Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Role of Bioactive Compounds, Novel Drug Delivery Systems, and Polyherbal Formulations in the Management of Rheumatoid Arthritis

Author(s): Neha Rana, Piyush Gupta*, Hridayanand Singh and Kandasamy Nagarajan

Volume 27, Issue 3, 2024

Published on: 27 September, 2023

Page: [353 - 385] Pages: 33

DOI: 10.2174/1386207326666230914103714

Price: $65

Abstract

Rheumatoid Arthritis (RA) is an autoimmune disorder that generally causes joint synovial inflammation as well as gradual cartilage and degenerative changes, resulting in progressive immobility. Cartilage destruction induces synovial inflammation, including synovial cell hyperplasia, increased synovial fluid, and synovial pane development. This phenomenon causes articular cartilage damage and joint alkalosis. Traditional medicinal system exerts their effect through several cellular mechanisms, including inhibition of inflammatory mediators, oxidative stress suppression, cartilage degradation inhibition, increasing antioxidants and decreasing rheumatic biomarkers. The medicinal plants have yielded a variety of active constituents from various chemical categories, including alkaloids, triterpenoids, steroids, glycosides, volatile oils, flavonoids, lignans, coumarins, terpenes, sesquiterpene lactones, anthocyanins, and anthraquinones. This review sheds light on the utilization of medicinal plants in the treatment of RA. It explains various phytoconstituents present in medicinal plants and their mechanism of action against RA. It also briefs about the uses of polyherbal formulations (PHF), which are currently in the market and the toxicity associated with the use of medicinal plants and PHF, along with the limitations and research gaps in the field of PHF. This review paper is an attempt to understand various mechanistic approaches employed by several medicinal plants, their possible drug delivery systems and synergistic effects for curing RA with minimum side effects.

Next »
Graphical Abstract

[1]
Sharma, A.; Kudesia, P.; Shi, Q.; Gandhi, R. Anxiety and depression in patients with osteoarthritis: Impact and management challenges. Open Access Rheumatol., 2016, 8(8), 103-113.
[http://dx.doi.org/10.2147/OARRR.S93516] [PMID: 27843376]
[2]
Majithia, V.; Geraci, S.A. Rheumatoid arthritis: Diagnosis and management. Am. J. Med., 2007, 120(11), 936-939.
[http://dx.doi.org/10.1016/j.amjmed.2007.04.005] [PMID: 17976416]
[3]
Huizinga, T.W.J.; Pincus, T. Rheumatoid Arthritis. Ann. Intern. Med., 2010, 153(1), ITC1-1.
[http://dx.doi.org/10.7326/0003-4819-153-1-201007060-01001] [PMID: 20621898]
[4]
Edwards, J.C.W. Szczepański, L.; Szechiński, J.; Filipowicz-Sosnowska, A.; Emery, P.; Close, D.R.; Stevens, R.M.; Shaw, T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med., 2004, 350(25), 2572-2581.
[http://dx.doi.org/10.1056/NEJMoa032534] [PMID: 15201414]
[5]
Aletaha, D.; Smolen, J.S. Diagnosis and management of rheumatoid arthritis. JAMA, 2018, 320(13), 1360-1372.
[http://dx.doi.org/10.1001/jama.2018.13103] [PMID: 30285183]
[6]
Genovese, M.C.; Fleischmann, R.; Combe, B.; Hall, S.; Rubbert-Roth, A.; Zhang, Y.; Zhou, Y.; Mohamed, M.E.F.; Meerwein, S.; Pangan, A.L. Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): A double-blind, randomised controlled phase 3 trial. Lancet, 2018, 391(10139), 2513-2524.
[http://dx.doi.org/10.1016/S0140-6736(18)31116-4] [PMID: 29908670]
[7]
Genovese, M.C.; Kalunian, K.; Gottenberg, J.E.; Mozaffarian, N.; Bartok, B.; Matzkies, F.; Gao, J.; Guo, Y.; Tasset, C.; Sundy, J.S.; de Vlam, K.; Walker, D.; Takeuchi, T. Effect of filgotinib vs placebo on clinical response in patients with moderate to severe rheumatoid arthritis refractory to disease-modifying antirheumatic drug therapy: The FINCH 2 randomized clinical trial. JAMA, 2019, 322(4), 315-325.
[http://dx.doi.org/10.1001/jama.2019.9055] [PMID: 31334793]
[8]
Kivitz, A.J.; Gutierrez-Ureña, S.R.; Poiley, J.; Genovese, M.C.; Kristy, R.; Shay, K.; Wang, X.; Garg, J.P.; Zubrzycka-Sienkiewicz, A. Peficitinib, a JAK Inhibitor, in the treatment of moderate-to-severe rheumatoid arthritis in patients with an inadequate response to methotrexate. Arthritis Rheumatol., 2017, 69(4), 709-719.
[http://dx.doi.org/10.1002/art.39955] [PMID: 27748083]
[9]
Klareskog, L.; van der Heijde, D.; de Jager, J.P.; Gough, A.; Kalden, J.; Malaise, M.; Mola, E.M.; Pavelka, K.; Sany, J.; Settas, L.; Wajdula, J.; Pedersen, R.; Fatenejad, S.; Sanda, M. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: Double-blind randomised controlled trial. Lancet, 2004, 363(9410), 675-681.
[http://dx.doi.org/10.1016/S0140-6736(04)15640-7] [PMID: 15001324]
[10]
Emery, P.; Breedveld, F.C.; Hall, S.; Durez, P.; Chang, D.J.; Robertson, D.; Singh, A.; Pedersen, R.D.; Koenig, A.S.; Freundlich, B. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): A randomised, double-blind, parallel treatment trial. Lancet, 2008, 372(9636), 375-382.
[http://dx.doi.org/10.1016/S0140-6736(08)61000-4] [PMID: 18635256]
[11]
Lin, Y.J.; Anzaghe, M.; Schülke, S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells, 2020, 9(4), 880.
[http://dx.doi.org/10.3390/cells9040880] [PMID: 32260219]
[12]
Ma, L.; Cranney, A.; Holroyd-Leduc, J.M. Acute monoarthritis: What is the cause of my patient’s painful swollen joint? CMAJ, 2009, 180(1), 59-65.
[http://dx.doi.org/10.1503/cmaj.080183] [PMID: 19124791]
[13]
McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med., 2011, 365(23), 2205-2219.
[http://dx.doi.org/10.1056/NEJMra1004965] [PMID: 22150039]
[14]
Nagarajan, K.; Singh, A.; Tripathi, M.; Batra, U.; Grover, P.; Kapoor, G.; Goel, R.; Chauhan, S.; Malhotra, A. Evaluation of in-vitro antioxidant potency of Arnebia nobilis root extract. Pharmacologyonline, 2021, 3, 1015-1029. Available from: http://pharmacologyonline.silae.it/
[15]
Rudan, I.; Sidhu, S.; Papana, A.; Meng, S.J.; Xin-Wei, Y.; Wang, W.; Campbell-Page, R.M.; Demaio, A.R.; Nair, H.; Sridhar, D.; Theodoratou, E.; Dowman, B.; Adeloye, D.; Majeed, A.; Car, J.; Campbell, H.; Wang, W.; Chan, K.Y. Prevalence of rheumatoid arthritis in low- and middle-income countries: A systematic review and analysis. J. Glob. Health, 2015, 5(1), 010409.
[http://dx.doi.org/10.7189/jogh.05.010409] [PMID: 25969732]
[16]
Padyukov, L. Genetics of rheumatoid arthritis. Semin. Immunopathol., 2022, 44(1), 47-62.
[http://dx.doi.org/10.1007/s00281-022-00912-0] [PMID: 35088123]
[17]
Khanna, N.; Kumar, A.; Pawar, S.V. A review on rheumatoid arthritis interventions and current developments. Curr. Drug Targets, 2021, 22(4), 463-483.
[http://dx.doi.org/10.2174/1389450121999201125200558] [PMID: 33243118]
[18]
Cutolo, M.; Villaggio, B.; Craviotto, C.; Pizzorni, C.; Seriolo, B.; Sulli, A. Sex hormones and rheumatoid arthritis. Autoimmun. Rev., 2002, 1(5), 284-289.
[http://dx.doi.org/10.1016/S1568-9972(02)00064-2] [PMID: 12848982]
[19]
Raychaudhuri, S.; Sandor, C.; Stahl, E.A.; Freudenberg, J.; Lee, H.S.; Jia, X.; Alfredsson, L.; Padyukov, L.; Klareskog, L.; Worthington, J.; Siminovitch, K.A.; Bae, S.C.; Plenge, R.M.; Gregersen, P.K.; de Bakker, P.I.W. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet., 2012, 44(3), 291-296.
[http://dx.doi.org/10.1038/ng.1076] [PMID: 22286218]
[20]
Meng, W.; Zhu, Z.; Jiang, X.; Too, C.L.; Uebe, S.; Jagodic, M.; Kockum, I.; Murad, S.; Ferrucci, L.; Alfredsson, L.; Zou, H.; Klareskog, L.; Feinberg, A.P.; Ekström, T.J.; Padyukov, L.; Liu, Y. DNA methylation mediates genotype and smoking interaction in the development of anti-citrullinated peptide antibody-positive rheumatoid arthritis. Arthritis Res. Ther., 2017, 19(1), 71.
[http://dx.doi.org/10.1186/s13075-017-1276-2] [PMID: 28356135]
[21]
Krishnamurthy, A.; Joshua, V.; Haj Hensvold, A.; Jin, T.; Sun, M.; Vivar, N.; Ytterberg, A.J.; Engström, M.; Fernandes-Cerqueira, C.; Amara, K.; Magnusson, M.; Wigerblad, G.; Kato, J.; Jiménez-Andrade, J.M.; Tyson, K.; Rapecki, S.; Lundberg, K.; Catrina, S.B.; Jakobsson, P.J.; Svensson, C.; Malmström, V.; Klareskog, L.; Wähämaa, H.; Catrina, A.I. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann. Rheum. Dis., 2016, 75(4), 721-729.
[http://dx.doi.org/10.1136/annrheumdis-2015-208093] [PMID: 26612338]
[22]
Wigerblad, G.; Bas, D.B.; Fernades-Cerqueira, C.; Krishnamurthy, A.; Nandakumar, K.S.; Rogoz, K.; Kato, J.; Sandor, K.; Su, J.; Jimenez-Andrade, J.M.; Finn, A.; Bersellini Farinotti, A.; Amara, K.; Lundberg, K.; Holmdahl, R.; Jakobsson, P-J.; Malmström, V.; Catrina, A.I.; Klareskog, L.; Svensson, C.I. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann. Rheum. Dis., 2016, 75(4), 730-738.
[http://dx.doi.org/10.1136/annrheumdis-2015-208094] [PMID: 26613766]
[23]
Burmester, G.R.; Dimitriu-Bona, A.; Waters, S.J.; Winchester, R.J. Identification of three major synovial lining cell populations by monoclonal antibodies directed to Ia antigens and antigens associated with monocytes/macrophages and fibroblasts. Scand. J. Immunol., 1983, 17(1), 69-82.
[http://dx.doi.org/10.1111/j.1365-3083.1983.tb00767.x] [PMID: 6573767]
[24]
Hueber, A.J.; Asquith, D.L.; Miller, A.M.; Reilly, J.; Kerr, S.; Leipe, J.; Melendez, A.J.; McInnes, I.B. Mast cells express IL-17A in rheumatoid arthritis synovium. J. Immunol., 2010, 184(7), 3336-3340.
[http://dx.doi.org/10.4049/jimmunol.0903566] [PMID: 20200272]
[25]
Zvaifler, N.J.; Steinman, R.M.; Kaplan, G.; Lau, L.L.; Rivelis, M. Identification of immunostimulatory dendritic cells in the synovial effusions of patients with rheumatoid arthritis. J. Clin. Invest., 1985, 76(2), 789-800.
[http://dx.doi.org/10.1172/JCI112036] [PMID: 3875632]
[26]
Yang, Z.; Shen, Y.; Oishi, H.; Matteson, E.L.; Tian, L.; Goronzy, J.J.; Weyand, C.M. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl. Med., 2016, 8(331), 331ra38.
[http://dx.doi.org/10.1126/scitranslmed.aad7151] [PMID: 27009267]
[27]
Sabeh, F.; Fox, D.; Weiss, S.J. Membrane-type I matrix metalloproteinase-dependent regulation of rheumatoid arthritis synoviocyte function. J. Immunol., 2010, 184(11), 6396-6406.
[http://dx.doi.org/10.4049/jimmunol.0904068] [PMID: 20483788]
[28]
Okamoto, K.; Nakashima, T.; Shinohara, M.; Negishi-Koga, T.; Komatsu, N.; Terashima, A.; Sawa, S.; Nitta, T.; Takayanagi, H. Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol. Rev., 2017, 97(4), 1295-1349.
[http://dx.doi.org/10.1152/physrev.00036.2016] [PMID: 28814613]
[29]
Harre, U.; Georgess, D.; Bang, H.; Bozec, A.; Axmann, R.; Ossipova, E.; Jakobsson, P.J.; Baum, W.; Nimmerjahn, F.; Szarka, E.; Sarmay, G.; Krumbholz, G.; Neumann, E.; Toes, R.; Scherer, H.U.; Catrina, A.I.; Klareskog, L.; Jurdic, P.; Schett, G. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest., 2012, 122(5), 1791-1802.
[http://dx.doi.org/10.1172/JCI60975] [PMID: 22505457]
[30]
Arts, E.E.A.; Fransen, J.; Den Broeder, A.A.; van Riel, P.L.C.M.; Popa, C.D. Low disease activity (DAS28≤3.2) reduces the risk of first cardiovascular event in rheumatoid arthritis: A time-dependent Cox regression analysis in a large cohort study. Ann. Rheum. Dis., 2017, 76(10), 1693-1699.
[http://dx.doi.org/10.1136/annrheumdis-2016-210997] [PMID: 28606965]
[31]
Gaby, A.R. Alternative treatments for rheumatoid arthritis. Altern. Med. Rev., 1999, 4(6), 392-402.
[PMID: 10608912]
[32]
Ong, C.K.S.; Lirk, P.; Tan, C.H.; Seymour, R.A. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin. Med. Res., 2007, 5(1), 19-34.
[http://dx.doi.org/10.3121/cmr.2007.698] [PMID: 17456832]
[33]
Combe, B.; Landewe, R.; Daien, C.I.; Hua, C.; Aletaha, D.; Álvaro-Gracia, J.M.; Bakkers, M.; Brodin, N.; Burmester, G.R.; Codreanu, C.; Conway, R.; Dougados, M.; Emery, P.; Ferraccioli, G.; Fonseca, J.; Raza, K.; Silva-Fernández, L.; Smolen, J.S.; Skingle, D.; Szekanecz, Z.; Kvien, T.K.; van der Helm-van Mil, A.; van Vollenhoven, R. 2016 update of the EULAR recommendations for the management of early arthritis. Ann. Rheum. Dis., 2017, 76(6), 948-959.
[http://dx.doi.org/10.1136/annrheumdis-2016-210602] [PMID: 27979873]
[34]
Liu, D.; Ahmet, A.; Ward, L.; Krishnamoorthy, P.; Mandelcorn, E.D.; Leigh, R.; Brown, J.P.; Cohen, A.; Kim, H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin. Immunol., 2013, 9(1), 30.
[http://dx.doi.org/10.1186/1710-1492-9-30] [PMID: 23947590]
[35]
Whittle, S.L.; Colebatch, A.N.; Buchbinder, R.; Edwards, C.J.; Adams, K.; Englbrecht, M.; Hazlewood, G.; Marks, J.L.; Radner, H.; Ramiro, S.; Richards, B.L.; Tarner, I.H.; Aletaha, D.; Bombardier, C.; Landewé, R.B.; Müller-Ladner, U.; Bijlsma, J.W.J.; Branco, J.C.; Bykerk, V.P.; da Rocha Castelar Pinheiro, G.; Catrina, A.I.; Hannonen, P.; Kiely, P.; Leeb, B.; Lie, E.; Martinez-Osuna, P.; Montecucco, C.; Ostergaard, M.; Westhovens, R.; Zochling, J.; van der Heijde, D. Multinational evidence-based recommendations for pain management by pharmacotherapy in inflammatory arthritis: Integrating systematic literature research and expert opinion of a broad panel of rheumatologists in the 3e Initiative. Rheumatology, 2012, 51(8), 1416-1425.
[http://dx.doi.org/10.1093/rheumatology/kes032] [PMID: 22447886]
[36]
Smolen, J.S.; Landewé, R.; Breedveld, F.C.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gorter, S.; Knevel, R.; Nam, J.; Schoels, M.; Aletaha, D.; Buch, M.; Gossec, L.; Huizinga, T.; Bijlsma, J.W.J.W.; Burmester, G.; Combe, B.; Cutolo, M.; Gabay, C.; Gomez-Reino, J.; Kouloumas, M.; Kvien, T.K.; Martin-Mola, E.; McInnes, I.; Pavelka, K.; van Riel, P.; Scholte, M.; Scott, D.L.; Sokka, T.; Valesini, G.; van Vollenhoven, R.; Winthrop, K.L.; Wong, J.; Zink, A.; van der Heijde, D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann. Rheum. Dis., 2010, 69(6), 964-975.
[http://dx.doi.org/10.1136/ard.2009.126532] [PMID: 20444750]
[37]
da Silva, J.C.; Mariz, H.A.; da Rocha Júnior, L.F.; Santana de Oliveira, P.S.; Dantas, A.T.; Duarte, A.L.B.P.; da Rocha Pitta, I.; Galdino, S.L.; da Rocha Pitta, M.G. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics, 2013, 68(6), 766-771.
[http://dx.doi.org/10.6061/clinics/2013(06)07] [PMID: 23778483]
[38]
Volin, M.V.; Harlow, L.A.; Woods, J.M.; Campbell, P.L.; Amin, M.A.; Tokuhira, M.; Koch, A.E. Treatment with sulfasalazine or sulfapyridine, but not 5-aminosalicylic acid, inhibits basic fibroblast growth factor-induced endothelial cell chemotaxis. Arthritis Rheum., 1999, 42(9), 1927-1935.
[http://dx.doi.org/10.1002/1529-0131(199909)42:9<1927:AID-ANR19>3.0.CO;2-X] [PMID: 10513809]
[39]
Fox, R.I.; Herrmann, M.L.; Frangou, C.G.; Wahl, G.M.; Morris, R.E.; Kirschbaum, B.J. How does leflunomide modulate the immune response in rheumatoid arthritis? BioDrugs, 1999, 12(4), 301-315.
[http://dx.doi.org/10.2165/00063030-199912040-00007] [PMID: 18031184]
[40]
Gibofsky, A. Combination therapy for rheumatoid arthritis in the era of biologicals. HSS J., 2006, 2(1), 30-41.
[http://dx.doi.org/10.1007/s11420-005-0133-z] [PMID: 18751844]
[41]
Mann, D.L. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circ. Res., 2015, 116(7), 1254-1268.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.302317] [PMID: 25814686]
[42]
Curtis, J.R.; Singh, J.A. Use of biologics in rheumatoid arthritis: Current and emerging paradigms of care. Clin. Ther., 2011, 33(6), 679-707.
[http://dx.doi.org/10.1016/j.clinthera.2011.05.044] [PMID: 21704234]
[43]
Gómez-Gómez, G.J. Current stage in inflammatory bowel disease: What is next? World J. Gastroenterol., 2015, 21(40), 11282-11303.
[http://dx.doi.org/10.3748/wjg.v21.i40.11282]
[44]
Hodge, J.A.; Kawabata, T.T.; Krishnaswami, S.; Clark, J.D.; Telliez, J-B.; Dowty, M.E.; Menon, S.; Lamba, M.; Zwillich, S. The mechanism of action of tofacitinib: An oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin. Exp. Rheumatol., 2016, 34(2), 318-328.
[PMID: 26966791]
[45]
Cada, D.J.; Demaris, K.; Levien, T.L.; Baker, D.E. Tofacitinib. Hosp. Pharm., 2013, 48(5), 413-424.
[http://dx.doi.org/10.1310/hpj4805-413] [PMID: 24421498]
[46]
Crofford, L. J. Use of NSAIDs in treating patients with arthritis. Arthritis. Res. Ther., 2013, 15(3)(3), S2.
[http://dx.doi.org/10.1186/ar4174]
[47]
Khalil, N.Y.; Aldosari, K.F. Meloxicam. Profiles Drug Subst. Excip. Relat. Methodol., 2020, 45, 159-197.
[http://dx.doi.org/10.1016/bs.podrm.2019.10.006] [PMID: 32164967]
[48]
van de Laar, M.; Pergolizzi, J.V., Jr; Mellinghoff, H-U.; Merchante, I.M.; Nalamachu, S.; O’Brien, J.; Perrot, S.; Raffa, R.B. Pain treatment in arthritis-related pain: Beyond NSAIDs. Open Rheumatol. J., 2012, 6(1), 320-330.
[http://dx.doi.org/10.2174/1874312901206010320] [PMID: 23264838]
[49]
Tanaka, Y. Corticosteroids for Treatment of Rheumatoid Arthritis. Jpn. J. Clin. Med., 2005, 63(1), 468-471.
[50]
Brown, P.M.; Pratt, A.G.; Isaacs, J.D. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat. Rev. Rheumatol., 2016, 12(12), 731-742.
[http://dx.doi.org/10.1038/nrrheum.2016.175] [PMID: 27784891]
[51]
Kasarełło, K.; Cudnoch-Jędrzejewska, A.; Członkowski, A.; Mirowska-Guzel, D. Mechanism of action of three newly registered drugs for multiple sclerosis treatment. Pharmacol. Rep., 2017, 69(4), 702-708.
[http://dx.doi.org/10.1016/j.pharep.2017.02.017] [PMID: 28550802]
[52]
Linares, V.; Alonso, V.; Domingo, J.L. Oxidative stress as a mechanism underlying sulfasalazine-induced toxicity. Expert Opin. Drug Saf., 2011, 10(2), 253-263.
[http://dx.doi.org/10.1517/14740338.2011.529898] [PMID: 21219240]
[53]
Rainsford, K.D.; Parke, A.L.; Clifford-Rashotte, M.; Kean, W.F. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology, 2015, 23(5), 231-269.
[http://dx.doi.org/10.1007/s10787-015-0239-y] [PMID: 26246395]
[54]
Simon, L.S. DMARDs in the treatment of rheumatoid arthritis: Current agents and future developments. Int. J. Clin. Pract., 2000, 54(4), 243-249.
[http://dx.doi.org/10.1111/j.1742-1241.2000.tb11894.x] [PMID: 10912314]
[55]
Furst, D.E. Anakinra: Review of recombinant human interleukin-I receptor antagonist in the treatment of rheumatoid arthritis. Clin. Ther., 2004, 26(12), 1960-1975.
[http://dx.doi.org/10.1016/j.clinthera.2004.12.019] [PMID: 15823761]
[56]
Lee, E.B. A review of sarilumab for the treatment of rheumatoid arthritis. Immunotherapy, 2018, 10(1), 57-65.
[http://dx.doi.org/10.2217/imt-2017-0075] [PMID: 29043871]
[57]
Biggioggero, M.; Crotti, C.; Becciolini, A.; Favalli, E.G. Tocilizumab in the treatment of rheumatoid arthritis: An evidence-based review and patient selection. Drug Des. Devel. Ther., 2018, 13, 57-70.
[http://dx.doi.org/10.2147/DDDT.S150580] [PMID: 30587928]
[58]
Tanaka, Y. A review of upadacitinib in rheumatoid arthritis. Mod. Rheumatol., 2020, 30(5), 779-787.
[http://dx.doi.org/10.1080/14397595.2020.1782049] [PMID: 32530345]
[59]
Al-Salama, Z.T.; Scott, L.J. Baricitinib: A review in rheumatoid arthritis. Drugs, 2018, 78(7), 761-772.
[http://dx.doi.org/10.1007/s40265-018-0908-4] [PMID: 29687421]
[60]
Mohanty, S.; Panda, S.; Bhanja, A.; Pal, A.; Chandra, S.S. Novel drug delivery systems for rheumatoid arthritis: An approach to better patient compliance. Biomed. Pharmacol. J., 2019, 12(1), 157-170.
[http://dx.doi.org/10.13005/bpj/1624]
[61]
Higaki, M.; Ishihara, T.; Izumo, N.; Takatsu, M.; Mizushima, Y. Treatment of experimental arthritis with poly(D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann. Rheum. Dis., 2005, 64(8), 1132-1136.
[http://dx.doi.org/10.1136/ard.2004.030759] [PMID: 15695536]
[62]
Wadhwa, R.; Paudel, K.R.; Chin, L.H.; Hon, C.M.; Madheswaran, T.; Gupta, G.; Panneerselvam, J.; Lakshmi, T.; Singh, S.K.; Gulati, M.; Dureja, H.; Hsu, A.; Mehta, M.; Anand, K.; Devkota, H.P.; Chellian, J.; Chellappan, D.K.; Hansbro, P.M.; Dua, K. Anti-Inflammatory and anticancer activities of naringenin-loaded liquid crystalline nanoparticles in vitro. J. Food Biochem., 2021, 45(1), e13572.
[http://dx.doi.org/10.1111/jfbc.13572]
[63]
Raffin, R.P.; Lima, A.; Lorenzoni, R.; Antonow, M.B.; Turra, C.; Alves, M.P.; Fagan, S.B. Natural lipid nanoparticles containing nimesulide: Synthesis, characterization and in vivo antiedematogenic and antinociceptive activities. J. Biomed. Nanotechnol., 2012, 8(2), 309-315.
[http://dx.doi.org/10.1166/jbn.2012.1377] [PMID: 22515082]
[64]
Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother., 2019, 109, 2561-2572.
[http://dx.doi.org/10.1016/j.biopha.2018.11.116] [PMID: 30551516]
[65]
Khandare, J.J.; Jayant, S.; Singh, A.; Chandna, P.; Wang, Y.; Vorsa, N.; Minko, T. Dendrimer versus linear conjugate: Influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug. Chem., 2006, 17(6), 1464-1472.
[http://dx.doi.org/10.1021/bc060240p] [PMID: 17105225]
[66]
Türker, S. Erdoğan, S.; Özer, Y.A.; Bilgili, H.; Deveci, S. Enhanced efficacy of diclofenac sodium-loaded lipogelosome formulation in intra-articular treatment of rheumatoid arthritis. J. Drug Target., 2008, 16(1), 51-57.
[http://dx.doi.org/10.1080/10611860701725191] [PMID: 18172820]
[67]
Jeengar, M.K.; Rompicharla, S.V.K.; Shrivastava, S.; Chella, N.; Shastri, N.R.; Naidu, V.G.M.; Sistla, R. Emu oil based nano-emulgel for topical delivery of curcumin. Int. J. Pharm., 2016, 506(1-2), 222-236.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.052] [PMID: 27109049]
[68]
Khichariya, A.; Jeswani, G.; Choudhary, R.; Alexander, A.; Nakhate, K.T.; Ramchandra Badwaik, H. Formulation of plumbagin-loaded microemulsion: Evaluation of anti-rheumatoid efficacy in Wistar rat model. J. Mol. Liq., 2022, 363, 119851.
[http://dx.doi.org/10.1016/j.molliq.2022.119851]
[69]
Koo, O.M.Y.; Rubinstein, I.; Önyüksel, H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm. Res., 2011, 28(4), 776-787.
[http://dx.doi.org/10.1007/s11095-010-0330-4] [PMID: 21132352]
[70]
Kapoor, B.; Singh, S.K.; Gulati, M.; Gupta, R.; Vaidya, Y. Application of liposomes in treatment of rheumatoid arthritis: Quo vadis. ScientificWorldJournal, 2014, 2014, 1-17.
[http://dx.doi.org/10.1155/2014/978351] [PMID: 24688450]
[71]
Ghorani, V.; Marefati, N.; Shakeri, F.; Rezaee, R.; Boskabady, M.; Boskabady, M.H. The effects of Allium cepa extract on tracheal responsiveness, lung inflammatory cells and phospholipase A2 level in asthmatic rats. Iran. J. Allergy Asthma Immunol., 2018, 17(3), 221-231.
[PMID: 29908539]
[72]
Arulmozhi, S.; Mazumder, P.M.; Sathiyanarayanan, L.; Ashok, P. Anti-arthritic and antioxidant activity of leaves of Alstonia scholaris Linn. R.Br. Eur. J. Integr. Med., 2011, 3(2), e83-e90.
[http://dx.doi.org/10.1016/j.eujim.2011.04.019]
[73]
Liu, J.; Wang, Z.T.; Ji, L.L.; Ge, B.X. Inhibitory effects of neoandrographolide on nitric oxide and prostaglandin E2 production in LPS-stimulated murine macrophage. Mol. Cell. Biochem., 2007, 298(1-2), 49-57.
[http://dx.doi.org/10.1007/s11010-006-9349-6] [PMID: 17109078]
[74]
Magdalou, J.; Chen, L.; Wang, H.; Qin, J.; Wen, Y.; Li, X.; Shang, L.; Li, J. Angelica sinensis and osteoarthritis: A natural therapeutic link? Biomed. Mater. Eng., 2015, 25(s1)(Suppl.), 179-186.
[http://dx.doi.org/10.3233/BME-141250] [PMID: 25538068]
[75]
Nadkarni, K.M. Indian Materia Medica; Popular Pakashan Pvt. Ltd: Bombay, India, 2009, pp. 320-325.
[76]
Kast, R.E. Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha. Int. Immunopharmacol., 2001, 1(12), 2197-2199.
[http://dx.doi.org/10.1016/S1567-5769(01)00146-1] [PMID: 11710548]
[77]
Umar, S.; Umar, K.; Sarwar, A.H.M.G.; Khan, A.; Ahmad, N.; Ahmad, S.; Katiyar, C.K.; Husain, S.A.; Khan, H.A. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine, 2014, 21(6), 847-856.
[http://dx.doi.org/10.1016/j.phymed.2014.02.001] [PMID: 24667331]
[78]
Mueller, M.; Weinmann, D.; Toegel, S.; Holzer, W.; Unger, F.M.; Viernstein, H. Compounds from Caesalpinia sappan with anti-inflammatory properties in macrophages and chondrocytes. Food Funct., 2016, 7(3), 1671-1679.
[http://dx.doi.org/10.1039/C5FO01256B] [PMID: 26951869]
[79]
Tanwar, A.; Chawla, R.; Ansari, M.M. Neha; Thakur, P.; Chakotiya, A.S.; Goel, R.; Ojha, H.; Asif, M.; Basu, M.; Arora, R.; Khan, H.A. In vivo anti-arthritic efficacy of Camellia sinensis (L.) in collagen induced arthritis model. Biomed. Pharmacother., 2017, 87, 92-101.
[http://dx.doi.org/10.1016/j.biopha.2016.12.089] [PMID: 28049097]
[80]
Feng, X.; Lu, J.; Xin, H.; Zhang, L.; Wang, Y.; Tang, K. Anti-arthritic active fraction of Capparis spinosa L. fruits and its chemical constituents. Yakugaku Zasshi, 2011, 131(3), 423-429.
[http://dx.doi.org/10.1248/yakushi.131.423] [PMID: 21372539]
[81]
Chippada, S.; Volluri, S.; Bammidi, S.; Vangalapati, M. in vitro anti-arthritic activity of methanolic extract of Centella asiatica. Biosci. Biotechnol. Res. Asia, 2011, 8(1), 337-340.
[http://dx.doi.org/10.13005/bbra/868]
[82]
Vetal, S.; Bodhankar, S.L.; Mohan, V.; Thakurdesai, P.A. Anti-inflammatory and anti-arthritic activity of type-A procyanidine polyphenols from bark of Cinnamomum zeylanicum in rats. Food Sci. Hum. Wellness, 2013, 2(2), 59-67.
[http://dx.doi.org/10.1016/j.fshw.2013.03.003]
[83]
Narendhirakannan, R.T.; Kandaswamy, M.; Subramanian, S. Anti-inflammatory activity of Cleome gynandra L. on hematological and cellular constituents in adjuvant-induced arthritic rats. J. Med. Food, 2005, 8(1), 93-99.
[http://dx.doi.org/10.1089/jmf.2005.8.93] [PMID: 15857216]
[84]
Ragavi, R.; Surendran, S.A. Commiphora mukul: An overview. Res. J. Pharm. Technol., 2018, 11(7), 3205-3208.
[http://dx.doi.org/10.5958/0974-360X.2018.00589.9]
[85]
Rajeshwari, C.U.; Siri, S.; Andallu, B. Antioxidant and antiarthritic potential of coriander (Coriandrum sativum L.) leaves. ESPEN J., 2012, 7(6), e223-e228.
[http://dx.doi.org/10.1016/j.clnme.2012.09.005]
[86]
Mathai, N.J.; Sony, D.; Mane, P.P.; Shetty, C.B.; Latheef, L.; Kamath, K.; Khaleed, M.; Kochikuzhyil, B.M.; Baliga, M.S. Antiarthritic effects of turmeric and curcumin: A revisit. In: Polyphenols: Prevention and Treatment of Human Disease; Academic Press, 2018; pp. 247-252.
[http://dx.doi.org/10.1016/B978-0-12-813008-7.00020-5]
[87]
Mishra, N.K.; Bstia, S.; Mishra, G.; Chowdary, A.K.; Patra, S. Anti-arthritic activity of Glycyrrhiza glabra, Boswellia serrata and their synergistic activity in combined formulation studied in freund’s adjuvant induced arthritic rats. J. Pharm. Educ. Res, 2011, 2, 92-98.
[88]
Mehta, A.; Sethiya, N.K.; Mehta, C.; Shah, G.B. Anti–arthritis activity of roots of Hemidesmus indicus R.Br. (Anantmul) in rats. Asian Pac. J. Trop. Med., 2012, 5(2), 130-135.
[http://dx.doi.org/10.1016/S1995-7645(12)60011-X] [PMID: 22221757]
[89]
Gundamaraju, R.; Sheeba, D.S.; Ramesh, C. Evaluation of anti-arthritic effects of Lantana camara var Linn. using acute model on albino rats. Int. J. Adv. Pharm. Sci., 2012, 3, 272-277.
[90]
Nadkarni, K.M. Indian Materia Medica; Poupular Pakashan Pvt. Ltd: Bombay, India, 2009, pp. 180-186.
[91]
Kripa, K.G.; Chamundeeswari, D.; Thanka, J.; Uma Maheswara Reddy, C. Modulation of inflammatory markers by the ethanolic extract of Leucas aspera in adjuvant arthritis. J. Ethnopharmacol., 2011, 134(3), 1024-1027.
[http://dx.doi.org/10.1016/j.jep.2011.01.010] [PMID: 21251972]
[92]
Chen, W.C.; Liou, S.S.; Tzeng, T.F.; Lee, S.L.; Liu, I.M. Wound repair and anti-inflammatory potential of Lonicera japonica in excision wound-induced rats. BMC Complement. Altern. Med., 2012, 12(1), 226.
[http://dx.doi.org/10.1186/1472-6882-12-226] [PMID: 23173654]
[93]
Aggarwal, A.; Mali, R.R. Ocimum tenuiflorum: A medicinal plants with its versatile uses. Int. J. Rec. Adv. Sci. Technol., 2015, 2(2), 1-10.
[http://dx.doi.org/10.30750/ijrast.221]
[94]
Mali, S.M.; Sinnathambi, A.; Kapase, C.U.; Bodhankar, S.L.; Mahadik, K.R. Anti-arthritic activity of standardised extract of Phyllanthus amarus in Freund’s complete adjuvant induced arthritis. Biomed. Aging Pathol., 2011, 1(3), 185-190.
[http://dx.doi.org/10.1016/j.biomag.2011.09.004]
[95]
Yende, S.; Sannapuri, V.; Vyawahare, S.UN. H. Antirheumatoid activity of aqueous extract of Piper longum on freund’s adjuvant-induced arthritis in rats. Int. J. Pharm. Sci. Res., 2010, 1(9), 129-133.
[http://dx.doi.org/10.13040/ijpsr.0975-82321(9-s)]
[96]
Gautam, R.K.; Sharma, S.; Sharma, K.; Gupta, G. Evaluation of antiarthritic activity of butanol fraction of Punica granatum Linn. rind extract against freund’s complete adjuvant-induced arthritis in rats. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(1), 53-62.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018025137] [PMID: 29773000]
[97]
Hussain, A.; Aslam, B.; Muhammad, F.; Faisal, M.N.; Kousar, S.; Mushtaq, A.; Bari, M.U. Anti-arthritic activity of Ricinus communis L. and Withania somnifera L. extracts in adjuvant-induced arthritic rats via modulating inflammatory mediators and subsiding oxidative stress. Iran. J. Basic Med. Sci., 2021, 24(7), 951-961.
[http://dx.doi.org/10.22038/ijbms.2021.55145.12355] [PMID: 34712426]
[98]
Gokhale, A.B.; Damre, A.S.; Kulkarni, K.R.; Saraf, M.N. Preliminary evaluation of anti-inflammatory and anti-arthritic activity of S. lappa, A. speciosa and A. aspera. Phytomedicine, 2002, 9(5), 433-437.
[http://dx.doi.org/10.1078/09447110260571689] [PMID: 12222664]
[99]
Ramprasath, V.R.; Shanthi, P.; Sachdanandam, P. Anti-inflammatory effect of Semecarpus anacardium Linn. Nut extract in acute and chronic inflammatory conditions. Biol. Pharm. Bull., 2004, 27(12), 2028-2031.
[http://dx.doi.org/10.1248/bpb.27.2028] [PMID: 15577226]
[100]
Gupta, S.R.; Nirmal, S.A.; Patil, R.Y.; Asane, G.S. Anti-arthritic activity of various extracts of Sida rhombifolia aerial parts. Nat. Prod. Res., 2009, 23(8), 689-695.
[http://dx.doi.org/10.1080/14786410802242778] [PMID: 19418351]
[101]
Devi, K.P. Milk Thistle (Silybum marianum) Nonvitamin and Nonmineral Nutritional Supplements; Elsevier, Academic Press, 2019, p. 321-325.
[102]
Lim, D.; Lee, E.; Jeong, E.; Jang, Y.P.; Kim, J. Stemona tuberosa prevented inflammation by suppressing the recruitment and the activation of macrophages in vivo and in vitro. J. Ethnopharmacol., 2015, 160, 41-51.
[http://dx.doi.org/10.1016/j.jep.2014.11.032] [PMID: 25476485]
[103]
Ekambaram, S.; Perumal, S.S.; Subramanian, V. Evaluation of antiarthritic activity of Strychnos potatorum Linn seeds in Freund’s adjuvant induced arthritic rat model. BMC Complement. Altern. Med., 2010, 10(1), 56.
[http://dx.doi.org/10.1186/1472-6882-10-56] [PMID: 20939932]
[104]
Nair, V.; Singh, S.; Gupta, Y.K. Anti-arthritic and disease modifying activity of Terminalia chebula Retz. in experimental models. J. Pharm. Pharmacol., 2010, 62(12), 1801-1806.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01193.x] [PMID: 21054408]
[105]
Chhatre, S.; Nesari, T.; Kanchan, D.; Somani, G.; Sathaye, S. Phytopharmacological overview of Tribulus terrestris. Pharmacogn. Rev., 2014, 8(15), 45-51.
[http://dx.doi.org/10.4103/0973-7847.125530] [PMID: 24600195]
[106]
G, S.; G L, S.; Pushpan, C.K.; Nambisan, B.; A, H. Evaluation of anti-arthritic potential of Trigonella foenum graecum L. (Fenugreek) mucilage against rheumatoid arthritis. Prostaglandins Other Lipid Mediat., 2018, 138, 48-53.
[http://dx.doi.org/10.1016/j.prostaglandins.2018.08.002] [PMID: 30107253]
[107]
Li, H.; Hu, R.; Xu, S.; Dai, Z.; Wu, X.; Hu, J.; Liao, X. Tripterygium wilfordii Hook. Evid. Based Complement. Alternat. Med., 2022, 2022, 3151936.
[http://dx.doi.org/10.1155/2022/3151936]
[108]
Xie, T.Z.; Zhao, Y.L.; Wang, H.; Chen, Y.C.; Wei, X.; Wang, Z.J.; He, Y.J.; Zhao, L.X.; Luo, X.D. New steroidal alkaloids with anti-inflammatory and analgesic effects from Veratrum grandiflorum. J. Ethnopharmacol., 2022, 293, 115290.
[http://dx.doi.org/10.1016/j.jep.2022.115290] [PMID: 35452774]
[109]
Gill, B.S.; Mehra, R. Navgeet; Kumar, S. Vitex negundo and its medicinal value. Mol. Biol. Rep., 2018, 45(6), 2925-2934.
[http://dx.doi.org/10.1007/s11033-018-4421-3] [PMID: 30311123]
[110]
Khan, M.A.; Subramaneyaan, M.; Arora, V.K.; Banerjee, B.D.; Ahmed, R.S. Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. J. Complement. Integr. Med., 2015, 12(2), 117-125.
[http://dx.doi.org/10.1515/jcim-2014-0075] [PMID: 25803089]
[111]
Lin, B.; Zhao, Y.; Han, P.; Yue, W.; Ma, X.Q.; Rahman, K.; Zheng, C.J.; Qin, L.P.; Han, T. Anti-arthritic activity of Xanthium strumarium L. extract on complete Freund׳s adjuvant induced arthritis in rats. J. Ethnopharmacol., 2014, 155(1), 248-255.
[http://dx.doi.org/10.1016/j.jep.2014.05.023] [PMID: 24862493]
[112]
Cheeke, P.R.; Piacente, S.; Oleszek, W. Anti-inflammatory and anti-arthritic effects of yucca schidigera: A review. J. Inflamm., 2006, 3(1), 6.
[http://dx.doi.org/10.1186/1476-9255-3-6] [PMID: 16571135]
[113]
Kamboj, A.; Saluja, A. Phytopharmacological review of Xanthium strumarium L. (Cocklebur). Int. J. Gre. Pharm., 2010, 4(3), 129-139.
[http://dx.doi.org/10.4103/0973-8258.69154]
[114]
Khan, Y.; Shah, S.; Ullah, S. Ethnomedicinal, pharmacological and phytochemical evaluation of Xanthium strumarium L. Int. J. Sci. Res. Sci. Eng. Technol., 2020, 11(7), 587-595.
[115]
Patil, M.V.K.; Kandhare, A.D.; Bhise, S.D. Anti-arthritic and anti-inflammatory activity of Xanthium srtumarium L. ethanolic extract in Freund’s complete adjuvant induced arthritis. Biomed. Aging Pathol., 2012, 2(1), 6-15.
[http://dx.doi.org/10.1016/j.biomag.2012.01.002]
[116]
Jinous, A. Phytochemistry and pharmacological properties of Ruta graveolens L. J. Med. Plants Res., 2012, 6(23), 3942-3949.
[http://dx.doi.org/10.5897/JMPR12.040]
[117]
Colucci-D’Amato, L.; Cimaglia, G. Ruta graveolens as a potential source of neuroactive compounds to promote and restore neural functions. J. Tradit. Complement. Med., 2020, 10(3), 309-314.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.002] [PMID: 32670826]
[118]
Vinegar, R.; Schreiber, W.; Hugo, R. Biphasic development of carrageenin edema in rats. J. Pharmacol. Exp. Ther., 1969, 166(1), 96-103.
[PMID: 5776026]
[119]
Ratheesh, M. Anti-Inflammatory activity of Ruta graveolens Linn on carrageenan induced paw edema in wistar male rats. Afr. J. Biotechnol., 2007, 6(10), 1209-1211.
[120]
Endale, M.; Lee, W.M.; Kwak, Y.S.; Kim, N.M.; Kim, B.K.; Kim, S.H.; Cho, J.; Kim, S.; Park, S.C.; Yun, B.S.; Ko, D.; Rhee, M. Torilin ameliorates type II collagen-induced arthritis in mouse model of rheumatoid arthritis. Int. Immunopharmacol., 2013, 16(2), 232-242.
[http://dx.doi.org/10.1016/j.intimp.2013.04.012] [PMID: 23623942]
[121]
Chowdhury, A.K.; Steinberger, E. Effect of 5alpha reduced androgens on sex accessory organs, initiation and maintenance of spermatogenesis in the rat. Biol. Reprod., 1975, 12(5), 609-617.
[http://dx.doi.org/10.1095/biolreprod12.5.609] [PMID: 1220829]
[122]
Khouri, N.A.; El-Akawi, Z. Antiandrogenic activity of Ruta graveolens L in male Albino rats with emphasis on sexual and aggressive behavior. Neuroendocrinol. Lett., 2005, 26(6), 823-829.
[PMID: 16380694]
[123]
Mahmoud, A. Antihyperglycemic, antihyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens infusion and rutin in nicotinamide. Diabetologia, 2010, 39, 15-35.
[124]
Liao, K.; Yin, M. Individual and combined antioxidant effects of seven phenolic agents in human erythrocyte membrane ghosts and phosphatidylcholine liposome systems: Importance of the partition coefficient. J. Agric. Food Chem., 2000, 48(6), 2266-2270.
[http://dx.doi.org/10.1021/jf990946w] [PMID: 10888534]
[125]
Raz, I.; Eldor, R.; Cernea, S.; Shafrir, E. Diabetes: Insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab. Res. Rev., 2005, 21(1), 3-14.
[http://dx.doi.org/10.1002/dmrr.493] [PMID: 15386813]
[126]
Pathak, S.; Multani, A.; Banerji, P.; Banerji, P. Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer. Int. J. Oncol., 2003, 23(4), 975-982.
[http://dx.doi.org/10.3892/ijo.23.4.975] [PMID: 12963976]
[127]
Ratheesh, M.; Shyni, G.L.; Sindhu, G.; Helen, A. Protective effects of isolated polyphenolic and alkaloid fractions of Ruta graveolens L. on acute and chronic models of inflammation. Inflammation, 2010, 33(1), 18-24.
[http://dx.doi.org/10.1007/s10753-009-9154-y] [PMID: 19777330]
[128]
Negi, S.; Bisht, V.K.; Bhandari, A.K.; Bhatt, V.P.; Sati, M.K.; Mohanty, J.P.; Sundriyal, R.C. Antidiarrheal activity of methanol extract and major essential oil contents of Saussurea lappa Clarke. Afr. J. Pharm. Pharmacol., 2013, 7(8), 474-477.
[http://dx.doi.org/10.5897/AJPP2012.1532]
[129]
Mitra, S.K.; Gopumadhavan, S.; Hemavathi, T.S.; Muralidhar, T.S.; Venkataranganna, M.V. Protective effect of UL-409, a herbal formulation against physical and chemical factor induced gastric and duodenal ulcers in experimental animals. J. Ethnopharmacol., 1996, 52(3), 165-169.
[http://dx.doi.org/10.1016/0378-8741(95)01414-4] [PMID: 8771458]
[130]
Sutar, N.; Garai, R.; Sharma, U.S.; Singh, N.; Roy, S.D. Antiulcerogenic activity of Saussurea lappa root. Int. J. Pharm. Life Sci., 2011, 2, 516-520.
[131]
Hasson, S.S.A.; Al-Balushi, M.S. KhazinaAlharthy; Al-Busaidi, J.; MunaSulimanAldaihani; Othman, M.S.; Said, E.A.; Habal, O.; Sallam, T.A.; Aljabri, A.A.; AhmedIdris, M. Evaluation of anti–resistant activity of Auklandia(Saussurea lappa) root against some human pathogens. Asian Pac. J. Trop. Biomed., 2013, 3(7), 557-562.
[http://dx.doi.org/10.1016/S2221-1691(13)60113-6] [PMID: 23836413]
[132]
Robinson, A.; Kumar, T.V.; Sreedhar, E.; Naidu, V.G.M.; Krishna, S.R.; Babu, K.S.; Srinivas, P.V.; Rao, J.M. A new sesquiterpene lactone from the roots of Saussurea lappa: Structure–anticancer activity study. Bioorg. Med. Chem. Lett., 2008, 18(14), 4015-4017.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.008] [PMID: 18579374]
[133]
Yaeesh, S.; Jamal, Q.; Shah, A.J.; Gilani, A.H. Antihepatotoxic activity of Saussurea lappa extract on D-galactosamine and lipopolysaccharide-induced hepatitis in mice. Phytother. Res., 2010, 24(S2)(2), S229-S232.
[http://dx.doi.org/10.1002/ptr.3089] [PMID: 20041433]
[134]
Chen, H.C.; Chou, C.K.; Lee, S.D.; Wang, J.C.; Yeh, S.F. Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Res., 1995, 27(1-2), 99-109.
[http://dx.doi.org/10.1016/0166-3542(94)00083-K] [PMID: 7486962]
[135]
Webster, G.L. Classification of the Euphorbiaceae. Ann. Mo. Bot. Gard., 1994, 81(1), 3-32.
[http://dx.doi.org/10.2307/2399908]
[136]
Yang, Y.; Chen, X.; Luan, F.; Wang, M.; Wang, Z.; Wang, J.; He, X. Euphorbia helioscopia L.: A phytochemical and pharmacological overview. Phytochemistry, 2021, 184, 112649.
[http://dx.doi.org/10.1016/j.phytochem.2020.112649] [PMID: 33440297]
[137]
Kinghorn, A.D.; Evans, F.J. A biological screen of selected species of the genus Euphorbia for skin irritant effects. Planta Med., 1975, 28(4), 326-335.
[PMID: 1208681]
[138]
Ur, M.; Khattak, R.; Farhat, A.; Khan, M.; Ur, R.; Khattak, S.; Muhammad, M. Screening of crude phytochemicals and antimicrobial activities of selected medicinal plants of Peshawar region Khyber Pakhtoon Khawa Pakistan. Middle East J. Sci. Res., 2011, 9(2), 200-208.
[139]
Wu, T.S.; Lin, Y.M.; Haruna, M.; Pan, D.J.; Shingu, T.; Chen, Y.; Hsu, H.Y.; Nakano, T.; Lee, K.H. Antitumor agents, 119. Kansuiphorins A and B, two novel antileukemic diterpene esters from Euphorbia kansui. J. Nat. Prod., 1991, 54(3), 823-829.
[http://dx.doi.org/10.1021/np50075a011] [PMID: 1955882]
[140]
Nazir, M.; Ahmad, W.; Kreiser, W. Isolation and NMR-assignments of 19αH-Lupeol from E. helioscopia Linn (N.O. Euphorbiaceae). Pak. J. Sci. Ind. Res., 1998, 41, 6-10.
[141]
Tao, H.W.; Hao, X.J.; Liu, P.P.; Zhu, W.M. Cytotoxic macrocyclic diterpenoids from Euphorbia helioscopia. Arch. Pharm. Res., 2008, 31(12), 1547-1551.
[http://dx.doi.org/10.1007/s12272-001-2149-3] [PMID: 19099222]
[142]
Kawase, A.; Kutani, N. Some properties of a new flavonoid, Tithymalin, isolated from the herbs of Euphorbia helioscopia Linnaeous. Agric. Biol. Chem., 1968, 32(1), 121-122.
[http://dx.doi.org/10.1080/00021369.1968.10859027]
[143]
Ghen, Y.; Tang, Z.J.; Jiang, F.X.; Zhang, X.X.; Lao, A.N. [Studies on the active principles of Ze-Qi (Euphorbia helioscopia L.), a drug used for chronic bronchitis (I) (author’s transl)]. Yao Xue Xue Bao, 1979, 14(2), 91-95.
[PMID: 506714]
[144]
Lee, S.H.; Tanaka, T.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XCV. Isolation and characterization of helioscopinins and helioscopins, four new hydrolyzable tannins from Euphorbia helioscopia L. (1). Chem. Pharm. Bull., 1990, 38(6), 1518-1523.
[http://dx.doi.org/10.1248/cpb.38.1518]
[145]
Zhang, W.; Guo, Y.W. Chemical studies on the constituents of the chinese medicinal herb Euphorbia helioscopia L. Chem. Pharm. Bull., 2006, 54(7), 1037-1039.
[http://dx.doi.org/10.1248/cpb.54.1037] [PMID: 16819227]
[146]
Singh, A.; Chibber, P.; Kolimi, P.; Malik, T.A.; Kapoor, N.; Kumar, A.; Kumar, N.; Gandhi, S.G.; Singh, S.; Abdullah, S.T.; Vishwakarma, R.; Singh, G. Rohitukine inhibits NF-κB activation induced by LPS and other inflammatory agents. Int. Immunopharmacol., 2019, 69, 34-49.
[http://dx.doi.org/10.1016/j.intimp.2019.01.015] [PMID: 30665042]
[147]
Kong, K.W.; Mat Junit, S.; Aminudin, N.; Abdul Aziz, A. Phytochemicals in Barringtonia species: Linking their traditional uses as food and medicine with current research. J. Herb. Med., 2020, 19, 100299.
[http://dx.doi.org/10.1016/j.hermed.2019.100299]
[148]
Gowri, P.M.; Tiwari, A.K.; Ali, A.Z.; Rao, J.M. Inhibition of α-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds. Phytother. Res., 2007, 21(8), 796-799.
[http://dx.doi.org/10.1002/ptr.2176] [PMID: 17533638]
[149]
Behbahani, M.; Tiwari, A.K.; Ali, A.M.; Muse, R.; Mohd, N.B. Anti-oxidant and anti-inflammatory activities of leaves of Barringtonia racemosa. J. Med. Plants Res., 2007, 1(5), 95-102.
[http://dx.doi.org/10.5897/JMPR.9000106]
[150]
Nielen, M.M.J.; van Schaardenburg, D.; Reesink, H.W.; Twisk, J.W.R.; van de Stadt, R.J.; van der Horst-Bruinsma, I.E.; de Koning, M.H.M.T.; Habibuw, M.R.; Dijkmans, B.A.C. Simultaneous development of acute phase response and autoantibodies in preclinical rheumatoid arthritis. Ann. Rheum. Dis., 2006, 65(4), 535-537.
[http://dx.doi.org/10.1136/ard.2005.040659] [PMID: 16079166]
[151]
Yeh, E.T.H. CRP as a mediator of disease. Circulation, 2004, 109(21 Suppl. 1), II11-4.
[http://dx.doi.org/10.1161/01.CIR.0000129507.12719.80]
[152]
Dianita, R.; Jantan, I. Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus Premna: A review. Pharm. Biol., 2017, 55(1), 1715-1739.
[http://dx.doi.org/10.1080/13880209.2017.1323225] [PMID: 28486830]
[153]
Rajendran, R. L, S.; R, M.S.; N, S.B. Cardiac stimulant activity of bark and wood of Premna serratifolia. Bangladesh J. Pharmacol., 2008, 3(2), 107-113.
[http://dx.doi.org/10.3329/bjp.v3i2.952]
[154]
Gopal, R.H.; Purushothaman, K.K. Effect of plant isolates on coagulation of blood: An in-vitro study. Bull. Med. Ethnobot. Res., 1984, 5, 171-177.
[155]
Rathore, R.S.; Prakash, A.; Singh, P.P. Premna integre-folia Linn, a preliminary study of anti-inflammatory activity. Rheumatism, 1977, 12, 130-134.
[156]
Dash, G.K.; Patrolm, C.P.; Maiti, A.K. A study on the anti-hyperglycaemic effect of roots of Premna corymbosa Rottl. J. Nat. Rem., 2005, 5, 31-34.
[157]
Desrivot, J.; Waikedre, J.; Cabalion, P.; Herrenknecht, C.; Bories, C.; Hocquemiller, R.; Fournet, A. Antiparasitic activity of some new caledonian medicinal plants. J. Ethnopharmacol., 2007, 112(1), 7-12.
[http://dx.doi.org/10.1016/j.jep.2007.01.026] [PMID: 17329051]
[158]
Basha, N.S. Evaluation of in vitro antioxidant activity of stem-bark and wood of Premna serratifolia Linn., (Verbenaceae). Phytochemistry, 2009, 1(1), 11-14.
[PMID: 19147161]
[159]
Choi, E.J.; Bae, S.C.; Yu, R.; Youn, J.; Sung, M.K. Dietary vitamin E and quercetin modulate inflammatory responses of collagen-induced arthritis in mice. J. Med. Food, 2009, 12(4), 770-775.
[http://dx.doi.org/10.1089/jmf.2008.1246] [PMID: 19735175]
[160]
Kavitha, K.; Sangeetha, K.; Sridevi, K.S.; Sujatha, K.; Umamaheswari, S. Phytochemical and pharmacological profile of Justicia gendarussa Burm f. – review. J. Pharm. Res., 2014, 8(7), 990-997.
[161]
Sastri, B.N. Wealth of India: Raw materials; Council of Scientific and Industrial Research: New Delhi, 1959, 5, p. 312-333.
[162]
Jayasinghe, D.M. Ayurveda Pharmacopeia; Department Ayurveda: Colombo, Sri Lanka, 1979, pp. 30-42.
[163]
Wahi, S.P.; Wahi, A.K.; Kapoor, R. Chemical study of the leaf of Justicia gendarussa Burm. JRIM, 1974, 9, 65-76.
[164]
Sawatzky, D.A.; Willoughby, D.A.; Colville-Nash, P.R.; Rossi, A.G. The involvement of the apoptosis-modulating proteins ERK 1/2, Bcl-xL and Bax in the resolution of acute inflammation in vivo. Am. J. Pathol., 2006, 168(1), 33-41.
[http://dx.doi.org/10.2353/ajpath.2006.050058] [PMID: 16400007]
[165]
Subbaraju, G.V.; Sridhar, C.; Krishnaraju, A.V. Antiinflammatory constituents of teramnus labialis. Indian J. Pharm. Sci., 2006, 68(1), 111-114.
[http://dx.doi.org/10.4103/0250-474X.22981]
[166]
Varma, R.S.; Ashok, G.; Vidyashankar, S.; Patki, P.; Nandakumar, K.S. Ethanol extract of Justicia gendarussa inhibits lipopolysaccharide stimulated nitric oxide and matrix metalloproteinase-9 expression in murine macrophage. Pharm. Biol., 2011, 49(6), 648-652.
[http://dx.doi.org/10.3109/13880209.2010.527993] [PMID: 21554007]
[167]
The Wealth of India: A Dictionary of Indian Raw Materials & Industrial Products; Council of Scientific & Industrial Research: New Delhi, India, 1992, 10, p. 19-21.
[168]
Kritikar, K.R.; Basu, B.D. Indian Medicinal Plants, 1975, 3, 672-675.
[169]
Tandon, S.; Rastogi, R. Studies on the chemical constituents of Spondias pinnata. Planta Med., 1976, 29(2), 190-192.
[http://dx.doi.org/10.1055/s-0028-1097651] [PMID: 948520]
[170]
Rastogi, R.P.; Mehrotra, B.N. Compendium of Indian Medicinal Plant; CDRI, Lucknow & National Institute of Science communication: New Delhi, India, 1979, vol I and II, p. 379 & 643.
[171]
Valsaraj, R.; Pushpangadan, P.; Smitt, U.W.; Adsersen, A.; Nyman, U. Antimicrobial screening of selected medicinal plants from India. J. Ethnopharmacol., 1997, 58(2), 75-83.
[http://dx.doi.org/10.1016/S0378-8741(97)00085-8] [PMID: 9406894]
[172]
Verpoorte, R.; Siwon, J.; Tieken, M.E.M.; Svendsen, A.B. Studies on indonesian medicinal plants. V. the alkaloids of Anamirta cocculus. J. Nat. Prod., 1981, 44(2), 221-224.
[http://dx.doi.org/10.1021/np50014a013]
[173]
Darabpour, E.; Poshtkouhian Bavi, A.; Motamedi, H.; Seyyed Nejad, S.M. Antibacterial activity of different parts of Peganum harmala L. growing in Iran against multi-drug resistant bacteria. Excli J., 2011, 10, 252-263.
[PMID: 29033706]
[174]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Improving health benefits with considering traditional and modern health benefits of Peganum harmala. Clinical Phytoscience, 2021, 7(1), 18.
[http://dx.doi.org/10.1186/s40816-021-00255-7]
[175]
Li, S.; Cheng, X.; Wang, C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. J. Ethnopharmacol., 2017, 203, 127-162.
[http://dx.doi.org/10.1016/j.jep.2017.03.049] [PMID: 28359849]
[176]
Asgarpanah, J.; Ramezanloo, F. Chemistry, pharmacology and medicinal properties of Peganum harmala L. Afr. J. Pharm. Pharmacol., 2012, 6(22), 573-1580.
[http://dx.doi.org/10.5897/AJPP11.876]
[177]
Khan, N.A.; Raina, A.; Wagay, N.A.; Tantray, Y.R. Distribution, status, pharmacological, and traditional importance of Peganum harmala L. Int. J. Adv. Res. Sci. Eng., 2017, 6(8), 1887-1893.
[178]
Saadabi, A.M.A. Antifungal activity of some Saudi plants used in traditional medicine. Asian J. Plant Sci., 2006, 5(5), 907-909.
[http://dx.doi.org/10.3923/ajps.2006.907.909]
[179]
Moloudizargari, M.; Mikaili, P.; Aghajanshakeri, S.; Asghari, M.; Shayegh, J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn. Rev., 2013, 7(14), 199-212.
[http://dx.doi.org/10.4103/0973-7847.120524] [PMID: 24347928]
[180]
Herraiz, T. González, D.; Ancín-Azpilicueta, C.; Arán, V.J.; Guillén, H. β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem. Toxicol., 2010, 48(3), 839-845.
[http://dx.doi.org/10.1016/j.fct.2009.12.019] [PMID: 20036304]
[181]
Akhtar, M.F.; Raza, S.A.; Saleem, A.; Hamid, I.; Ashraf Baig, M.M.F.; Sharif, A.; Sohail, K.; Javaid, Z.; Saleem, U.; Rasul, A. Appraisal of anti-arthritic and anti-inflammatory potential of folkloric medicinal plant Peganum harmala. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(1), 49-63.
[http://dx.doi.org/10.2174/1871530321666210208211310] [PMID: 33563161]
[182]
Kamble, V.R.; Sayed, B.K.; Qureshi, N. Screening of CSDPs for AM fungal association from Arnala and Kalamb beach Maharashtra. IOSR J. Pharm. Biol. Sci., 2012, 2(4), 44-47.
[http://dx.doi.org/10.9790/3008-0244447]
[183]
Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer-Verlag Heidelberg: New York, 2007, pp. 399-400.
[http://dx.doi.org/10.1007/978-0-387-70638-2]
[184]
Lodhi, S.; Jain, A.P.; Sharma, V.K.; Singhai, A.K. Wound-healing effect of flavonoid-rich fraction from Tephrosia purpurea Linn. on streptozotocin-induced diabetic rats. J. Herbs Spices Med. Plants, 2013, 19(2), 191-205.
[http://dx.doi.org/10.1080/10496475.2013.779620]
[185]
Rastogi, R.P.; Melhotra, B.N. Compendium of Indian Medicinal Plants; Central Drug Research Institute: Lucknow, 1993, Vol. II, p. 446.
[186]
Mali, P.C.; Ansari, A.S.; Chaturvedi, M. Antifertility effect of chronically administered Martynia annua root extract on male rats. J. Ethnopharmacol., 2002, 82(2-3), 61-67.
[http://dx.doi.org/10.1016/S0378-8741(02)00084-3] [PMID: 12241978]
[187]
Chatpalliwar, V.A.; Joharapurkar, A.A.; Wanjari, M.M.; Chakraborty, R.R.; Kharkar, V.T. Anti-inflammatory activity of Martynia diandra GLOX. Indian Drugs, 2002, 39, 543-545.
[188]
Kaushik, S.; Jain, P.; Satapathy, T.; Purabiya, P.; Roy, A. Evaluation of anti-arthritic and anti-inflammatory activities of Martynia annua L. Ethanolic extract. Clinical Phytoscience, 2021, 7(1), 7.
[http://dx.doi.org/10.1186/s40816-021-00250-y]
[189]
Mukhlesur Rahman, M.; Gibbons, S.; Gray, A.I. Isoflavanones from Uraria picta and their antimicrobial activity. Phytochemistry, 2007, 68(12), 1692-1697.
[http://dx.doi.org/10.1016/j.phytochem.2007.04.015] [PMID: 17540419]
[190]
Patel, J.J.; Acharya, S.R.; Acharya, N.S. Clerodendrum serratum (L.) Moon. – A review on traditional uses, phytochemistry and pharmacological activities. J. Ethnopharmacol., 2014, 154(2), 268-285.
[http://dx.doi.org/10.1016/j.jep.2014.03.071] [PMID: 24727551]
[191]
Hazekamp, A.; Verpoorte, R.; Panthong, A. Isolation of a bronchodilator flavonoid from the Thai medicinal plant Clerodendrum petasites. J. Ethnopharmacol., 2001, 78(1), 45-49.
[http://dx.doi.org/10.1016/S0378-8741(01)00320-8] [PMID: 11585687]
[192]
Steane, D.A.; Scotland, R.W.; Mabberley, D.J.; Olmstead, R.G. Molecular systematics of Clerodendrum (Lamiaceae): ITS sequences and total evidence. Am. J. Bot., 1999, 86(1), 98-107.
[http://dx.doi.org/10.2307/2656958] [PMID: 21680349]
[193]
Babenko, N.A.; Shakhova, E.G. Effects of flavonoids on sphingolipid turnover in the toxin-damaged liver and liver cells. Lipids Health Dis., 2008, 7(1), 1-11.
[http://dx.doi.org/10.1186/1476-511X-7-1] [PMID: 18226198]
[194]
Tiwari, R.K.; Chanda, S.M.U.; Singh, M,; Agarwal, S. Anti-inflammatory and anti-arthritic potential of standardized extract of Clerodendrum serratum (L.) moon. Front. Pharmacol., 2021, 12, 629607.
[http://dx.doi.org/10.3389/fphar.2021.629607] [PMID: 33912046]
[195]
Shareef, M.I.; Leelavathi, S.; Gopinath, S.M. Evaluation of in-vivo activity of Clerodendrum serratum L. against rheumatism. Int. J. Innov. Res. Technol., 2013, 2(12), 7750-7758.
[196]
Singh, S.; Singh, T.G.; Mahajan, K.; Dhiman, S. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. J. Pharm. Pharmacol., 2020, 72(10), 1306-1327.
[http://dx.doi.org/10.1111/jphp.13326] [PMID: 32812250]
[197]
Venkatesha, S.H.; Dudics, S.; Astry, B.; Moudgil, K.D. Control of autoimmune inflammation by Celastrol, a natural triterpenoid. Pathog. Dis., 2016, 74(6), 1-2.
[http://dx.doi.org/10.1093/femspd/ftw059]
[198]
Busbee, P.B.; Rouse, M.; Nagarkatti, M.; Nagarkatti, P.S. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr. Rev., 2013, 71(6), 353-369.
[http://dx.doi.org/10.1111/nure.12024] [PMID: 23731446]
[199]
Che, C.T.; Wong, M.; Lam, C. Natural products from Chinese Medicines with potential benefits to bone health. Molecules, 2016, 21(3), 239.
[http://dx.doi.org/10.3390/molecules21030239] [PMID: 26927052]
[200]
Wu, C.H.; Lin, M.C.; Wang, H.C.; Yang, M.Y.; Jou, M.J.; Wang, C.J. Rutin inhibits oleic acid induced lipid accumulation via reducing lipogenesis and oxidative stress in hepatocarcinoma cells. J. Food Sci., 2011, 76(2), T65-T72.
[http://dx.doi.org/10.1111/j.1750-3841.2010.02033.x] [PMID: 21535797]
[201]
Hosseinzadeh, H.; Nassiri-Asl, M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J. Endocrinol. Invest., 2014, 37(9), 783-788.
[http://dx.doi.org/10.1007/s40618-014-0096-3] [PMID: 24879037]
[202]
Tian, R.; Yang, W.; Xue, Q.; Gao, L.; Huo, J.; Ren, D.; Chen, X. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. Eur. J. Pharmacol., 2016, 771, 84-92.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.021] [PMID: 26688570]
[203]
Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential anti-inflammatory effects of Hesperidin from the genus Citrus. Curr. Med. Chem., 2019, 25(37), 4929-4945.
[http://dx.doi.org/10.2174/0929867324666170718104412] [PMID: 28721824]
[204]
Peng, P.; Jin, J.; Zou, G.; Sui, Y.; Han, Y.; Zhao, D.; Liu, L. Hesperidin prevents hyperglycemia in diabetic rats by activating the insulin receptor pathway. Exp. Ther. Med., 2020, 21(1), 53.
[http://dx.doi.org/10.3892/etm.2020.9485] [PMID: 33273981]
[205]
Pinho-Ribeiro, F.A.; Zarpelon, A.C.; Mizokami, S.S.; Borghi, S.M.; Bordignon, J.; Silva, R.L.; Cunha, T.M.; Alves-Filho, J.C.; Cunha, F.Q.; Casagrande, R.; Verri, W.A., Jr The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. J. Nutr. Biochem., 2016, 33, 8-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.03.013] [PMID: 27260463]
[206]
Bussmann, A.J.C.; Borghi, S.M.; Zaninelli, T.H.; dos Santos, T.S.; Guazelli, C.F.S.; Fattori, V.; Domiciano, T.P.; Pinho-Ribeiro, F.A.; Ruiz-Miyazawa, K.W.; Casella, A.M.B.; Vignoli, J.A.; Camilios-Neto, D.; Casagrande, R.; Verri, W.A., Jr The citrus flavanone naringenin attenuates zymosan-induced mouse joint inflammation: Induction of Nrf2 expression in recruited CD45+ hematopoietic cells. Inflammopharmacology, 2019, 27(6), 1229-1242.
[http://dx.doi.org/10.1007/s10787-018-00561-6] [PMID: 30612217]
[207]
Wang, J.R.; Li, T.Z.; Wang, C.; Li, S.M.; Luo, Y.H.; Piao, X.J.; Feng, Y.C.; Zhang, Y.; Xu, W.T.; Zhang, Y.; Zhang, T.; Wang, S.N.; Xue, H.; Wang, H.X.; Cao, L.K.; Jin, C.H. Liquiritin inhibits proliferation and induces apoptosis in HepG2 hepatocellular carcinoma cells via the ROS-mediated MAPK/AKT/NF-κB signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(10), 1987-1999.
[http://dx.doi.org/10.1007/s00210-019-01763-7] [PMID: 31956937]
[208]
Ni, H.; Xu, M.; Xie, K.; Fei, Y.; Deng, H.; He, Q.; Wang, T.; Liu, S.; Zhu, J.; Xu, L.; Yao, M. Liquiritin alleviates pain through inhibiting CXCL 1/CXCR 2 signaling pathway in bone cancer pain rat. Front. Pharmacol., 2020, 11, 436.
[http://dx.doi.org/10.3389/fphar.2020.00436] [PMID: 32390832]
[209]
Hu, Y.; Li, J.; Qin, L.; Cheng, W.; Lai, Y.; Yue, Y.; Ren, P.; Pan, X.; Zhang, P. Study in treatment of collagen-induced arthritis in DBA/1 mice model by Genistein. Curr. Pharm. Des., 2017, 22(46), 6975-6981.
[http://dx.doi.org/10.2174/1381612822666161025150403] [PMID: 27784235]
[210]
Haleagrahara, N.; Miranda-Hernandez, S.; Alim, M.A.; Hayes, L.; Bird, G.; Ketheesan, N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed. Pharmacother., 2017, 90, 38-46.
[http://dx.doi.org/10.1016/j.biopha.2017.03.026] [PMID: 28342364]
[211]
Jiang, P.Y.; Zhu, X.J.; Zhang, Y.N.; Zhou, F.F.; Yang, X.F. Protective effects of apigenin on LPS-induced endometritis via activating Nrf2 signaling pathway. Microb. Pathog., 2018, 123, 139-143.
[http://dx.doi.org/10.1016/j.micpath.2018.06.031] [PMID: 29928944]
[212]
Yang, H.; Huang, J.; Mao, Y.; Wang, L.; Li, R.; Ha, C. Vitexin alleviates interleukin-1β-induced inflammatory responses in chondrocytes from osteoarthritis patients: Involvement of HIF-1α pathway. Scand. J. Immunol., 2019, 90(2), e12773.
[http://dx.doi.org/10.1111/sji.12773] [PMID: 31055848]
[213]
Wang, Y.; Gao, J.; Xing, L.Z. Therapeutic potential of Oroxylin A in rheumatoid arthritis. Int. Immunopharmacol., 2016, 40, 294-299.
[http://dx.doi.org/10.1016/j.intimp.2016.09.006] [PMID: 27643663]
[214]
Lee, J.Y.; Park, W. Anti-inflammatory effects of oroxylin A on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Exp. Ther. Med., 2016, 12(1), 151-156.
[http://dx.doi.org/10.3892/etm.2016.3320] [PMID: 27347031]
[215]
Yang, J.; Yang, X.; Chu, Y.; Li, M. Identification of baicalin as an immunoregulatory compound by controlling TH17 cell differentiation. PLoS ONE, 2011, 6(2), e17164.
[http://dx.doi.org/10.1371/journal.pone.0017164]
[216]
Yang, X.; Yang, J.; Zou, H. Baicalin inhibits IL-17-mediated joint inflammation in murine adjuvant-induced arthritis. Clin. Dev. Immunol., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/268065] [PMID: 23840239]
[217]
Chi, L.; Gao, W.; Shu, X.; Lu, X. A natural flavonoid glucoside, icariin, regulates Th17 and alleviates rheumatoid arthritis in a murine model. Mediators Inflamm., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/392062] [PMID: 25374443]
[218]
Wang, W.; Sun, W.; Jin, L. Caffeic acid alleviates inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes by inhibiting phosphorylation of IκB kinase α/β and IκBα. Int. Immunopharmacol., 2017, 48, 61-66.
[http://dx.doi.org/10.1016/j.intimp.2017.04.025] [PMID: 28463788]
[219]
Yang, C.M.; Chen, Y.W.; Chi, P.L.; Lin, C.C.; Hsiao, L.D. Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-κB in human rheumatoid arthritis synovial fibroblasts. Biochem. Pharmacol., 2017, 132, 77-91.
[http://dx.doi.org/10.1016/j.bcp.2017.03.003] [PMID: 28288820]
[220]
Sharma, K.; Sahoo, J. Chromatographic determination of curcumin in the presence of its degradation products by HPLC. Int. J. Pharm. Pharm. Sci., 2020, 11(5), 2342-2349.
[http://dx.doi.org/10.13040/ijpsr.0975-8232.11(5)]
[221]
Lende, A.B.; Kshirsagar, A.D.; Deshpande, A.D.; Muley, M.M.; Patil, R.R.; Bafna, P.A.; Naik, S.R. Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice. Inflammopharmacology, 2011, 19(5), 255-263.
[http://dx.doi.org/10.1007/s10787-011-0086-4] [PMID: 21748471]
[222]
Kwak, S.C.; Lee, C.; Kim, J.Y.; Oh, H.M.; So, H.S.; Lee, M.S.; Rho, M.C.; Oh, J. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor kappa-B ligand-induced nuclear factor of activated T cells c1 expression. Biol. Pharm. Bull., 2013, 36(11), 1779-1786.
[http://dx.doi.org/10.1248/bpb.b13-00430] [PMID: 23985829]
[223]
Liu, W.; Zhang, Y.; Zhu, W.; Ma, C.; Ruan, J.; Long, H.; Wang, Y. Sinomenine inhibits the progression of rheumatoid arthritis by regulating the secretion of inflammatory cytokines and monocyte/macrophage subsets. Front. Immunol., 2018, 9, 2228.
[http://dx.doi.org/10.3389/fimmu.2018.02228] [PMID: 30319663]
[224]
Ma, A.; Yang, Y.; Wang, Q.; Wang, Y.; Wen, J.; Zhang, Y. Anti-inflammatory effects of oxymatrine on rheumatoid arthritis in rats via regulating the imbalance between Treg and Th17 cells. Mol. Med. Rep., 2017, 15(6), 3615-3622.
[http://dx.doi.org/10.3892/mmr.2017.6484] [PMID: 28440447]
[225]
Farinon, M.; Clarimundo, V.S.; Pedrazza, G.P.R.; Gulko, P.S.; Zuanazzi, J.A.S.; Xavier, R.M.; de Oliveira, P.G. Disease modifying anti-rheumatic activity of the alkaloid montanine on experimental arthritis and fibroblast-like synoviocytes. Eur. J. Pharmacol., 2017, 799, 180-187.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.013] [PMID: 28192100]
[226]
Golbahari, S.; Abtahi Froushani, S.M. Synergistic benefits of Nicotine and Thymol in alleviating experimental rheumatoid arthritis. Life Sci., 2019, 239, 117037.
[http://dx.doi.org/10.1016/j.lfs.2019.117037] [PMID: 31730863]
[227]
Yang, J.; Cai, H.D.; Zeng, Y.L.; Chen, Z.H.; Fang, M.H.; Su, Y.P.; Huang, H.H.; Xu, Y.; Yu, C.X. Effects of koumine on adjuvant- and collagen-induced arthritis in rats. J. Nat. Prod., 2016, 79(10), 2635-2643.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00554] [PMID: 27657857]
[228]
Wang, X.; He, X.; Zhang, C.F.; Guo, C.R.; Wang, C.Z.; Yuan, C.S. Anti-arthritic effect of berberine on adjuvant-induced rheumatoid arthritis in rats. Biomed. Pharmacother., 2017, 89, 887-893.
[http://dx.doi.org/10.1016/j.biopha.2017.02.099] [PMID: 28282791]
[229]
Chen, Q.; Zhu, L.; Yip, K.M.; Tang, Y.; Liu, Y.; Jiang, T.; Zhang, J.; Zhao, Z.; Yi, T.; Chen, H. A hybrid platform featuring nanomagnetic ligand fishing for discovering COX-2 selective inhibitors from aerial part of Saussurea laniceps Hand.-. Mazz. J. Ethnopharmacol., 2021, 271, 113849.
[http://dx.doi.org/10.1016/j.jep.2021.113849] [PMID: 33485983]
[230]
Xu, R.; Liu, Z.; Hou, J.; Huang, T.; Yang, M. Osthole improves collagen-induced arthritis in a rat model through inhibiting inflammation and cellular stress. Cell. Mol. Biol. Lett., 2018, 23(1), 19.
[http://dx.doi.org/10.1186/s11658-018-0086-0] [PMID: 29743895]
[231]
Hsia, C.W.; Lin, K.C.; Lee, T.Y.; Hsia, C.H.; Chou, D.S.; Jayakumar, T.; Velusamy, M.; Chang, C.C.; Sheu, J.R. Esculetin, a coumarin derivative, prevents thrombosis: Inhibitory signaling on PLCγ2–PKC–AKT activation in human platelets. Int. J. Mol. Sci., 2019, 20(11), 2731.
[http://dx.doi.org/10.3390/ijms20112731] [PMID: 31163690]
[232]
Liang, C.; Ju, W.; Pei, S.; Tang, Y.; Xiao, Y. Pharmacological activities and synthesis of esculetin and its derivatives: A mini-review. Molecules, 2017, 22(3), 387.
[http://dx.doi.org/10.3390/molecules22030387] [PMID: 28257115]
[233]
Gao, Q.; Shan, J.; Di, L.; Jiang, L.; Xu, H. Therapeutic effects of daphnetin on adjuvant-induced arthritic rats. J. Ethnopharmacol., 2008, 120(2), 259-263.
[http://dx.doi.org/10.1016/j.jep.2008.08.031] [PMID: 18835428]
[234]
Tu, L.; Li, S.; Fu, Y.; Yao, R.; Zhang, Z.; Yang, S.; Zeng, X.; Kuang, N. The therapeutic effects of daphnetin in collagen-induced arthritis involve its regulation of Th17 cells. Int. Immunopharmacol., 2012, 13(4), 417-423.
[http://dx.doi.org/10.1016/j.intimp.2012.04.001] [PMID: 22554834]
[235]
Deng, H.; Zheng, M.; Hu, Z.; Zeng, X.; Kuang, N.; Fu, Y. Effects of daphnetin on the autophagy signaling pathway of fibroblast-like synoviocytes in rats with collagen-induced arthritis (CIA) induced by TNF-α. Cytokine, 2020, 127, 154952.
[http://dx.doi.org/10.1016/j.cyto.2019.154952] [PMID: 31865066]
[236]
Xu, L.; Yu, Y.; Sang, R.; Li, J.; Ge, B.; Zhang, X. Protective effects of taraxasterol against ethanol-induced liver injury by regulating CYP2E1/Nrf2/HO-1 and NF-kB signaling pathways in mice. Oxid. Med. Cell. Longev., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/8284107] [PMID: 30344887]
[237]
Yu, W.G.; Shen, Y.; Wu, J.Z.; Gao, Y.B.; Zhang, L.X. Madecassoside impedes invasion of rheumatoid fibroblast-like synoviocyte from adjuvant arthritis rats via inhibition of NF- κ B-mediated matrix metalloproteinase-13 expression. Chin. J. Nat. Med., 2018, 16(5), 330-338.
[http://dx.doi.org/10.1016/S1875-5364(18)30064-5] [PMID: 29860993]
[238]
Fukumitsu, S.; Villareal, M.O.; Fujitsuka, T.; Aida, K.; Isoda, H. Anti-inflammatory and anti-arthritic effects of pentacyclic triterpenoids maslinic acid through NF-κB inactivation. Mol. Nutr. Food Res., 2016, 60(2), 399-409.
[http://dx.doi.org/10.1002/mnfr.201500465] [PMID: 26499467]
[239]
Mussard, E.; Cesaro, A.; Lespessailles, E.; Legrain, B.; Berteina-Raboin, S.; Toumi, H. Andrographolide, A natural antioxidant: An Update. Antioxidants, 2019, 8(12), 571.
[http://dx.doi.org/10.3390/antiox8120571]
[240]
Chen, S.R.; Dai, Y.; Zhao, J.; Lin, L.; Wang, Y.; Wang, Y. A mechanistic overview of Triptolide and Celastrol, natural products from Tripterygium wilfordii Hook F. Front. Pharmacol., 2018, 9, 104.
[http://dx.doi.org/10.3389/fphar.2018.00104] [PMID: 29491837]
[241]
Kusunoki, N.; Yamazaki, R.; Kitasato, H.; Beppu, M.; Aoki, H.; Kawai, S. Triptolide, an active compound identified in a traditional Chinese herb, induces apoptosis of rheumatoid synovial fibroblasts. BMC Pharmacol., 2004, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2210-4-2] [PMID: 15040811]
[242]
Kong, X.; Zhang, Y.; Liu, C.; Guo, W.; Li, X.; Su, X.; Wan, H.; Sun, Y.; Lin, N. Anti-angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade. PLoS ONE, 2013, 8(10), e77513.
[http://dx.doi.org/10.1371/journal.pone.0077513]
[243]
Li, F.; Li, H.; Luo, S.; Ran, Y.; Xie, X.; Wang, Y.; Zheng, M.; Wang, M.; Zhao, Z.; Li, X. Evaluation of the effect of andrographolide and methotrexate combined therapy in complete Freundʼs adjuvant induced arthritis with reduced hepatotoxicity. Biomed. Pharmacother., 2018, 106, 637-645.
[http://dx.doi.org/10.1016/j.biopha.2018.07.001] [PMID: 29990853]
[244]
Wang, Y.; Zhou, C.; Gao, H.; Li, C.; Li, D.; Liu, P.; Huang, M.; Shen, X.; Liu, L. Therapeutic effect of Cryptotanshinone on experimental rheumatoid arthritis through downregulating p300 mediated-STAT3 acetylation. Biochem. Pharmacol., 2017, 138, 119-129.
[http://dx.doi.org/10.1016/j.bcp.2017.05.006] [PMID: 28522406]
[245]
Xia, G.; Wang, X.; Sun, H.; Qin, Y.; Fu, M. Carnosic acid (CA) attenuates collagen-induced arthritis in db/db mice via inflammation suppression by regulating ROS-dependent p38 pathway. Free Radic. Biol. Med., 2017, 108, 418-432.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.023] [PMID: 28343998]
[246]
Chen, J.J.; Ting, C.W.; Wu, Y.C.; Hwang, T.L.; Cheng, M.J.; Sung, P.J.; Wang, T.C.; Chen, J.F. New Labdane-type diterpenoids and anti-inflammatory constituents from Hedychium coronarium. Int. J. Mol. Sci., 2013, 14(7), 13063-13077.
[http://dx.doi.org/10.3390/ijms140713063] [PMID: 23799360]
[247]
Bert, J.; Mahowald, M.L.; Frizelle, S.; Dorman, C.W.; Funkenbusch, S.C.; Krug, H.E. The effect of treatment with Resiniferatoxin and Capsaicin on dynamic weight bearing measures and evoked pain responses in a chronic inflammatory arthritis murine model. Intern. Med. Rev., 2016, 2(6), 1-14.
[http://dx.doi.org/10.18103/imr.v0i6.89] [PMID: 27774522]
[248]
Srivastava, S.; Lal, V.K.; Pant, K.K. Polyherbal formulations based on Indian medicinal plants as antidiabetic phytotherapeutics. Phytopharmacology, 2013, 2, 1-15.
[249]
Spinella, M. The importance of pharmacological synergy in psychoactive herbal medicines. Altern. Med. Rev., 2002, 7(2), 130-137.
[PMID: 11991792]
[250]
Pal, R.S.; Pal, Y.; Wal, P.; Wal, A. Standardization and detailed aspects of Chopchinyadi churna: A potent anti-arthritic medicine. Open Med. J., 2019, 6(1), 19-25.
[http://dx.doi.org/10.2174/1874220301906010019]
[251]
Subash, K.R.; Cheriyan, B.; Parvathavarthini, S.; Bhaarati, G.M.; Venugopal, V. Effect of polyherbal formulation Rumalaya Forte on adjuvant induced arthritis in rats. Indian Drugs, 2012, 49(10), 18-24.
[http://dx.doi.org/10.53879/id.49.10.p0018]
[252]
Balkrishna, A.; Sakat, S.S.; Joshi, K.; Paudel, S.; Joshi, D.; Joshi, K.; Ranjan, R.; Gupta, A.; Bhattacharya, K.; Varshney, A. Herbo-mineral formulation ‘Ashwashila’ attenuates rheumatoid arthritis symptoms in collagen-antibody-induced arthritis (CAIA) mice model. Sci. Rep., 2019, 9(1), 8025.
[http://dx.doi.org/10.1038/s41598-019-44485-9] [PMID: 31142786]
[253]
Sumanth, M.; Swetha, A. Elucidation of mechanism of anti-arthritic action of Arthosansar-a polyherbal formulation. Indian J. Tradit. Knowl., 2012, 11(4), 704-713.
[254]
Chakradhar, S.N.; Kanaka, B.M.; Sangeetha, S. Herbal medicines and formulation approaches for the treatment of arthritis. Drug Invent. Today, 2010, 10, 1617-1625.
[255]
Singh, S.; Nair, V.; Gupta, Y.K. Antiarthritic activity of majoon suranjan (a polyherbal Unani formulation) in rat. Indian J. Med. Res., 2011, 134(3), 384-388.
[PMID: 21985823]
[256]
Da Silva, M.D.; Guginski, G.; Werner, M.F. de P.; Baggio, C.H.; Marcon, R.; Santos, A.R.S. Involvement of interleukin-10 in the anti-inflammatory effect of sanyinjiao (SP6) acupuncture in a mouse model of peritonitis. Evid. Based Complementary. Altern. Med., 2011, 2011, 217946.
[http://dx.doi.org/10.1093/ecam/neq036]
[257]
Xue, L.M.; Zhang, Q.Y.; Han, P.; Jiang, Y.P.; Yan, R.D.; Wang, Y.; Rahman, K.; Jia, M.; Han, T.; Qin, L.P. Hepatotoxic constituents and toxicological mechanism of Xanthium strumarium L. fruits. J. Ethnopharmacol., 2014, 152(2), 272-282.
[http://dx.doi.org/10.1016/j.jep.2013.12.024] [PMID: 24447814]
[258]
Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological properties and bioactive components of Allium cepa L.: Focus on potential benefits in the treatment of obesity and related comorbidities. Molecules, 2018, 24(1), 119.
[http://dx.doi.org/10.3390/molecules24010119] [PMID: 30598012]
[259]
Guo, X.; Mei, N. Aloe vera: A review of toxicity and adverse clinical effects. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2016, 34(2), 77-96.
[http://dx.doi.org/10.1080/10590501.2016.1166826] [PMID: 26986231]
[260]
Worakunphanich, W.; Thavorncharoensap, M.; Youngkong, S.; Thadanipon, K.; Thakkinstian, A. Safety of Andrographis paniculata: A systematic review and meta-analysis. Pharmacoepidemiol. Drug Saf., 2021, 30(6), 727-739.
[http://dx.doi.org/10.1002/pds.5190] [PMID: 33372366]
[261]
Nazari, S.; Rameshrad, M.; Hosseinzadeh, H. Toxicological effects of Glycyrrhiza glabra (Licorice): A review. Phytother. Res., 2017, 31(11), 1635-1650.
[http://dx.doi.org/10.1002/ptr.5893] [PMID: 28833680]
[262]
Bello, I.; Bakkouri, A.; Tabana, Y.; Al-Hindi, B.; Al-Mansoub, M.; Mahmud, R.; Asmawi, M. Acute and sub-acute toxicity evaluation of the methanolic extract of Alstonia scholaris stem bark. Med. Sci., 2016, 4(1), 4.
[http://dx.doi.org/10.3390/medsci4010004] [PMID: 29083368]
[263]
Thomas, T.J.; Panikkar, B.; Subramoniam, A.; Nair, M.K.; Panikkar, K.R. Antitumour property and toxicity of Barringtonia racemosa Roxb seed extract in mice. J. Ethnopharmacol., 2002, 82(2-3), 223-227.
[http://dx.doi.org/10.1016/S0378-8741(02)00074-0] [PMID: 12241999]
[264]
Parasuraman, S.; Thing, G.; Dhanaraj, S. Polyherbal formulation: Concept of ayurveda. Pharmacogn. Rev., 2014, 8(16), 73-80.
[http://dx.doi.org/10.4103/0973-7847.134229] [PMID: 25125878]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy