni, R.S.; Chinniah, A.; Pal, A.; Kar, S.K.; Das, P.K. Anti-Helicobacter pylori potential of artemisinin and its derivatives. Antimicrob. Agents Chemother., 2012, 56(9), 4594-4607.
[http://dx.doi.org/10.1128/AAC.00407-12] [PMID: 22687518]
[139]
Li, S.; Chen, C.; Zhang, H.; Guo, H.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.; Yu, J.; Xiao, P.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[140]
Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Traditional Chinese medicine in the treatment of patients infected with 2019-New Coronavirus (SARS-CoV-2): A review and perspective. Int. J. Biol. Sci., 2020, 16(10), 1708-1717.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[141]
Nair, M.S.; Huang, Y.; Fidock, D.A.; Polyak, S.J.; Wagoner, J.; Towler, M.J.; Weathers, P.J. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. J. Ethnopharmacol., 2021, 274, 114016.
[http://dx.doi.org/10.1016/j.jep.2021.114016] [PMID: 33716085]
[142]
Nair, M.S.; Huang, Y.; Fidock, D.A.; Towler, M.J.; Weathers, P.J. Artemisia annua L. hot-water extracts show potent activity in vitro against COVID-19 variants including delta. J. Ethnopharmacol., 2022, 284, 114797.
[http://dx.doi.org/10.1016/j.jep.2021.114797] [PMID: 34737005]
[143]
Demeter, S.; Lebbe, O.; Hecq, F.; Nicolis, S.C.; Kenne Kemene, T.; Martin, H.; Fauconnier, M.L.; Hance, T. Insecticidal activity of 25 essential oils on the stored product pest, sitophilus granarius. Foods, 2021, 10(2), 200.
[http://dx.doi.org/10.3390/foods10020200] [PMID: 33498233]
[144]
Liu, Z.L.; Liu, Q.R.; Chu, S.S.; Jiang, G.H. Insecticidal activity and chemical composition of the essential oils of Artemisia lavandulaefolia and Artemisia sieversiana from China. Chem. Biodivers., 2010, 7(8), 2040-2045.
[http://dx.doi.org/10.1002/cbdv.200900410] [PMID: 20730967]
[145]
Deb, M.; Kumar, D. Bioactivity and efficacy of essential oils extracted from Artemisia annua against Tribolium casteneum (Herbst. 1797) (Coleoptera: Tenebrionidae): An eco-friendly approach. Ecotoxicol. Environ. Saf., 2020, 189, 109988.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109988] [PMID: 31767459]
[146]
Gao, S.; Zhang, K.; Wei, L.; Wei, G.; Xiong, W.; Lu, Y.; Zhang, Y.; Gao, A.; Li, B. Insecticidal activity of artemisia vulgaris essential oil and transcriptome analysis of tribolium castaneum in response to oil exposure. Front. Genet., 2020, 11, 589.
[http://dx.doi.org/10.3389/fgene.2020.00589] [PMID: 32670352]
[147]
Gao, S.; Sun, H.; Zhang, J.; Zhang, Y.; Sun, P.; Shang, J.; Zhang, K.; Li, R. Knockdown of uridine diphosphate glucosyltransferase 86dg enhances susceptibility of tribolium castaneum (coleoptera: Tenebrionidae) to artemisia vulgaris (asterales: asteraceae) essential oil. J. Econ. Entomol., 2021, 114(6), 2553-2561.
[http://dx.doi.org/10.1093/jee/toab182] [PMID: 34546358]
[148]
Huang, X.; Huang, Y.; Yang, C.; Liu, T.; Liu, X.; Yuan, H. Isolation and insecticidal activity of essential oil from artemisia lavandulaefolia dc. Against plutella xylostella. Toxins, 2021, 13(12), 842.
[http://dx.doi.org/10.3390/toxins13120842] [PMID: 34941680]
[149]
Huang, X.; Du, L.; Liu, T.; Ma, R.; Liu, X.; Yuan, H.; Liu, S. Insecticidal activity of a component, (-)-4-terpineol, isolated from the essential oil of artemisia lavandulaefolia dc. against plutella xylostella (L.). Insects, 2022, 13(12), 1126.
[http://dx.doi.org/10.3390/insects13121126]
[150]
Chauhan, N.; Kashyap, U.; Dolma, S.K.; Reddy, S.G.E. Chemical composition, insecticidal, persistence and detoxification enzyme inhibition activities of essential oil of artemisia maritima against the pulse beetle. Molecules, 2022, 27(5), 1547.
[http://dx.doi.org/10.3390/molecules27051547] [PMID: 35268647]
[151]
Negahban, M.; Moharramipour, S.; Sefidkon, F. Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J. Stored Prod. Res., 2007, 43(2), 123-128.
[http://dx.doi.org/10.1016/j.jspr.2006.02.002]
[152]
Bachrouch, O.; Ferjani, N.; Haouel, S.; Jemâa, J.M.B. Major compounds and insecticidal activities of two tunisian artemisia essential oils toward two major coleopteran pests. Ind. Crops Prod., 2015, 65, 127-133.
[http://dx.doi.org/10.1016/j.indcrop.2014.12.007]
[153]
Ninditya, V.I.; Purwati, E.; Utami, A.T.; Marwaningtyaz, A.S.; Fairuz, N.K.; Widayanti, R.; Hamid, P.H. Artemisia vulgaris efficacies against various stages of Aedes aegypti. Vet. World, 2020, 13(7), 1423-1429.
[http://dx.doi.org/10.14202/vetworld.2020.1423-1429] [PMID: 32848320]
[154]
Sundararajan, B.; Sathishkumar, G.; Seetharaman, P.; Moola, A.K.; Duraisamy, S.M.; Mutayran, A.A.S.B.; Seshadri, V.D.; Thomas, A.; Ranjitha Kumari, B.D.; Sivaramakrishnan, S.; Kweka, E.J.; Zhou, Z. Biosynthesized gold nanoparticles integrated ointment base for repellent activity against aedes aegypti L. Neotrop. Entomol., 2022, 51(1), 151-159.
[http://dx.doi.org/10.1007/s13744-021-00920-z] [PMID: 34822111]
[155]
Osanloo, M.; Firooziyan, S.; Abdollahi, A.; Hatami, S.; Nematollahi, A.; Elahi, N.; Zarenezhad, E. Nanoemulsion and nanogel containing Artemisia dracunculus essential oil; larvicidal effect and antibacterial activity. BMC Res. Notes, 2022, 15(1), 276.
[http://dx.doi.org/10.1186/s13104-022-06135-8] [PMID: 35962444]
[156]
Luo, D.Y.; Yan, Z.T.; Che, L.R.; Zhu, J.J.; Chen, B. Repellency and insecticidal activity of seven Mugwort (Artemisia argyi) essential oils against the malaria vector Anopheles sinensis. Sci. Rep., 2022, 12(1), 5337.
[http://dx.doi.org/10.1038/s41598-022-09190-0] [PMID: 35351963]
[157]
Break, M.K.B.; Hussein, W.; Huwaimel, B.; Alafnan, A.; Almansour, K.; Alafnan, D.; Alshammari, A.S.; Alanazi, I.A.; Alshammari, D.S.; Alanzi, F.S.; Alsnaideh, F.F.; Almuhaysin, A.; Alanazi, Y.S.; Algharbi, S.; AlHarbi, S. Artemisia sieberi Besser essential oil inhibits the growth and migration of breast cancer cells via induction of S-phase arrest, caspase-independent cell death and downregulation of ERK. J. Ethnopharmacol., 2023, 312, 116492.
[http://dx.doi.org/10.1016/j.jep.2023.116492] [PMID: 37059248]
[158]
Lijie, X.; Jinyao, L.; Kamarya, Y. Chemical constituents and antitumor mechanisms of artemisia. Anticancer. Agents Med. Chem., 2022, 22(10), 1838-1844.
[http://dx.doi.org/10.2174/1871520621666210708125230] [PMID: 34238198]
[159]
Jung, E.J.; Lee, W.S.; Paramanantham, A.; Kim, H.J.; Shin, S.C.; Kim, G.S.; Jung, J.M.; Ryu, C.H.; Hong, S.C.; Chung, K.H.; Kim, C.W. p53 enhances artemisia annua l. polyphenols-induced cell death through upregulation of p53-dependent targets and cleavage of PARP1 and Lamin A/C in HCT116 colorectal cancer cells. Int. J. Mol. Sci., 2020, 21(23), 9315.
[http://dx.doi.org/10.3390/ijms21239315] [PMID: 33297377]
[160]
Jung, E.J.; Paramanantham, A.; Kim, H.J.; Shin, S.C.; Kim, G.S.; Jung, J.M.; Ryu, C.H.; Hong, S.C.; Chung, K.H.; Kim, C.W.; Lee, W.S. Artemisia annua l. polyphenol-induced cell death is ros-independently enhanced by inhibition of jnk in hct116 colorectal cancer Cells. Int. J. Mol. Sci., 2021, 22(3), 1366.
[http://dx.doi.org/10.3390/ijms22031366] [PMID: 33573023]
[161]
Khan, A.N.; Dilshad, E. Enhanced antioxidant and anticancer potential of artemisia carvifolia buch transformed with rol A gene. Metabolites, 2023, 13(3), 351.
[http://dx.doi.org/10.3390/metabo13030351] [PMID: 36984791]
[162]
Lang, S.J.; Schmiech, M.; Hafner, S.; Paetz, C.; Werner, K.; El Gaafary, M.; Schmidt, C.Q.; Syrovets, T.; Simmet, T. Chrysosplenol d, a flavonol from artemisia annua, induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Int. J. Mol. Sci., 2020, 21(11), 4090.
[http://dx.doi.org/10.3390/ijms21114090] [PMID: 32521698]
[163]
Fu, C.; Zhang, K.; Wang, M.; Qiu, F. Casticin and chrysosplenol d from artemisia annua L. induce apoptosis by inhibiting topoisomerase IIα in human non-small-cell lung cancer cells. Phytomedicine, 2022, 100, 154095.
[http://dx.doi.org/10.1016/j.phymed.2022.154095] [PMID: 35398735]
[164]
Hsieh, M.J.; Lin, C.C.; Lo, Y.S.; Chuang, Y.C.; Ho, H.Y.; Chen, M.K.; Chrysosplenol, D. Chrysosplenol D triggers apoptosis through heme oxygenase-1 and mitogen-activated protein kinase signaling in oral squamous cell carcinoma. Cancers, 2021, 13(17), 4327.
[http://dx.doi.org/10.3390/cancers13174327] [PMID: 34503136]
[165]
Slezakova, S.; Ruda-Kucerova, J. Anticancer activity of artemisinin and its derivatives. Anticancer Res., 2017, 37(11), 5995-6003.
[PMID: 29061778]
[166]
Xiao, P.; Liang, Q.; Chen, Q.; Liu, H. Artemisinin potentiates apoptosis and triggers cell cycle arrest to attenuate malignant growth of salivary gland tumor cells. Acta Biochim. Pol., 2022, 69(1), 177-187.
[http://dx.doi.org/10.18388/abp.2020_5845] [PMID: 35151247]
[167]
El Gaafary, M.; Morad, S.A.F.; Schmiech, M.; Syrovets, T.; Simmet, T. Arglabin, an EGFR receptor tyrosine kinase inhibitor, suppresses proliferation and induces apoptosis in prostate cancer cells. Biomed. Pharmacother., 2022, 156, 113873.
[http://dx.doi.org/10.1016/j.biopha.2022.113873] [PMID: 36272260]
[168]
Kim, S.H.; Kim, T.S. Synergistic induction of 1, 25-dihydroxyvitamin D(3)- and all-trans-retinoic acid-induced differentiation of HL-60 leukemia cells by yomogin, a sesquiterpene lactone from Artemisia princeps. Planta Med., 2002, 68(10), 886-890.
[http://dx.doi.org/10.1055/s-2002-34937] [PMID: 12391550]
[169]
Noori, S.; Hassan, Z.M. Tehranolide inhibits proliferation of MCF-7 human breast cancer cells by inducing G0/G1 arrest and apoptosis. Free Radic. Biol. Med., 2012, 52(9), 1987-1999.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.01.026] [PMID: 22366652]
[170]
Khazir, J.; Singh, P.P.; Reddy, D.M.; Hyder, I.; Shafi, S.; Sawant, S.D.; Chashoo, G.; Mahajan, A.; Alam, M.S.; Saxena, A.K.; Arvinda, S.; Gupta, B.D.; Kumar, H.M.S. Synthesis and anticancer activity of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of α-santonin. Eur. J. Med. Chem., 2013, 63, 279-289.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.003] [PMID: 23501113]
[171]
Kim, J.H.; Kim, H.K.; Jeon, S.B.; Son, K.H.; Kim, E.H.; Kang, S.K.; Sung, N-D.; Kwon, B.M. New sesquiterpene-monoterpene lactone, artemisolide, isolated from Artemisia argyi. Tetrahedron Lett., 2002, 43(35), 6205-6208.
[http://dx.doi.org/10.1016/S0040-4039(02)01315-1]
[172]
Zhang, Q.; Guo, G.; Miao, R.; Chen, N.; Wang, Q. Studies on the chemical constituents of Artemisia sieversiana and their anticancer activities. J.-Lanzhou Univ. Nat. Sci., 2004.
[173]
Eidi, A.; Oryan, S.; Zaringhalam, J.; Rad, M. Antinociceptive and anti-inflammatory effects of the aerial parts of Artemisia dracunculus in mice. Pharm. Biol., 2016, 54(3), 549-554.
[http://dx.doi.org/10.3109/13880209.2015.1056312] [PMID: 26079854]
[174]
Wang, J.; Fernández, A.E.; Tiano, S.; Huang, J.; Floyd, E.; Poulev, A.; Ribnicky, D.; Pasinetti, G.M. An extract of Artemisia dracunculus L. promotes psychological resilience in a mouse model of depression. Oxid. Med. Cell. Longev., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/7418681] [PMID: 29861834]
[175]
Schepetkin, I.A.; Özek, G.; Özek, T.; Kirpotina, L.N.; Khlebnikov, A.I.; Klein, R.A.; Quinn, M.T. Neutrophil immunomodulatory activity of farnesene, a component of artemisia dracunculus essential oils. Pharmaceuticals, 2022, 15(5), 642.
[http://dx.doi.org/10.3390/ph15050642] [PMID: 35631467]
[176]
Könczöl, Á.; Béni, Z.; Sipos, M.M.; Rill, A.; Háda, V.; Hohmann, J.; Máthé, I.; Szántay, C., Jr; Keserű, G.M.; Balogh, G.T. Antioxidant activity-guided phytochemical investigation of Artemisia gmelinii Webb. ex Stechm.: Isolation and spectroscopic challenges of 3, 5-O-dicaffeoyl (epi?) quinic acid and its ethyl ester. J. Pharm. Biomed. Anal., 2012, 59, 83-89.
[http://dx.doi.org/10.1016/j.jpba.2011.10.012] [PMID: 22079045]
[177]
Kim, S.Y.; Shin, D.U.; Eom, J.E.; Jung, S.Y.; Song, H.J.; Lim, K.M.; Kim, G.D.; Yun, S. Artemisia gmelinii attenuates lung inflammation by suppressing the NF-κB/MAPK pathway. Antioxidants, 2022, 11, 1-21.
[http://dx.doi.org/10.3390/antiox11010001] [PMID: 35052505]
[178]
Nam, S.Y.; Han, N.R.; Rah, S.Y.; Seo, Y.; Kim, H.M.; Jeong, H.J. Anti-inflammatory effects of Artemisia scoparia and its active constituent, 3, 5-dicaffeoyl-epi-quinic acid against activated mast cells. Immunopharmacol. Immunotoxicol., 2018, 40(1), 52-58.
[http://dx.doi.org/10.1080/08923973.2017.1405438] [PMID: 29172841]
[179]
Ryu, K.J.; Yoou, M.S.; Seo, Y.; Yoon, K.W.; Kim, H.M.; Jeong, H.J. Therapeutic effects of Artemisia scoparia Waldst. et Kitaib in a murine model of atopic dermatitis. Clin. Exp. Dermatol., 2018, 43(7), 798-805.
[http://dx.doi.org/10.1111/ced.13565] [PMID: 29740850]
[180]
Shin, J.M.; Son, Y.J.; Ha, I.J.; Erdenebileg, S.; Jung, D.S.; Song, D.; Kim, Y.S.; Kim, S.M.; Nho, C.W. Artemisia argyi extract alleviates inflammation in a DSS-induced colitis mouse model and enhances immunomodulatory effects in lymphoid tissues. BMC Complement. Med. Therapies, 2022, 22(1), 64.
[http://dx.doi.org/10.1186/s12906-022-03536-x]
[181]
Chen, J.K.; Kuo, C.H.; Kuo, W.W.; Day, C.H.; Wang, T.F.; Ho, T.J.; Lin, P.Y.; Lin, S.Z.; Shih, T.C.; Shih, C.Y.; Huang, C.Y.; Lu, C.Y. Artemisia argyi extract ameliorates IL-17A -induced inflammatory response by regulation of NF-κB and Nrf2 expression in HIG -82 synoviocytes. Environ. Toxicol., 2022, 37(11), 2793-2803.
[http://dx.doi.org/10.1002/tox.23637] [PMID: 35959841]
[182]
Kim, Y.B.; Cho, H.J.; Yi, Y.S. Anti-inflammatory role of Artemisia argyi methanol extract by targeting the caspase-11 non- canonical inflammasome in macrophages. J. Ethnopharmacol., 2023, 307, 116231.
[http://dx.doi.org/10.1016/j.jep.2023.116231] [PMID: 36754190]
[183]
Nuermaimaiti, M.; Turak, A.; Yang, Q.; Tang, B.; Zang, Y.; Li, J.; Aisa, H.A. Sesquiterpenes from artemisia sieversiana and their anti-inflammatory activities. Fitoterapia, 2021, 154, 104996.
[http://dx.doi.org/10.1016/j.fitote.2021.104996] [PMID: 34302916]
[184]
Kim, N.Y.; Kim, S.; Lee, H.J.; Ryu, J.H. Sesquiterpenes from Artemisia princeps regulate inflammatory responses in RAW 264.7 macrophages. Nat. Prod. Res., 2023, 37(5), 823-828.
[http://dx.doi.org/10.1080/14786419.2022.2089881] [PMID: 35724377]
[185]
Liu, T.; Chen, X.; Hu, Y.; Li, M.; Wu, Y.; Dai, M.; Huang, Z.; Sun, P.; Zheng, J.; Ren, Z.; Wang, Y. Sesquiterpenoids and triterpenoids with anti-inflammatory effects from Artemisia vulgaris L. Phytochemistry, 2022, 204, 113428.
[http://dx.doi.org/10.1016/j.phytochem.2022.113428] [PMID: 36108986]
[186]
Chen, X.Y.; Liu, T.; Hu, Y.Z.; Qiao, T.T.; Wu, X.J.; Sun, P.H.; Qian, C.W.; Ren, Z.; Zheng, J.X.; Wang, Y.F. Sesquiterpene lactones from Artemisia vulgaris L. as potential NO inhibitors in LPS-induced RAW264.7 macrophage cells. Front Chem., 2022, 10, 948714.
[http://dx.doi.org/10.3389/fchem.2022.948714] [PMID: 36118318]
[187]
Wang, Y.; Huang, Z.Q.; Wang, C.Q.; Wang, L.S.; Meng, S.; Zhang, Y.C.; Chen, T.; Fan, Y.Q. Artemisinin inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-9 expression via a protein kinase Cδ/p38/extracellular signal-regulated kinase pathway in phorbol myristate acetate-induced THP-1 macrophages. Clin. Exp. Pharmacol. Physiol., 2011, 38(1), 11-18.
[http://dx.doi.org/10.1111/j.1440-1681.2010.05454.x] [PMID: 21039753]
[188]
Kim, H.G.; Yang, J.H.; Han, E.H.; Choi, J.H.; Khanal, T.; Jeong, M.H.; Jeong, T.C.; Jeong, H.G. Inhibitory effect of dihydroartemisinin against phorbol ester-induced cyclooxygenase-2 expression in macrophages. Food Chem. Toxicol., 2013, 56, 93-99.
[http://dx.doi.org/10.1016/j.fct.2013.02.017] [PMID: 23429041]
[189]
Guardia, T.; Juarez, A.O.; Guerreiro, E.; Guzmán, J.A.; Pelzer, L. Anti-inflammatory activity and effect on gastric acid secretion of dehydroleucodine isolated from Artemisia douglasiana. J. Ethnopharmacol., 2003, 88(2-3), 195-198.
[http://dx.doi.org/10.1016/S0378-8741(03)00211-3] [PMID: 12963142]
[190]
Ryu, S.Y.; Oak, M.H.; Kim, K.M. Yomogin inhibits the degranulation of mast cells and the production of the nitric oxide in activated RAW 264.7 cells. Planta Med., 2000, 66(2), 171-173.
[http://dx.doi.org/10.1055/s-0029-1243124] [PMID: 10763594]
[191]
Abil’daeva, A.Zh.; Pak, R.N.; Kulyiasov, A.T.; Adekenov, S.M. [Anti-inflammatory effect of arglabin and 11, 13-dihydro-13-dimethylaminoarglabin hydrochloride]. Eksp. Klin. Farmakol., 2004, 67(1), 37-39.
[PMID: 15079907]
[192]
Abderrazak, A.; Couchie, D.; Mahmood, D.F.D.; Elhage, R.; Vindis, C.; Laffargue, M.; Matéo, V.; Büchele, B.; Ayala, M.R.; El Gaafary, M.; Syrovets, T.; Slimane, M.N.; Friguet, B.; Fulop, T.; Simmet, T.; El Hadri, K.; Rouis, M. Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation, 2015, 131(12), 1061-1070.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013730] [PMID: 25613820]
[193]
Sayyah, M.; Nadjafnia, L.; Kamalinejad, M. Anticonvulsant activity and chemical composition of Artemisia dracunculus L. essential oil. J. Ethnopharmacol., 2004, 94(2-3), 283-287.
[http://dx.doi.org/10.1016/j.jep.2004.05.021] [PMID: 15325732]
[194]
Marghich, M.; Amrani, O.; Mekhfi, H.; Ziyyat, A.; Bnouham, M.; Aziz, M. Myorelaxant and antispasmodic effect of an aqueous extract of Artemisia campestris L. via calcium channel blocking and anticholinergic pathways. J. Smooth Muscle Res., 2021, 57(0), 35-48.
[http://dx.doi.org/10.1540/jsmr.57.35] [PMID: 34545006]
[195]
Marghich, M.; Amrani, O.; Karim, A.; Harit, T.; Beyi, L.; Mekhfi, H.; Bnouham, M.; Aziz, M. Myorelaxant and antispasmodic effects of the essential oil of Artemisia campestris L., and the molecular docking of its major constituents with the muscarinic receptor and the L-type voltage-gated Ca2+channel. J. Ethnopharmacol., 2023, 311, 116456.
[http://dx.doi.org/10.1016/j.jep.2023.116456] [PMID: 37019158]
[196]
Wang, Z.Q.; Ribnicky, D.; Zhang, X.H.; Zuberi, A.; Raskin, I.; Yu, Y.; Cefalu, W.T. An extract of Artemisia dracunculus L. enhances insulin receptor signaling and modulates gene expression in skeletal muscle in KK-Ay mice. J. Nutr. Biochem., 2011, 22(1), 71-78.
[http://dx.doi.org/10.1016/j.jnutbio.2009.11.015] [PMID: 20447816]
[197]
Wang, Z.Q.; Ribnicky, D.; Zhang, X.H.; Raskin, I.; Yu, Y.; Cefalu, W.T. Bioactives of Artemisia dracunculus L enhance cellular insulin signaling in primary human skeletal muscle culture. Metabolism, 2008, 57(7), S58-S64.
[http://dx.doi.org/10.1016/j.metabol.2008.04.003] [PMID: 18555856]
[198]
Ribnicky, D.M.; Poulev, A.; Watford, M.; Cefalu, W.T.; Raskin, I. Antihyperglycemic activity of Tarralin™, an ethanolic extract of Artemisia dracunculus L. Phytomedicine, 2006, 13(8), 550-557.
[http://dx.doi.org/10.1016/j.phymed.2005.09.007] [PMID: 16920509]
[199]
Zeb, S.; Ali, A.; Zaman, W.; Zeb, S.; Ali, S.; Ullah, F.; Shakoor, A. Pharmacology, taxonomy and phytochemistry of the genus Artemisia specifically from Pakistan: A comprehensive review. Pharm. Biomed. Res., 2018, 4, 1-12.
[200]
Vandanmagsar, B.; Yu, Y.; Simmler, C.; Dang, T.N.; Kuhn, P.; Poulev, A.; Ribnicky, D.M.; Pauli, G.F.; Floyd, Z.E. Bioactive compounds from Artemisia dracunculus L. activate AMPK signaling in skeletal muscle. Biomed. Pharmacother., 2021, 143, 112188.
[http://dx.doi.org/10.1016/j.biopha.2021.112188] [PMID: 34563947]
[201]
Awad, N.E.; Seida, A.A.; Shaffie, Z.E.K.N.; Abd El-Aziz, A.M. Hypoglycemic activity of Artemisia herba-alba (Asso.) used in Egyptian traditional medicine as hypoglycemic remedy. J. Appl. Pharm. Sci., 2012, 2, 30-39.
[202]
Daradka, H.M.; Abas, M.M.; Mohammad, M.A.M.; Jaffar, M.M. Antidiabetic effect of Artemisia absinthium extracts on alloxan-induced diabetic rats. Comp. Clin. Pathol., 2014, 23(6), 1733-1742.
[http://dx.doi.org/10.1007/s00580-014-1963-1]
[203]
Xu, Q.; Zhang, L.; Yu, S.; Xia, G.; Zhu, J.; Zang, H. Chemical composition and biological activities of an essential oil from the aerial parts of Artemisia Gmelinii weber ex Stechm. Nat. Prod. Res., 2021, 35(2), 346-349.
[http://dx.doi.org/10.1080/14786419.2019.1627349] [PMID: 31177847]
[204]
Saeedan, A.S.; Soliman, G.A.; Abdel-Rahman, R.F.; Abd-Elsalam, R.M.; Ogaly, H.A.; Foudah, A.I.; Abdel-Kader, M.S. Artemisia judaica L. diminishes diabetes-induced reproductive dysfunction in male rats via activation of Nrf2/HO-1-mediated antioxidant responses. Saudi J. Biol. Sci., 2021, 28(3), 1713-1722.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.013] [PMID: 33732055]
[205]
Saeedan, A.; Soliman, G.; Abdel-Rahman, R.; Abd-Elsalam, R.; Ogaly, H.; Alharthy, K.; Abdel-Kader, M. Possible synergistic antidiabetic effects of quantified artemisia judaica extract and glyburide in streptozotocin-induced diabetic rats via restoration of PPAR-α mRNA expression. Biology, 2021, 10(8), 796.
[http://dx.doi.org/10.3390/biology10080796] [PMID: 34440028]
[206]
Althurwi, H.N.; Soliman, G.A.; Abdel-Rahman, R.F.; Abd-Elsalam, R.M.; Ogaly, H.A.; Alqarni, M.H.; Albaqami, F.F.; Abdel-Kader, M.S. Vulgarin, a sesquiterpene lactone from artemisia judaica, improves the antidiabetic effectiveness of glibenclamide in streptozotocin-induced diabetic rats via modulation of PEPCK and G6Pase genes expression. Int. J. Mol. Sci., 2022, 23(24), 15856.
[http://dx.doi.org/10.3390/ijms232415856] [PMID: 36555498]
[207]
Chang, Y.; Fan, W.; Shi, H.; Feng, X.; Zhang, D.; Wang, L.; Zheng, Y.; Guo, L. Characterization of phenolics and discovery of α-glucosidase inhibitors in Artemisia argyi leaves based on ultra-performance liquid chromatography-tandem mass spectrometry and relevance analysis. J. Pharm. Biomed. Anal., 2022, 220, 114982.
[http://dx.doi.org/10.1016/j.jpba.2022.114982] [PMID: 35944337]
[208]
El-Askary, H.; Salem, H.H.; Abdel Motaal, A. Potential mechanisms involved in the protective effect of dicaffeoylquinic acids from artemisia annua L. leaves against diabetes and its complications. Molecules, 2022, 27(3), 857.
[http://dx.doi.org/10.3390/molecules27030857] [PMID: 35164118]
[209]
Chaparro, J.J.; Villar, D.; Zapata, J.D.; López, S.; Howell, S.B.; López, A.; Storey, B.E. Multi-drug resistant Haemonchus contortus in a sheep flock in Antioquia, Colombia. Vet. Parasitol. Reg. Stud. Rep., 2017, 10, 29-34.
[http://dx.doi.org/10.1016/j.vprsr.2017.07.005] [PMID: 31014594]
[210]
Sakipova, Z.; Wong, N.S.H.; Bekezhanova, T.; Sadykova; Shukirbekova, A.; Boylan, F. Quantification of santonin in eight species of Artemisia from Kazakhstan by means of HPLC-UV: Method development and validation. PLoS One, 2017, 12(3), e0173714.
[http://dx.doi.org/10.1371/journal.pone.0173714]
[211]
Higuera-Piedrahita, R.I.; Dolores-Hernández, M.; de la-Cruz-Cruz, H.A.; Andrade-Montemayor, H.M.; Zamilpa, A.; López-Arellano, R.; González-Garduño, R.; Cuéllar-Ordaz, J.A.; Mendoza-de-Gives, P.; López-Arellano, M.E. An Artemisia cina n-hexane extract reduces the Haemonchus contortus and Teladorsagia circumcincta fecal egg count in naturally infected periparturient goats. Trop. Anim. Health Prod., 2022, 54(2), 95.
[http://dx.doi.org/10.1007/s11250-022-03103-z] [PMID: 35138496]
[212]
Keiser, J.; Rinaldi, L.; Veneziano, V.; Mezzino, L.; Tanner, M.; Utzinger, J.; Cringoli, G. Efficacy and safety of artemether against a natural Fasciola hepatica infection in sheep. Parasitol. Res., 2008, 103(3), 517-522.
[http://dx.doi.org/10.1007/s00436-008-0998-0] [PMID: 18481085]
[213]
Mravčáková, D.; Komáromyová, M.; Babják, M.; Urda Dolinská, M.; Königová, A.; Petrič, D.; Čobanová, K.; Ślusarczyk, S.; Cieslak, A.; Várady, M.; Váradyová, Z. Anthelmintic activity of wormwood (artemisia absinthium l.) and mallow (Malva sylvestris L.) against haemonchus contortus in sheep. Animals, 2020, 10(2), 219.
[http://dx.doi.org/10.3390/ani10020219] [PMID: 32013192]
[214]
Buza, V.; Cătană, L.; Andrei, S.M.; Ștefănuț, L.C.; Răileanu, Ș.; Matei, M.C.; Vlasiuc, I.; Cernea, M. in vitro anthelmintic activity assessment of six medicinal plant aqueous extracts against donkey strongyles. J. Helminthol., 2020, 94, e147.
[http://dx.doi.org/10.1017/S0022149X20000310]
[215]
Irum, S.; Ahmed, H.; Mukhtar, M.; Mushtaq, M.; Mirza, B.; Donskow- Łysoniewska, K.; Qayyum, M.; Simsek, S. Anthelmintic activity of Artemisia vestita Wall ex DC. and Artemisia maritima L. against Haemonchus contortus from sheep. Vet. Parasitol., 2015, 212(3-4), 451-455.
[http://dx.doi.org/10.1016/j.vetpar.2015.06.028] [PMID: 26194429]
[216]
Iqbal, Z.; Lateef, M.; Ashraf, M.; Jabbar, A. Anthelmintic activity of artemisia brevifolia in sheep. J. Ethnopharmacol., 2004, 93(2-3), 265-268.
[http://dx.doi.org/10.1016/j.jep.2004.03.046] [PMID: 15234763]
[217]
Ahmed, A.H.; Ejo, M.; Feyera, T.; Regassa, D.; Mummed, B.; Huluka, S.A. in vitro anthelmintic activity of crude extracts of artemisia herba-alba and punica granatum against haemonchus contortus. J. Parasitol. Res., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/4950196] [PMID: 32411422]
[218]
Soliman, M.M.M. Phytochemical and toxicological studies of Artemisia L. (Compositae) essential oil against some insect pests. Arch. Phytopathol. Pflanzenschutz, 2007, 40(2), 128-138.
[http://dx.doi.org/10.1080/03235400500355808]
[219]
Lahna, A.; Benjelloun, N.; Seddik, N.; Farida, M.; Naya, A.; Oudghiri, M. Toxicological study of the effect in vivo and in vitro of Artemisia herba-alba aqueous extract in rats. Pharmacognosy Res., 2020, 12.
[220]
Han, B.; Kim, S.M.; Nam, G.E.; Kim, S.H.; Park, S.J.; Park, Y.K.; Baik, H.W. A randomized, double-blind, placebo-controlled, multi-centered clinical study to evaluate the efficacy and safety of artemisia annua L. Extract for improvement of liver function. Clin. Nutr. Res., 2020, 9(4), 258-270.
[http://dx.doi.org/10.7762/cnr.2020.9.4.258] [PMID: 33204666]
[221]
Zámboriné Németh, É.; Thi Nguyen, H. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Rev., 2020, 19(2), 405-423.
[http://dx.doi.org/10.1007/s11101-020-09671-y]
[222]
Lachenmeier, D.W. Wormwood (Artemisia absinthium L.)-A curious plant with both neurotoxic and neuroprotective properties? J. Ethnopharmacol., 2010, 131(1), 224-227.
[http://dx.doi.org/10.1016/j.jep.2010.05.062] [PMID: 20542104]
[223]
Ribnicky, D.M.; Poulev, A.; O’Neal, J.; Wnorowski, G.; Malek, D.E.; Jäger, R.; Raskin, I. Toxicological evaluation of the ethanolic extract of Artemisia dracunculus L. for use as a dietary supplement and in functional foods. Food Chem. Toxicol., 2004, 42(4), 585-598.
[http://dx.doi.org/10.1016/j.fct.2003.11.002] [PMID: 15019182]
[224]
Kalantari, H.; Galehdari, H.; Zaree, Z.; Gesztelyi, R.; Varga, B.; Haines, D.; Bombicz, M.; Tosaki, A.; Juhasz, B. Toxicological and mutagenic analysis of Artemisia dracunculus (tarragon) extract. Food Chem. Toxicol., 2013, 51, 26-32.
[http://dx.doi.org/10.1016/j.fct.2012.07.052] [PMID: 23010670]
[225]
Nesslany, F.; Parent-Massin, D.; Marzin, D. Risk assessment of consumption of methylchavicol and tarragon: The genotoxic potential in vivo and in vitro. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2010, 696(1), 1-9.
[http://dx.doi.org/10.1016/j.mrgentox.2009.11.003] [PMID: 19913108]
[226]
Yun, J.W.; Kim, S.H.; Kim, Y.S.; You, J.R.; Cho, E.Y.; Yoon, J.H.; Kwon, E.; Ahn, J.H.; Jang, J.J.; Che, J.H.; Kang, B.C. A comprehensive study on in vitro and in vivo toxicological evaluation of Artemisia capillaris. Regul. Toxicol. Pharmacol., 2017, 88, 87-95.
[http://dx.doi.org/10.1016/j.yrtph.2017.05.010] [PMID: 28487065]
[227]
Radulović, N.S.; Randjelović, P.J.; Stojanović, N.M.; Blagojević, P.D.; Stojanović-Radić, Z.Z.; Ilić, I.R.; Djordjević, V.B. Toxic essential oils. Part II: Chemical, toxicological, pharmacological and microbiological profiles of Artemisia annua L. volatiles. Food Chem. Toxicol., 2013, 58, 37-49.
[http://dx.doi.org/10.1016/j.fct.2013.04.016] [PMID: 23607933]
[228]
Boareto, A.C.; Muller, J.C.; Bufalo, A.C.; Botelho, G.G.K.; de Araujo, S.L.; Foglio, M.A.; de Morais, R.N.; Dalsenter, P.R. Toxicity of artemisinin [Artemisia annua L.] in two different periods of pregnancy in Wistar rats. Reprod. Toxicol., 2008, 25(2), 239-246.
[http://dx.doi.org/10.1016/j.reprotox.2007.11.003] [PMID: 18191938]
[229]
Nontprasert, A.; Nosten-Bertrand, M.; Pukrittayakamee, S.; Angus, B.J.; White, N.J.; Vanijanonta, S. Assessment of the neurotoxicity of parenteral artemisinin derivatives in mice. Am. J. Trop. Med. Hyg., 1998, 59(4), 519-522.
[http://dx.doi.org/10.4269/ajtmh.1998.59.519] [PMID: 9790421]
[230]
Ruperti-Repilado, F.J.; Haefliger, S.; Rehm, S.; Zweier, M.; Rentsch, K.M.; Blum, J.; Jetter, A.; Heim, M.; Leuppi-Taegtmeyer, A.; Terracciano, L.; Bernsmeier, C. Danger of herbal tea: A case of acute cholestatic hepatitis due to Artemisia annua tea. Front. Med., 2019, 6, 221.
[http://dx.doi.org/10.3389/fmed.2019.00221] [PMID: 31681778]
[231]
Garcia, S.; Sanz, M.; Garnatje, T.; Kreitschitz, A.; McArthur, E.D.; Vallès, J. Variation of DNA amount in 47 populations of the subtribe Artemisiinae and related taxa (Asteraceae, Anthemideae): karyological, ecological, and systematic implications. Genome, 2004, 47(6), 1004-1014.
[http://dx.doi.org/10.1139/g04-061] [PMID: 15644958]
[232]
Tkach, N.V.; Hoffmann, M.H.; Röser, M.; Korobkov, A.A.; von Hagen, K.B. Parallel evolutionary patterns in multiple lineages of arctic Artemisia L. (Asteraceae). Evolution, 2008, 62(1), 184-198.
[PMID: 17976192]
[233]
Guo, S.L.; Yu, J.; Li, D.D.; Ping, Z.; Qi, F.; Yin, L.P. DNA C-values of 138 herbaceous species and their biological significance. Acta Ecol. Sin., 2015, 35, 6516-6529.
[234]
Pellicer, J.; Hidalgo, O.; Garnatje, T.; Kondo, K.; Vallès, J. Life cycle versus systematic placement: Phylogenetic and cytogenetic studies in annual Artemisia (Asteraceae, Anthemideae). Turk. J. Bot., 2014, 38, 1112-1122.
[http://dx.doi.org/10.3906/bot-1404-102]
[235]
Torrell, M.; Vallès, J. Genome size in 21 Artemisia L. species (Asteraceae, Anthemideae): Systematic, evolutionary, and ecological implications. Genome, 2001, 44(2), 231-238.
[http://dx.doi.org/10.1139/g01-004] [PMID: 11341733]
[236]
Mishra, T.; Gangoo, S.A.; Azad, A.; Kumar, A.; Pal, M. Chemical composition and antitermite activity of essential oil from Artemisia absinthium growing in Kashmir valley of India. J. Essent. Oil-Bear. Plants, 2020, 23(2), 397-404.
[http://dx.doi.org/10.1080/0972060X.2020.1731335]
[237]
Szopa, A.; Pajor, J.; Klin, P.; Rzepiela, A.; Elansary, H.O.; Al-Mana, F.A.; Mattar, M.A.; Ekiert, H. Artemisia absinthium L.—importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants, 2020, 9(9), 1063.
[http://dx.doi.org/10.3390/plants9091063] [PMID: 32825178]
[238]
Msaada, K.; Salem, N.; Bachrouch, O.; Bousselmi, S.; Tammar, S.; Alfaify, A.; Al Sane, K.; Ben Ammar, W.; Azeiz, S.; Haj Brahim, A.; Hammami, M.; Selmi, S.; Limam, F.; Marzouk, B. Chemical composition and antioxidant and antimicrobial activities of wormwood (Artemisia absinthium L.) essential oils and phenolics. J. Chem., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/804658]
[239]
Padalia, R.C.; Verma, R.S.; Chauhan, A.; Chanotiya, C.S.; Yadav, A. Variation in the volatile constituents of Artemisia annua var. CIM-Arogya during plant ontogeny. Nat. Prod. Commun., 2011, 6(2), 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600221] [PMID: 21425684]
[240]
Ruan, J.X.; Li, J.X.; Fang, X.; Wang, L.J.; Hu, W.L.; Chen, X.Y.; Yang, C.Q. Isolation and characterization of three new monoterpene synthases from Artemisia annua. Front. Plant Sci., 2016, 7, 638.
[http://dx.doi.org/10.3389/fpls.2016.00638] [PMID: 27242840]
[241]
Khodakov, G.V.; Kryukov, L.A.; Shemesh-Mayer, E.; Kamenetsky-Goldstein, R. Variability in the chemical composition of a new aromatic plant Artemisia balchanorum in Southern Russia. Plants, 2021, 11(1), 6.
[http://dx.doi.org/10.3390/plants11010006] [PMID: 35009010]
[242]
Zhigzhitzhapova, S.V.; Randalova, T.E.; Radnaeva, L.D. Composition of essential oil of Artemisia scoparia Waldst. et Kit. from Buryatia and Mongolia. Russ. J. Bioorganic Chem., 2016, 42(7), 730-734.
[http://dx.doi.org/10.1134/S1068162016070189]
[243]
Sharopov, F.S.; Setzer, W.N. The essential oil of Artemisia scoparia from tajikistan is dominated by phenyldiacetylenes. Nat. Prod. Commun., 2011, 6(1), 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600128] [PMID: 21366060]
[244]
Joshi, R.K.; Padalia, R.C.; Mathela, C.S. Phenyl alkynes rich essential oil of artemisia capillaris. Nat. Prod. Commun., 2010, 5(5), 1934578X1000500.
[http://dx.doi.org/10.1177/1934578X1000500528] [PMID: 20521554]
[245]
Verma, R.S.; Laiq-ur-Rahman; Verma, R.K.; Chauhan, A.; Singh, A.; Chanotiya, C.S.; Yadav, A.; Singh, A.K.; Kukreja, A.K.; Khanuja, S.P.S. Essential oil composition of the inflorescence of artemisia capillaris thunb. Collected at different stages of flowering from kumaon region of western Himalaya. J. Essent. Oil Res., 2010, 22(4), 340-343.
[http://dx.doi.org/10.1080/10412905.2010.9700341]
[246]
Verma, R.S.; Rahman, L.; Chanotiya, C.S.; Verma, R.K.; Chauhan, A.; Yadav, A.; Yadav, A.K.; Singh, A. Chemical composition of volatile fraction of fresh and dry Artemisia capillaris Thunb. from Kumaon Himalaya. J. Essent. Oil-Bear. Plants, 2010, 13(1), 118-122.
[http://dx.doi.org/10.1080/0972060X.2010.10643799]
[247]
Meepagala, K.M.; Kuhajek, J.M.; Sturtz, G.D.; Wedge, D.E. Vulgarone B, the antifungal constituent in the steam-distilled fraction of Artemisia douglasiana. J. Chem. Ecol., 2003, 298(29), 1771-1780.
[248]
Chauhan, R.S.; Kitchlu, S.; Ram, G.; Kaul, M.K.; Tava, A. Chemical composition of capillene chemotype of Artemisia dracunculus L. from North-West Himalaya, India. Ind. Crops Prod., 2010, 31(3), 546-549.
[http://dx.doi.org/10.1016/j.indcrop.2010.02.005]
[249]
Mir, F.; Rather, M.; Dar, B.; Rasool, S.; Shawlc, A.; Alama, M.; Qurishi, M. Comparative GC-FID and GC-MS analysis of the chemical profile of the leaf, stem and root essential oils of Artemisia dracunculus. L growing in Kashmir (India). J. Pharm. Res., 2012, 5, 1353-1356.
[250]
Pandey, V.; Verma, R.S.; Chauhan, A.; Tiwari, R. Compositional characteristics of the volatile oils of three Artemisia spp. from western Himalaya. J. Essent. Oil Res., 2015, 27(2), 107-114.
[http://dx.doi.org/10.1080/10412905.2014.987927]
[251]
Andola, H.C.; Haider, S.Z.; Mohan, M. Constituents of artemisia indica willd. from uttarakhand himalaya: A source of davanone. Pharmacognosy Res., 2014, 6(3), 257-259.
[http://dx.doi.org/10.4103/0974-8490.132607] [PMID: 25002808]
[252]
Joshi, R.K. Volatile oil composition of Artemisia japonica Thunb. from Western Himalaya of Uttarakhand. J. Pharmacogn. Phytochem., 2015, 3, 96-97.
[253]
Abdelgaleil, S.A.M.; Abbassy, M.A.; Belal, A.S.H.; Abdel Rasoul, M.A.A. Bioactivity of two major constituents isolated from the essential oil of Artemisia judaica L. Bioresour. Technol., 2008, 99(13), 5947-5950.
[http://dx.doi.org/10.1016/j.biortech.2007.10.043] [PMID: 18054484]
[254]
Walia, S.; Rana, A.; Singh, A.; Sharma, M.; Eswara Reddy, S.G.; Kumar, R. Influence of harvesting time on essential oil content, chemical composition and pesticidal activity of Artemisia maritima growing wild in the cold desert region of Western Himalayas. J. Essent. Oil-Bear. Plants, 2019, 22(2), 396-407.
[http://dx.doi.org/10.1080/0972060X.2019.1610077]
[255]
Sah, S.; Lohani, H.; Narayan, O.; Bartwal, S.; Chauhan, N.K. Volatile constituents of Artemisia maritima Linn. grown in Garhwal Himalaya. J. Essent. Oil-Bear. Plants, 2010, 13(5), 603-606.
[http://dx.doi.org/10.1080/0972060X.2010.10643869]
[256]
Mohan, M.; Pandey, A.K.; Nautiyal, M.K.; Singh, P. Antioxidant and antimicrobial activities of three Artemisia vulgaris (L.) essential oils from Uttarakhand, India. J. Biol. Act. Prod. from Nat., 2016, 6, 266-271.
[257]
Hammoda, H.M.; Ela, M.A.; El-Lakany, A.M.; El-Hanbali, O.; Zaki, C.S.; Ghazy, N.M. New constituents of Artemisia monosperma Del. Pharmazie, 2008, 63(8), 611-614.
[PMID: 18771012]
[258]
Shah, G.C.; Mathela, C.S. Investigation on Himalayan Artemisia species VI: Essential oil constituents of Artemisia myriantha Wall. ex Bess. var. pleiocephala (Pamp.) Ling. J. Essent. Oil Res., 2006, 18(6), 633-634.
[http://dx.doi.org/10.1080/10412905.2006.9699188]
[259]
Goswami, P.; Chauhan, A.; Verma, R.S.; Padalia, R.C.; Verma, S.K.; Darokar, M.P.; Chanotiya, C.S. Composition and antibacterial activity of the essential oil of Artemisia nilagirica var. septentrionalis from India. J. Essent. Oil Res., 2016, 28(1), 71-76.
[http://dx.doi.org/10.1080/10412905.2015.1083489]
[260]
Sati, S.C.; Sati, N.; Ahluwalia, V.; Walia, S.; Sati, O.P.; Chandra Sati, S. Chemical composition and antifungal activity of Artemisia nilagirica essential oil growing in northern hilly areas of India. Nat. Prod. Res., 2013, 27(1), 45-48.
[http://dx.doi.org/10.1080/14786419.2011.650636] [PMID: 22348279]
[261]
Kazemi, M.; Mozaffarian, V.; Rustaiyan, A.; Larijani, K.; Ahmadi, M.A. Constituents of Artemisia tournefortiana Rchb. essential oil from Iran. J. Essent. Oil-Bear. Plants, 2010, 13(2), 185-190.
[http://dx.doi.org/10.1080/0972060X.2010.10643810]
[262]
Zafar Haider, S.; Lohani, H.; Naik, G.; Chauhan, D.; Chauhan, N. Chromatographic fingerprinting of Artemisia vulgaris L. grown in various locations of Uttarakhand Himalaya, India. J. Essent. Oil-Bear. Plants, 2019, 22(6), 1509-1518.
[http://dx.doi.org/10.1080/0972060X.2019.1696235]
[263]
Lohani, H.; Gwari, G.; Bhandari, U.; Haider, S.Z.; Andola, H.; Chauhan, N. Variability in the essential oils from aerial parts of Artemisia vulgaris L. grown in Uttarakhand (India). J. Essent. Oil-Bear. Plants, 2016, 19(1), 103-107.
[http://dx.doi.org/10.1080/0972060X.2015.1127784]
[264]
Mohan, M.; Pandey, A.K.; Singh, P.; Nautiyal, M.K.; Gupta, S. Evaluation of artemisia maritima l. Essential oil for its chemical and biological properties against some foodborne pathogens. Anal. Chem. Lett., 2016, 6(1), 47-54.
[http://dx.doi.org/10.1080/22297928.2016.1153433]
[265]
Haider, F.; Kumar, N.; Naqvi, A.A.; Bagchi, G.D. Oil constituents of Artemisia nilagirica var. septentrionalis growing at different altitudes. Nat. Prod. Commun., 2010, 5(12), 1934578X1000501.
[http://dx.doi.org/10.1177/1934578X1000501227] [PMID: 21299131]
[266]
Tewari, K.; Tewari, G.; Pande, C.; Kunwar, G. Volatile constituents of artemisia parviflora Buch.-Ham. ex Roxb. from kumaun himalayan region, India. J. Essent. Oil-Bear. Plants, 2015, 18(1), 195-198.
[http://dx.doi.org/10.1080/0972060X.2014.958567]
[267]
Li, H.; Pu, J.; Zeng, L.; Zhong, Y.; Xu, F.; Nan, P. Chemical composition of essential oil of Artemisia sieversiana from Tibet. J. Essent. Oil-Bear. Plants, 2017, 20(5), 1407-1412.
[http://dx.doi.org/10.1080/0972060X.2017.1383858]
[268]
Bordean, M.E.; Ungur, R.A.; Toc, D.A.; Borda, I.M.; Marțiș, G.S.; Pop, C.R.; Filip, M.; Vlassa, M.; Nasui, B.A.; Pop, A.; Cinteză, D.; Popa, F.L.; Marian, S.; Szanto, L.G.; Muste, S. Antibacterial and phytochemical screening of artemisia species. Antioxidants, 2023, 12(3), 596.
[http://dx.doi.org/10.3390/antiox12030596] [PMID: 36978844]
[269]
El Ouahdani, K.; Es-safi, I.; Mechchate, H.; Al-zahrani, M.; Qurtam, A.A.; Aleissa, M.; Bari, A.; Bousta, D. Thymus algeriensis and artemisia herba-alba essential oils: Chemical analysis, antioxidant potential and in vivo anti-inflammatory, analgesic activities, and acute toxicity. Molecules, 2021, 26(22), 6780.
[http://dx.doi.org/10.3390/molecules26226780] [PMID: 34833872]
[270]
Mohammed, H.A.; Qureshi, K.A.; Ali, H.M.; Al-Omar, M.S.; Khan, O.; Mohammed, S.A.A. Bio-Evaluation of the wound healing activity of artemisia judaica L. as part of the plant’s use in traditional medicine; phytochemical, antioxidant, anti-inflammatory, and antibiofilm properties of the plant’s essential oils. Antioxidants, 2022, 11(2), 332.
[http://dx.doi.org/10.3390/antiox11020332] [PMID: 35204215]
[271]
Salih, A.M.; Qahtan, A.A.; Al-Qurainy, F. Phytochemicals identification and bioactive compounds estimation of artemisia species grown in saudia arabia. Metabolites, 2023, 13(3), 443.
[http://dx.doi.org/10.3390/metabo13030443] [PMID: 36984883]
[272]
Singh, N.B.; Devi, M.L.; Biona, T.; Sharma, N.; Das, S.; Chakravorty, J.; Mukherjee, P.K.; Rajashekar, Y. Phytochemical composition and antimicrobial activity of essential oil from the leaves of artemisia vulgaris L. Molecules, 2023, 28(5), 2279.
[http://dx.doi.org/10.3390/molecules28052279] [PMID: 36903525]
[273]
Medjahed, I.M.; Benyelles, N.G.; Senouci, H.; Gaouar, M.Y. Individual and combined antifungal activities of Artemisia herba alba and Ammoides verticillata essential oils against the three main pathogenic microorganisms of potato. Comb. Chem. High Throughput Screen., 2023, 26(10), 1920-1928.
[http://dx.doi.org/10.2174/1386207326666230315141647] [PMID: 36924094]
[274]
Aouini, J.; Bachrouch, O.; Msaada, K.; Fares, N.; Jallouli, S.; Médiouni Ben Jemâa, J.; Soliman, T.M.A.; Sriti, J. Screening of antimicrobial and insecticidal properties of essential oils extracted from three Tunisian aromatic and medicinal plants. Int. J. Environ. Health Res., 2023, 33, 1-11.
[http://dx.doi.org/10.1080/09603123.2023.2187354] [PMID: 36891966]
[275]
Su, S.H.; Sundhar, N.; Kuo, W.W.; Lai, S.C.; Kuo, C.H.; Ho, T.J.; Lin, P.Y.; Lin, S.Z.; Shih, C.Y.; Lin, Y.J.; Huang, C.Y. Artemisia argyi extract induces apoptosis in human gemcitabine-resistant lung cancer cells via the PI3K/MAPK signaling pathway. J. Ethnopharmacol., 2022, 299, 115658.
[http://dx.doi.org/10.1016/j.jep.2022.115658] [PMID: 36075273]
[276]
Qanash, H.; Bazaid, A.; Aldarhami, A.; Alharbi, B.; Almashjary, M.; Hazzazi, M.; Felemban, H.; Abdelghany, T. Phytochemical characterization and efficacy of artemisia judaica extract loaded chitosan nanoparticles as inhibitors of cancer proliferation and microbial growth. Polymers, 2023, 15(2), 391.
[http://dx.doi.org/10.3390/polym15020391] [PMID: 36679271]
[277]
Forouhandeh, H.; Tarhriz, V.; Zadehkamand, M.; Asgharian, P. Anti-proliferative activity of Artemisia marschalliana on cancerous cell lines. BMC Complement. Med. Therapies, 2023, 23(1), 119.
[http://dx.doi.org/10.1186/s12906-023-03887-z] [PMID: 37059982]
[278]
Tiwari, R.K.; Ahmad, A.; Khan, A.F.; Al-Keridis, L.A.; Saeed, M.; Alshammari, N.; Alabdallah, N.M.; Ansari, I.A.; Mujeeb, F. Ethanolic extract of artemisia vulgaris leaf promotes apoptotic cell death in non-small-cell lung carcinoma A549 cells through inhibition of the wnt signaling pathway. Metabolites, 2023, 13(4), 480.
[http://dx.doi.org/10.3390/metabo13040480] [PMID: 37110139]
[279]
Chi, H.; Ly, B. Artemisia vulgaris inhibits BCR/ABL and promotes apoptosis in chronic myeloid leukemia cells. Biomed. Rep., 2022, 17(6), 92.
[http://dx.doi.org/10.3892/br.2022.1575] [PMID: 36382259]
[280]
Han, X.; Chen, Z.; Yuan, J.; Wang, G.; Han, X.; Wu, H.; Shi, H.; Chou, G.; Yang, L.; Wu, X. Artemisia annua water extract attenuates DNCB-induced atopic dermatitis by restraining Th2 cell mediated inflammatory responses in BALB/c mice. J. Ethnopharmacol., 2022, 291, 115160.
[http://dx.doi.org/10.1016/j.jep.2022.115160] [PMID: 35245629]
[281]
Ammar, N.M.; Hassan, H.A.; Ahmed, R.F.; G El-Gendy, A.E.; Abd-ElGawad, A.M.; Farrag, A.R.H.; Farag, M.A.; Elshamy, A.I.; Afifi, S.M. Gastro-protective effect of Artemisia Sieberi essential oil against ethanol-induced ulcer in rats as revealed via biochemical, histopathological and metabolomics analysis. Biomarkers, 2022, 27(3), 247-257.
[http://dx.doi.org/10.1080/1354750X.2021.2025428] [PMID: 34978233]
[282]
Meng, R.; Wu, S.; Chen, J.; Cao, J.; Li, L.; Feng, C.; Liu, J.; Luo, Y.; Huang, Z. Alleviating effects of essential oil from Artemisia vulgaris on enteritis in zebrafish via modulating oxidative stress and inflammatory response. Fish Shellfish Immunol., 2022, 131, 323-341.
[http://dx.doi.org/10.1016/j.fsi.2022.10.010] [PMID: 36228879]
[283]
Eddouks, M.; Azzane, A.; Farid, O. Antihyperglycemic and antidyslipidemic effects of artemisia arborescens aqueous extract on streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(2), 120-138.
[http://dx.doi.org/10.2174/1871525720666220425094135] [PMID: 35469581]
[284]
Hbika, A.; Daoudi, N.E.; Bouyanzer, A.; Bouhrim, M.; Mohti, H.; Loukili, E.H.; Mechchate, H.; Al-Salahi, R.; Nasr, F.A.; Bnouham, M.; Zaid, A. Artemisia absinthium L. aqueous and ethyl acetate extracts: Antioxidant effect and potential activity in vitro and in vivo against pancreatic α-amylase and intestinal α-glucosidase. Pharmaceutics, 2022, 14(3), 481.
[http://dx.doi.org/10.3390/pharmaceutics14030481] [PMID: 35335858]
[285]
Marghich, M.; Daoudi, N.E.; Amrani, O.; Addi, M.; Hano, C.; Chen, J.T.; Mekhfi, H.; Ziyyat, A.; Bnouham, M.; Aziz, M. Antioxidant activity and inhibition of carbohydrate digestive enzymes activities of Artemisia campestris L. Front. Biosci., 2022, 14(4), 25.
[http://dx.doi.org/10.31083/j.fbs1404025] [PMID: 36575835]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy