Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Effects of Sublingual Colostrum Application on Oral and Intestinal Flora of Extremely Low Birth Weight Infants

Author(s): Hua Wang, Qiu-Fang Li, Xin-Fen Xu and Xiao-Li Hu*

Volume 24, Issue 4, 2024

Published on: 10 October, 2023

Page: [489 - 494] Pages: 6

DOI: 10.2174/1871530323666230913105820

Price: $65

Abstract

Background: The aim of this study is to analyze the effects of colostrum application on the establishment of normal flora in the intestinal tracts and oral cavities of extremely low birth weight infants (ELBWI).

Methods: A prospective cohort study design was adopted following the STROBE guidelines (Supplementary File 1). Colostrum was administered immediately after obtaining maternal breast milk using a special sterile cotton swab. There were no specific treatments for infants who did not receive colostrum. This experiment was completed on day 5 post-birth and the patients were divided into the colostrum and control groups, corresponding to whether or not colostrum was administered. Throat swabs and stool samples were collected on days 1 and 5 post-birth.

Results: Using the conventional bacteria cultivation technique, the detection rate of bacteria in 98 cases of meconium at birth was 15.31%. On day 5, the detection rates of Staphylococcus in the colostrum and control groups were 36.54% and 34.78%, with no significant difference between them (P = 0.856), and that of Enterococcus was 26.92% and 13.04%, respectively, with no statistically significant difference (P = 0.089). Likewise, at birth, the detection rate of bacteria in 98 cases of throat swabs was 27.55%. On day 5, the detection rate of Streptococcus in the colostrum and control groups was 78.85% and 50.00%, respectively, recording a statistically significant difference this time (P = 0.003).

Conclusion: Colostrum application had limited effects on intestinal flora colonization but contributes to physiological oral flora colonization.

Graphical Abstract

[1]
O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep., 2006, 7(7), 688-693.
[http://dx.doi.org/10.1038/sj.embor.7400731] [PMID: 16819463]
[2]
Walker, A. Intestinal colonization and programming of the intestinal immune response. J. Clin. Gastroenterol., 2014, 48(1)(0100000000000000002013), S8-S11.
[3]
Versluis, D.M.; Schoemaker, R.; Looijesteijn, E.; Muysken, D.; Jeurink, P.V.; Paques, M.; Geurts, J.M.W.; Merks, R.M.H. A multiscale spatiotemporal model including a switch from aerobic to anaerobic metabolism reproduces succession in the early infant gut microbiota. mSystems, 2022, 7(5), e00446-e22.
[http://dx.doi.org/10.1128/msystems.00446-22] [PMID: 36047700]
[4]
Sherman, M.P. New concepts of microbial translocation in the neonatal intestine: Mechanisms and prevention. Clin. Perinatol., 2010, 37(3), 565-579.
[http://dx.doi.org/10.1016/j.clp.2010.05.006] [PMID: 20813271]
[5]
Torrazza, R.M.; Neu, J. The developing intestinal microbiome and its relationship to health and disease in the neonate. J. Perinatol., 2011, 31(S1)(1), S29-S34.
[http://dx.doi.org/10.1038/jp.2010.172] [PMID: 21448201]
[6]
Arrieta, M.C.; Stiemsma, L.T.; Amenyogbe, N.; Brown, E.M.; Finlay, B. The intestinal microbiome in early life: Health and disease. Front. Immunol., 2014, 5, 427.
[http://dx.doi.org/10.3389/fimmu.2014.00427 ] [PMID: 25250028]
[7]
Le Doare, K.; Holder, B.; Bassett, A.; Pannaraj, P.S. Mother’s Milk: A purposeful contribution to the development of the infant microbiota and immunity. Front. Immunol., 2018, 9, 361.
[http://dx.doi.org/10.3389/fimmu.2018.00361 ] [PMID: 29599768]
[8]
Toscano, M.; De Grandi, R.; Peroni, D.G.; Grossi, E.; Facchin, V.; Comberiati, P.; Drago, L. Impact of delivery mode on the colostrum microbiota composition. BMC Microbiol., 2017, 17(1), 205.
[http://dx.doi.org/10.1186/s12866-017-1109-0 ] [PMID: 28946864]
[9]
Meier, P.P.; Bode, L. Health, nutrition, and cost outcomes of human milk feedings for very low birthweight infants. Adv. Nutr., 2013, 4(6), 670-671.
[http://dx.doi.org/10.3945/an.113.004457] [PMID: 24228197]
[10]
Martín, V.; Maldonado-Barragán, A.; Moles, L.; Rodriguez-Baños, M.; Campo, R.; Fernández, L.; Rodríguez, J.M.; Jiménez, E. Sharing of bacterial strains between breast milk and infant feces. J. Hum. Lact., 2012, 28(1), 36-44.
[http://dx.doi.org/10.1177/0890334411424729 ] [PMID: 22267318]
[11]
Makino, H.; Kushiro, A.; Ishikawa, E.; Muylaert, D.; Kubota, H.; Sakai, T.; Oishi, K.; Martin, R.; Ben Amor, K.; Oozeer, R.; Knol, J.; Tanaka, R. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl. Environ. Microbiol., 2011, 77(19), 6788-6793.
[http://dx.doi.org/10.1128/AEM.05346-11 ] [PMID: 21821739]
[12]
Benito, D.; Lozano, C.; Jiménez, E.; Albújar, M.; Gómez, A.; Rodríguez, J.M.; Torres, C. Characterization of Staphylococcus aureus strains isolated from faeces of healthy neonates and potential mother-to-infant microbial transmission through breastfeeding. FEMS Microbiol. Ecol., 2015, 91(3), fiv007.
[http://dx.doi.org/10.1093/femsec/fiv007 ] [PMID: 25764567]
[13]
Pannaraj, P.S.; Li, F.; Cerini, C.; Bender, J.M.; Yang, S.; Rollie, A.; Adisetiyo, H.; Zabih, S.; Lincez, P.J.; Bittinger, K.; Bailey, A.; Bushman, F.D.; Sleasman, J.W.; Aldrovandi, G.M. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr., 2017, 171(7), 647-654.
[http://dx.doi.org/10.1001/jamapediatrics.2017.0378] [PMID: 28492938]
[14]
Snyder, R.; Herdt, A.; Mejias-Cepeda, N.; Ladino, J.; Crowley, K.; Levy, P. Early provision of oropharyngeal colostrum leads to sustained breast milk feedings in preterm infants. Pediatr. Neonatol., 2017, 58(6), 534-540.
[http://dx.doi.org/10.1016/j.pedneo.2017.04.003] [PMID: 28550982]
[15]
Greecher, C.; Doheny, K.; Glass, K. Oropharyngeal administration of colostrum increases salivary secretory iga levels in very low-birth-weight infants. Am. J. Perinatol., 2017, 34(14), 1389-1395.
[http://dx.doi.org/10.1055/s-0037-1603655] [PMID: 28575910]
[16]
Moreno-Fernandez, J.; Sánchez-Martínez, B.; Serrano-López, L.; Martín-Álvarez, E.; Diaz-Castro, J.; Peña-Caballero, M.; Martín-Peregrina, F.; Alonso-Moya, M.; Maldonado-Lozano, J.; Ochoa, J.J.; Hurtado-Suazo, J.A. Enhancement of immune response mediated by oropharyngeal colostrum administration in preterm neonates. Pediatr. Allergy Immunol., 2018, 30(2), pai.13008.
[http://dx.doi.org/10.1111/pai.13008] [PMID: 30444546]
[17]
Nasuf, A.W.A.; Ojha, S.; Dorling, J. Oropharyngeal colostrum in preventing mortality and morbidity in preterm infants. Cochrane Libr., 2018, 2019(7), CD011921.
[http://dx.doi.org/10.1002/14651858.CD011921.pub2] [PMID: 30191961]
[18]
Ding, Y.F.; Xiao, L.L.; Guo, J.L.; Lu, J.; Xu, H.; Hou, M.L.; Ben, X.M. Intestinal microbiota in neonates within three days after birth. Chin J Perinat Med., 2017, 20, 507-514.
[http://dx.doi.org/10.3760/cma.j.issn.1007-9408.2017.07.006]
[19]
Hu, R.F. Neonatal intestinal flora distribution profile and influnencing factors (in Chinese); Shanghai Jiaotong University: China, 2015.
[20]
Westerbeek, E.A.M.; Slump, R.A.; Lafeber, H.N.; Knol, J.; Georgi, G.; Fetter, W.P.F.; Elburg, R.M. The effect of enteral supplementation of specific neutral and acidic oligosaccharides on the faecal microbiota and intestinal microenvironment in preterm infants. Eur. J. Clin. Microbiol. Infect. Dis., 2013, 32(2), 269-276.
[http://dx.doi.org/10.1007/s10096-012-1739-y] [PMID: 22961006]
[21]
Chang, J.Y.; Shin, S.M.; Chun, J.; Lee, J.H.; Seo, J.K. Pyrosequencing-based molecular monitoring of the intestinal bacterial colonization in preterm infants. J. Pediatr. Gastroenterol. Nutr., 2011, 53(5), 512-519.
[http://dx.doi.org/10.1097/MPG.0b013e318227e518] [PMID: 21734604]
[22]
Berrington, J.E.; Hearn, R.I.; Bythell, M.; Wright, C.; Embleton, N.D. Deaths in preterm infants: Changing pathology over 2 decades. J. Pediatr., 2012, 160(1), 49-53.e1.
[http://dx.doi.org/10.1016/j.jpeds.2011.06.046] [PMID: 21868028]
[23]
Madan, J.C.; Salari, R.C.; Saxena, D.; Davidson, L.; O’Toole, G.A.; Moore, J.H.; Sogin, M.L.; Foster, J.A.; Edwards, W.H.; Palumbo, P.; Hibberd, P.L. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch. Dis. Child. Fetal Neonatal Ed., 2012, 97(6), F456-F462.
[http://dx.doi.org/10.1136/fetalneonatal-2011-301373] [PMID: 22562869]
[24]
La Rosa, P.S.; Warner, B.B.; Zhou, Y.; Weinstock, G.M.; Sodergren, E.; Hall-Moore, C.M.; Stevens, H.J.; Bennett, W.E., Jr; Shaikh, N.; Linneman, L.A.; Hoffmann, J.A.; Hamvas, A.; Deych, E.; Shands, B.A.; Shannon, W.D.; Tarr, P.I. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl. Acad. Sci., 2014, 111(34), 12522-12527.
[http://dx.doi.org/10.1073/pnas.1409497111] [PMID: 25114261]
[25]
Lynch, S.V.; Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med., 2016, 375(24), 2369-2379.
[http://dx.doi.org/10.1056/NEJMra1600266] [PMID: 27974040]
[26]
Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature, 2012, 489(7415), 231-241.
[http://dx.doi.org/10.1038/nature11551 ] [PMID: 22972296]
[27]
Sohn, K.; Kalanetra, K.M.; Mills, D.A.; Underwood, M.A. Buccal administration of human colostrum: Impact on the oral microbiota of premature infants. J. Perinatol., 2016, 36(2), 106-111.
[http://dx.doi.org/10.1038/jp.2015.157 ] [PMID: 26658119]
[28]
Petrechen, L.N.; Zago, F.H.; Sesso, M.L.T.; Bertoldo, B.B.; Silva, C.B.; Azevedo, K.P.; de Lima Pereira, S.A.; Geraldo-Martins, V.R.; Ferriani, V.P.L.; Nogueira, R.D. Levels and complexity of IgA antibody against oral bacteria in samples of human colostrum. Immunobiology, 2015, 220(1), 142-146.
[http://dx.doi.org/10.1016/j.imbio.2014.08.009] [PMID: 25175558]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy