Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Review Article

Therapeutic Importance and Pharmacological Activities of Norisoboldine in Medicine for the Treatment of Human Disorders

Author(s): Dinesh Kumar Patel* and Kanika Patel

Volume 16, Issue 2, 2023

Published on: 05 October, 2023

Page: [81 - 88] Pages: 8

DOI: 10.2174/2949681016666230914103740

Price: $65

Abstract

Background: Natural products constitute a unique source of chemical compounds with multi-target potential for the treatment of complex human disorders. Phytochemicals are pure phytoconstituents of plants, mainly responsible for their therapeutic potential and pharmacological activities. Natural products isolated from medicinal plants have been used as a lead source of drug. Norisoboldine is an important isoquinoline alkaloid found to be present in the dry root of Lindera aggregate.

Methods: In the present paper, scientific data of norisoboldine have been collected from Google, Google Scholar, PubMed, Science Direct and Scopus and analyzed in order to know the biological potential and therapeutic effectiveness of norisoboldine in medicine. Scientific data of medicinal importance and therapeutic potential of norisoboldine has been collected and analyzed in the present work. Moreover, all the collected scientific data have been separated into different sub-section i.e. Medicinal importance, pharmacological activities and analytical aspects. Detailed pharmacological activity data of norisoboldine have been analyzed in the present work to know the therapeutic effectiveness of norisoboldine in medicine. Analytical data of norisoboldine have also been collected and analyzed in the present work.

Results: Scientific data analysis revealed the biological importance of isoquinoline alkaloids in medicine. Isoquinoline alkaloids are pure, active phytochemical present in several natural edible products including vegetables, plants, and fruits. Norisoboldine has a biological effect on arthritis, colitis, apoptosis, osteoclast differentiation, inflammatory pain, renal ischemia-reperfusion injury, acute lung injury, pro-inflammatory cytokines, tumor, regulatory T cells, and endothelial cell migration. However nanoemulsifying drug delivery system of norisoboldine has also been prepared in order to get better therapeutic value. Further analytical parameters of norisoboldine were also discussed in the present work in order to get the scientific information of separation, isolation and identification parameter of norisoboldine.

Conclusion: Present work revealed the therapeutic potential of norisoboldine in medicine.

« Previous
Graphical Abstract

[1]
Patel, K.; Patel, D.K. The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. Bioact. Food as Diet. Interv. Arthritis Relat. Inflamm. Dis; Elsevier: Amsterdam, Netherlands, 2019, pp. 457-479.
[2]
Patel, K.; Patel, D.K. Health benefits of ipecac and cephaeline: Their potential in health promotion and disease prevention. Curr. Bioact. Compd., 2021, 17(3), 206-213.
[http://dx.doi.org/10.2174/1573407216999200609130841]
[3]
Cheng, M.; Chen, Z. Screening of tyrosinase inhibitors by capillary electrophoresis with immobilized enzyme microreactor and molecular docking. Electrophoresis, 2017, 38(3-4), 486-493.
[http://dx.doi.org/10.1002/elps.201600367] [PMID: 27862041]
[4]
Patel, D.K. Medicinal importance, pharmacological activities and analytical aspects of a flavonoid glycoside ‘nicotiflorin’ in the medicine. Drug Metab. Bioanal. Let., 2022, 15(1), 2-11.
[http://dx.doi.org/10.2174/1872312815666220404110200] [PMID: 35379162]
[5]
Gupta, D.; Bleakley, B.; Gupta, R.K. Dragon’s blood: Botany, chemistry and therapeutic uses. J. Ethnopharmacol., 2008, 115(3), 361-380.
[http://dx.doi.org/10.1016/j.jep.2007.10.018] [PMID: 18060708]
[6]
Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of engeletin in medicine: Therapeutic benefit through scientific data analysis. Endocr. Metab. Immune Disord. Drug Targets, 2023, 23(3), 273-282.
[http://dx.doi.org/10.2174/1871530322666220520162251] [PMID: 35619306]
[7]
Ravanelli, N.; Santos, K.P.; Motta, L.B.; Lago, J.H.G.; Furlan, C.M. Alkaloids from Croton echinocarpus Baill.: Anti-HIV potential. S. Afr. J. Bot., 2016, 102, 153-156.
[http://dx.doi.org/10.1016/j.sajb.2015.06.011]
[8]
Sadeghi, Z.; Mahmood, A. Ethno-gynecological knowledge of medicinal plants used by Baluch tribes, southeast of Baluchistan, Iran. Rev. Bras. Farmacogn., 2014, 24(6), 706-715.
[http://dx.doi.org/10.1016/j.bjp.2014.11.006]
[9]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Patents Anti-Infect. Drug Disc., 2019, 14(1), 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[10]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4(2), 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[11]
Kumari, P.; Bhargava, B. Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Foods, 2021, 78, 104375.
[http://dx.doi.org/10.1016/j.jff.2021.104375]
[12]
Cahlíková, L.; Hulová, L.; Hrabinová, M.; Chlebek, J.; Hošťálková, A.; Adamcová, M.; Šafratová, M.; Jun, D.; Opletal, L.; Ločárek, M.; Macáková, K. Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fitoterapia, 2015, 103, 192-196.
[http://dx.doi.org/10.1016/j.fitote.2015.04.004] [PMID: 25863351]
[13]
Yin, X.; Bai, R.; Guo, Q.; Su, G.; Wang, J.; Yang, X.; Li, L.; Tu, P.; Chai, X. Hendersine A, a novel isoquinoline alkaloid from Corydalis hendersonii. Tetrahedron Lett., 2016, 57(43), 4858-4862.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.064]
[14]
Kulp, M.; Bragina, O.; Kogerman, P.; Kaljurand, M. Capillary electrophoresis with led-induced native fluorescence detection for determination of isoquinoline alkaloids and their cytotoxicity in extracts of chelidonium majus L. J. Chromatogr. A, 2011, 1218(31), 5298-5304.
[http://dx.doi.org/10.1016/j.chroma.2011.06.016] [PMID: 21726876]
[15]
Singh, S.; Pathak, N.; Fatima, E.; Negi, A.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur. J. Med. Chem., 2021, 226, 113839.
[http://dx.doi.org/10.1016/j.ejmech.2021.113839] [PMID: 34536668]
[16]
Zhang, Y.; Xie, K.; Liu, A.; Chen, R.; Chen, D.; Yang, L.; Dai, J. Enzymatic biosynthesis of benzylisoquinoline alkaloid glycosides via promiscuous glycosyltransferases from Carthamus tinctorius. Chin. Chem. Lett., 2019, 30(2), 443-446.
[http://dx.doi.org/10.1016/j.cclet.2018.05.010]
[17]
Du, K.; Liu, Y.; Zong, K.; Wang, Y.; Li, J.; Meng, D. Isoquinoline alkaloids from the Corydalis tomentella with potential anti-hepatoma and antibacterial activities. Phytochemistry, 2022, 200, 113240.
[http://dx.doi.org/10.1016/j.phytochem.2022.113240] [PMID: 35597315]
[18]
Marasco, D.; Vicidomini, C.; Krupa, P.; Cioffi, F.; Huy, P.D.Q.; Li, M.S.; Florio, D.; Broersen, K.; De Pandis, M.F.; Roviello, G.N. Plant isoquinoline alkaloids as potential neurodrugs: A comparative study of the effects of benzo[c]phenanthridine and berberine-based compounds on β-amyloid aggregation. Chem. Biol. Interact., 2021, 334, 109300.
[http://dx.doi.org/10.1016/j.cbi.2020.109300] [PMID: 33098838]
[19]
Schütz, R.; Schmidt, S.; Bracher, F. A versatile approach to 1-oxo-, 1-oxo-3,4-dihydro- and 1,3,4-trioxo isoquinoline alkaloids and first total synthesis of the dimeric 1-oxoisoquinoline alkaloids berbanine and berbidine. Tetrahedron, 2020, 76(19), 131150.
[http://dx.doi.org/10.1016/j.tet.2020.131150]
[20]
Ding, C.F.; Qin, X.J.; Yu, H.F.; Liu, Y.P.; Wang, X.H.; Luo, X.D. Thalicfoetine, a novel isoquinoline alkaloid with antibacterial activity from Thalictrum foetidum. Tetrahedron Lett., 2019, 60(41), 151135.
[http://dx.doi.org/10.1016/j.tetlet.2019.151135]
[21]
Plazas, E.; Hagenow, S.; Avila, M.M.; Stark, H.; Cuca, L.E. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem., 2020, 98, 103722.
[http://dx.doi.org/10.1016/j.bioorg.2020.103722] [PMID: 32155491]
[22]
Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Naturally occurring plant isoquinoline N-oxide alkaloids: Their pharmacological and SAR activities. Phytomedicine, 2015, 22(1), 183-202.
[http://dx.doi.org/10.1016/j.phymed.2014.11.002] [PMID: 25636889]
[23]
Wen, L.N.; Xie, M.X. Spectroscopic investigation of the interaction between G-quadruplex of KRAS promoter sequence and three isoquinoline alkaloids. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 171, 287-296.
[http://dx.doi.org/10.1016/j.saa.2016.08.013] [PMID: 27565766]
[24]
Obaid Aldulaimi, A.K.; Abdul Azziz, S.S.S.; Bakri, Y.M.; Nafiah, M.A.; Aowda, S.A.; Awang, K.; Litaudon, M. Two new isoquinoline alkaloids from the bark of Alphonsea cylindrica king and their antioxidant activity. Phytochem. Lett., 2019, 29, 110-114.
[http://dx.doi.org/10.1016/j.phytol.2018.11.022]
[25]
Luo, Y.; Liu, M.; Dai, Y.; Yao, X.; Xia, Y.; Chou, G.; Wang, Z. Norisoboldine inhibits the production of pro-inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 cells by down-regulating the activation of MAPKs but not NF-κB. Inflammation, 2010, 33(6), 389-397.
[http://dx.doi.org/10.1007/s10753-010-9197-0] [PMID: 20352482]
[26]
Tong, B.; Dou, Y.; Wang, T.; Yu, J.; Wu, X.; Lu, Q.; Chou, G.; Wang, Z.; Kong, L.; Dai, Y.; Xia, Y. Norisoboldine ameliorates collagen-induced arthritis through regulating the balance between Th17 and regulatory T cells in gut-associated lymphoid tissues. Toxicol. Appl. Pharmacol., 2015, 282(1), 90-99.
[http://dx.doi.org/10.1016/j.taap.2014.11.008] [PMID: 25481498]
[27]
Chen, J.Z.; Chou, G.X.; Wang, C.H.; Yang, L.; Bligh, S.W.A.; Wang, Z.T. Characterization of new metabolites from in vivo biotransformation of norisoboldine by liquid chromatography/mass spectrometry and NMR spectroscopy. J. Pharm. Biomed. Anal., 2010, 52(5), 687-693.
[http://dx.doi.org/10.1016/j.jpba.2010.02.008] [PMID: 20223612]
[28]
Fang, Y.; Duan, C.; Zhang, J.; Dai, Y.; Xia, Y. NMR-based untargeted metabolomics approach to investigate the systemic lipid metabolism regulation of norisoboldine in collagen-induced arthritis rats. Eur. J. Pharmacol., 2021, 912, 174608.
[http://dx.doi.org/10.1016/j.ejphar.2021.174608] [PMID: 34743982]
[29]
Chang, L.; Zhang, Q.; Tang, Y.; Fang, Y.; Dou, R.; Chu, Y.; Xia, Y.; Wei, Z.; Chen, L.; Dai, Y. Synthesis of norisoboldine derivatives and bioactivity assay for inducing the generation of regulatory T cells. Bioorg. Med. Chem. Lett., 2021, 37, 127844.
[http://dx.doi.org/10.1016/j.bmcl.2021.127844] [PMID: 33556569]
[30]
Lv, Q.; Wang, K.; Qiao, S.M.; Dai, Y.; Wei, Z.F. Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome. Chin. J. Nat. Med., 2018, 16(3), 161-174.
[http://dx.doi.org/10.1016/S1875-5364(18)30044-X] [PMID: 29576052]
[31]
Luo, Y.; Liu, M.; Xia, Y.; Dai, Y.; Chou, G.; Wang, Z. Therapeutic effect of norisoboldine, an alkaloid isolated from Radix Linderae, on collagen-induced arthritis in mice. Phytomedicine, 2010, 17(10), 726-731.
[http://dx.doi.org/10.1016/j.phymed.2010.01.013] [PMID: 20363113]
[32]
He, M.; Wang, H.; Dou, W.; Chou, G.; Wei, X.; Wang, Z. Preparation and drug release properties of norisoboldine-loaded chitosan microspheres. Int. J. Biol. Macromol., 2016, 91, 1101-1109.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.076] [PMID: 27344949]
[33]
Tong, B.; Yuan, X.; Dou, Y.; Wu, X.; Chou, G.; Wang, Z.; Xia, Y.; Dai, Y. Norisoboldine, an isoquinoline alkaloid, acts as an aryl hydrocarbon receptor ligand to induce intestinal Treg cells and thereby attenuate arthritis. Int. J. Biochem. Cell Biol., 2016, 75, 63-73.
[http://dx.doi.org/10.1016/j.biocel.2016.03.014] [PMID: 27032495]
[34]
Luo, Y.; Wei, Z.; Chou, G.; Wang, Z.; Xia, Y.; Dai, Y. Norisoboldine induces apoptosis of fibroblast-like synoviocytes from adjuvant-induced arthritis rats. Int. Immunopharmacol., 2014, 20(1), 110-116.
[http://dx.doi.org/10.1016/j.intimp.2014.02.023] [PMID: 24613208]
[35]
Wei, Z.; Lv, Q.; Xia, Y.; Yue, M.; Shi, C.; Xia, Y.; Chou, G.; Wang, Z.; Dai, Y. Norisoboldine, an anti-arthritis alkaloid isolated from radix linderae, attenuates osteoclast differentiation and inflammatory bone erosion in an aryl hydrocarbon receptor-dependent manner. Int. J. Biol. Sci., 2015, 11(9), 1113-1126.
[http://dx.doi.org/10.7150/ijbs.12152] [PMID: 26221077]
[36]
Li, C.; Wang, J.; Ma, R.; Li, L.; Wu, W.; Cai, D.; Lu, Q. Natural-derived alkaloids exhibit great potential in the treatment of ulcerative colitis. Pharmacol. Res., 2022, 175, 105972.
[http://dx.doi.org/10.1016/j.phrs.2021.105972] [PMID: 34758401]
[37]
Wang, X.; Fang, G.; Yang, Y.; Pang, Y. The newly discovered natural compounds against rheumatoid arthritis-an overview. Phytochem. Lett., 2019, 34, 50-58.
[http://dx.doi.org/10.1016/j.phytol.2019.09.011]
[38]
Özenver, N.; Efferth, T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol. Res., 2021, 170, 105710.
[http://dx.doi.org/10.1016/j.phrs.2021.105710] [PMID: 34089866]
[39]
El-Aasr, M.; Eliwa, D.; Albadry, M.; Ibrahim, A.R.S.; Kabbash, A.; Meepagala, K.M.; Khan, I.A.; Khan, S.I.; Ross, S.A. Microbial transformation of some simple isoquinoline and benzylisoquinoline alkaloids and in vitro studies of their metabolites. Phytochemistry, 2021, 189, 112828.
[http://dx.doi.org/10.1016/j.phytochem.2021.112828] [PMID: 34174637]
[40]
Bai, R.; Yao, C.; Zhong, Z.; Ge, J.; Bai, Z.; Ye, X.; Xie, T.; Xie, Y. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. Eur. J. Med. Chem., 2021, 213, 113165.
[http://dx.doi.org/10.1016/j.ejmech.2021.113165] [PMID: 33454546]
[41]
Liz, R.; Pereira, D.F.; Horst, H.; Dalmarco, E.M.; Dalmarco, J.B.; Simionatto, E.L.; Pizzolatti, M.G.; Girard, D.; Fröde, T.S. Protected effect of Esenbeckia leiocarpa upon the inflammatory response induced by carrageenan in a murine air pouch model. Int. Immunopharmacol., 2011, 11(12), 1991-1999.
[http://dx.doi.org/10.1016/j.intimp.2011.08.009] [PMID: 21890002]
[42]
Lv, Q.; Wang, K.; Qiao, S.; Yang, L.; Xin, Y.; Dai, Y.; Wei, Z. Norisoboldine, a natural AhR agonist, promotes Treg differentiation and attenuates colitis via targeting glycolysis and subsequent NAD+/SIRT1/SUV39H1/H3K9me3 signaling pathway. Cell Death Dis., 2018, 9(3), 258.
[http://dx.doi.org/10.1038/s41419-018-0297-3] [PMID: 29449535]
[43]
Duan, C.; Guo, J.M.; Dai, Y.; Xia, Y.F. The absorption enhancement of norisoboldine in the duodenum of adjuvant-induced arthritis rats involves the impairment of P-glycoprotein. Biopharm. Drug Dispos., 2017, 38(1), 75-83.
[http://dx.doi.org/10.1002/bdd.2053] [PMID: 27925244]
[44]
Gao, X.; Lu, Q.; Chou, G.; Wang, Z.; Pan, R.; Xia, Y.; Hu, H.; Dai, Y. Norisoboldine attenuates inflammatory pain via the adenosine A1 receptor. Eur. J. Pain, 2014, 18(7), 939-948.
[http://dx.doi.org/10.1002/j.1532-2149.2013.00439.x] [PMID: 24395183]
[45]
Lu, Q.; Tong, B.; Luo, Y.; Sha, L.; Chou, G.; Wang, Z.; Xia, Y.; Dai, Y. Norisoboldine suppresses VEGF-induced endothelial cell migration via the cAMP-PKA-NF-κB/Notch1 pathway. PLoS One, 2013, 8(12), e81220.
[http://dx.doi.org/10.1371/journal.pone.0081220] [PMID: 24349042]
[46]
Wei, Z.; Tong, B.; Xia, Y.; Lu, Q.; Chou, G.; Wang, Z.; Dai, Y. Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-κB/c-Fos/NFATc1 Pathways. PLoS One, 2013, 8(3), e59171.
[http://dx.doi.org/10.1371/journal.pone.0059171] [PMID: 23536866]
[47]
Lv, Q.; Qiao, S.; Xia, Y.; Shi, C.; Xia, Y.; Chou, G.; Wang, Z.; Dai, Y.; Wei, Z. Norisoboldine ameliorates DSS-induced ulcerative colitis in mice through induction of regulatory T cells in colons. Int. Immunopharmacol., 2015, 29(2), 787-797.
[http://dx.doi.org/10.1016/j.intimp.2015.08.040] [PMID: 26363976]
[48]
Wei, Z.; Jiao, X.; Wang, T.; Lu, Q.; Xia, Y.; Wang, Z.; Guo, Q.; Chou, G.; Dai, Y. Norisoboldine alleviates joint destruction in rats with adjuvant-induced arthritis by reducing RANKL, IL-6, PGE2, and MMP-13 expression. Acta Pharmacol. Sin., 2013, 34(3), 403-413.
[http://dx.doi.org/10.1038/aps.2012.187] [PMID: 23396374]
[49]
Lu, Q.; Lu, S.; Gao, X.; Luo, Y.; Tong, B.; Wei, Z.; Lu, T.; Xia, Y.; Chou, G.; Wang, Z.; Dai, Y. Norisoboldine, an alkaloid compound isolated from Radix Linderae, inhibits synovial angiogenesis in adjuvant-induced arthritis rats by moderating Notch1 pathway-related endothelial tip cell phenotype. Exp. Biol. Med., 2012, 237(8), 919-932.
[http://dx.doi.org/10.1258/ebm.2012.011416] [PMID: 22875342]
[50]
Wei, Z.; Wang, F.; Song, J.; Lu, Q.; Zhao, P.; Xia, Y.; Chou, G.; Wang, Z.; Dai, Y. Norisoboldine inhibits the production of interleukin-6 in fibroblast-like synoviocytes from adjuvant arthritis rats through PKC/MAPK/NF-κB-p65/CREB pathways. J. Cell. Biochem., 2012, 113(8), 2785-2795.
[http://dx.doi.org/10.1002/jcb.24156] [PMID: 22473817]
[51]
Yi, Y-N.; Cheng, X-M.; Liu, L-A.; Hu, G-Y.; Wang, Z-T.; Deng, Y-D. Simultaneous determination of synephrine, arecoline, and norisoboldine in Chinese patent medicine Si-Mo-Tang oral liquid preparation by strong cation exchange high performance liquid chromatography. Pharm. Biol., 2012, 50, 832-838.
[52]
Li, Y.; Zeng, R.; Chen, J.; Wu, Y.; Chou, G.; Gao, Y.; Shao, J.; Cai, H.; Jia, L. Pharmacokinetics and metabolism study of isoboldine, a major bioactive component from Radix Linderae in male rats by UPLC-MS/MS. J. Ethnopharmacol., 2015, 171, 154-160.
[http://dx.doi.org/10.1016/j.jep.2015.05.042] [PMID: 26055342]
[53]
Huang, M.; Su, J.; Lou, Z.; Xie, F.; Pan, W.; Yang, Z.; Gu, L.; Xie, F.; Xu, Z.; Zhang, L.; Liu, F.; Lai, H.; Zhang, L.; Lin, N. Application of a DSS colitis model in toxicologically assessing norisoboldine. Toxicol. Mech. Methods, 2020, 30(2), 107-114.
[http://dx.doi.org/10.1080/15376516.2019.1669242] [PMID: 31532267]
[54]
Xing, D.; Li, Q.; Lin, G.; Lin, H.; Kang, W.; Zhang, M.; Ding, R.; Li, N. Retracted: The protective effects of propofol against renal ischemia‐reperfusion injury are potentiated by norisoboldine treatment via inhibition of oxidative stress pathways. J. Biochem. Mol. Toxicol., 2022, 36(1), e22937.
[http://dx.doi.org/10.1002/jbt.22937] [PMID: 34719823]
[55]
Chen, Q.; Shao, X.; He, Y.; Lu, E.; Zhu, L.; Tang, W. Norisoboldine attenuates sepsis-induced acute lung injury by modulating macrophage polarization via PKM2/HIF-1α/PGC-1α pathway. Biol. Pharm. Bull., 2021, 44(10), 1536-1547.
[http://dx.doi.org/10.1248/bpb.b21-00457]
[56]
Gu, L-H.; Wu, T.; Zhang, Z-J.; Chou, G-X.; Wang, Z-T. Evaluation of antioxidant activity of radix linderae and other two chinese drugs using TLC-bioautography. Yao Xue Xue Bao, 2006, 41(10), 956-962.
[PMID: 17184113]
[57]
Liu, T.; Li, W.Y.; Liu, X.W.; Qi, C.M.; Yuan, Z.H. Chemical constituents from the roots of Lindera glauca and their antitumor activity on four different cancer cell lines. Zhong Yao Cai, 2016, 39(8), 1789-1792.
[PMID: 30204386]
[58]
Zhang, Q.; Fang, Y.; Lv, C.; Zhu, Y.; Xia, Y.; Wei, Z.; Dai, Y. Norisoboldine induces the development of Treg cells by promoting fatty acid oxidation‐mediated H3K27 acetylation of Foxp3. FASEB J., 2022, 36(4), e22230.
[http://dx.doi.org/10.1096/fj.202101643R] [PMID: 35233835]
[59]
Zhang, J.; Wen, X.; Dai, Y.; Xia, Y. Mechanistic studies on the absorption enhancement of a self-nanoemulsifying drug delivery system loaded with norisoboldine-phospholipid complex. Int. J. Nanomedicine, 2019, 14, 7095-7106.
[http://dx.doi.org/10.2147/IJN.S211905] [PMID: 31564867]
[60]
Gao, S.; Li, W.; Lin, G.; Liu, G.; Deng, W.; Zhai, C.; Bian, C.; He, G.; Hu, Z. Norisoboldine, an alkaloid from Radix linderae, inhibits NFAT activation and attenuates 2,4-dinitrofluorobenzene-induced dermatitis in mice. Immunopharmacol. Immunotoxicol., 2016, 38(5), 327-333.
[http://dx.doi.org/10.1080/08923973.2016.1202961] [PMID: 27315014]
[61]
Wu, X.; Long, H.; Li, F.; Wu, W.; Zhou, J.; Liu, C.; Hou, J.; Wu, W.; Guo, D. Comprehensive feature‐based molecular networking and metabolomics approaches to reveal the differences components in Cinnamomum cassia and Cinnamomum verum. J. Sep. Sci., 2021, 44(20), 3810-3821.
[http://dx.doi.org/10.1002/jssc.202100399] [PMID: 34415684]
[62]
He, Y.; Cheng, P.; Wang, W.; Yan, S.; Tang, Q.; Liu, D.; Xie, H. Rapid investigation and screening of bioactive components in simo decoction via LC-Q-TOF-MS and UF-HPLC-MD methods. Molecules, 2018, 23(7), 1792.
[http://dx.doi.org/10.3390/molecules23071792] [PMID: 30036998]
[63]
Chen, F.; Li, H.; Li, Y.H.; Tan, Y.F.; Zhang, J.Q. Quantitative analysis of the major constituents in Chinese medicinal preparation SuoQuan formulae by ultra fast high performance liquid chromatography/quadrupole tandem mass spectrometry. Chem. Cent. J., 2013, 7(1), 131.
[http://dx.doi.org/10.1186/1752-153X-7-131] [PMID: 23899222]
[64]
Chen, J.; Chou, G.; Yang, L.; Wang, C.; Wang, Z. Determination of norisoboldine in Radix Lindera by RP-HPLC. Zhongguo Zhongyao Zazhi, 2009, 34(21), 2774-2776.
[PMID: 20209913]
[65]
Milanowski, D.J.; Winter, R.E.K.; Elvin-Lewis, M.P.F.; Lewis, W.H. Geographic distribution of three alkaloid chemotypes of Croton lechleri. J. Nat. Prod., 2002, 65(6), 814-819.
[http://dx.doi.org/10.1021/np000270v] [PMID: 12088421]
[66]
Patel, D.K.; Patel, K. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects. Pharmacol.Res. Mod. Chin. Med., 2022, 5, 100175.
[http://dx.doi.org/10.1016/j.prmcm.2022.100175]
[67]
Kong, M.; Xie, K.; Lv, M.; Li, J.; Yao, J.; Yan, K.; Wu, X.; Xu, Y.; Ye, D. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed. Pharmacother., 2021, 133, 110975.
[http://dx.doi.org/10.1016/j.biopha.2020.110975] [PMID: 33212375]
[68]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar, P.D. Health benefits of furanocoumarins ‘psoralidin’ an active phytochemical of psoralea corylifolia: The present, past and future scenario. Curr. Bioact. Compd., 2019, 15(4), 369-376.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[69]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[70]
Patel, D.K.; Patel, K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects. Curr. Cancer Ther. Rev., 2022, 18(1), 41-50.
[http://dx.doi.org/10.2174/1573394717666210831163322]
[71]
Plazas, E.; Avila, M. M.C.; Muñoz, D.R.; Cuca S, L.E. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol. Res., 2022, 177, 106126.
[http://dx.doi.org/10.1016/j.phrs.2022.106126] [PMID: 35151857]
[72]
Feng, X.; Nie, L.; He, Q.; Yu, S.; Yao, S. Making natural products as magnetic particles and fluids: A simple strategy based on ferromagnetic organic compounds with the structural nucleus of isoquinoline alkaloids. J. Mol. Liq., 2019, 296, 111852.
[http://dx.doi.org/10.1016/j.molliq.2019.111852]
[73]
Luo, T.; Li, Z.; Deng, X.M.; Jiang, K.; Liu, D.; Zhang, H.H.; Shi, T.; Liu, L.Y.; Wen, H.X.; Li, Q.E.; Wang, Z. Isolation, synthesis and bioactivity evaluation of isoquinoline alkaloids from Corydalis hendersonii Hemsl. against gastric cancer in vitro and in vivo. Bioorg. Med. Chem., 2022, 60, 116705.
[http://dx.doi.org/10.1016/j.bmc.2022.116705] [PMID: 35286954]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy