Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Hyper IgE Syndromes

Author(s): Serena Gracci*, Tommaso Novelli, Sofia D'Elios, Roberto Bernardini and Diego Peroni

Volume 20, Issue 3, 2024

Published on: 18 September, 2023

Page: [253 - 264] Pages: 12

DOI: 10.2174/1573396320666230912103124

Price: $65

Abstract

The Hyper IgE Syndromes are rare primary immunodeficiencies characterized by eczema, recurrent skin and respiratory infections and elevated serum IgE levels. Nowadays a geneticmolecular characterization is possible and allows the distinction in various monogenic pathologies, which share some clinical characteristics but also important differences. In addition to long-known STAT3 and DOCK8 gene mutations, in fact, also ZNF341, CARD11, ERBB2IP, IL6R and IL6ST genes mutations can cause the disease. The main clinical manifestations are represented by newborn rash, eczema similar to atopic dermatitis, bacterial and viral skin infections, cold abscesses, respiratory infections with possible pulmonary complications, allergies, gastrointestinal manifestations, malignancies and connective tissue abnormalities. Diagnosis is still a challenge because, especially in the early stages of life, it is difficult to distinguish from other pathologies characterized by eczema and high IgE, such as atopic dermatitis. Several scores and diagnostic pathways have been developed, but it is essential to seek a genetic diagnosis. Treatment is based on prevention and early treatment of infections, meticulous skincare, intravenous immunoglobulins and HSCT, which, in some HIES subtypes, can modify the prognosis. Prognosis is related to the affected gene, but also to early diagnosis, timely treatment of infections and early HSCT.

Graphical Abstract

[1]
Mohebbi M, Hashemi H, Mehravaran S, Mazloumi M, Jahanbani-Ardakani H, Abtahi SH. Hyperimmunoglobulin E syndrome: Genetics, immunopathogenesis, clinical findings, and treatment modalities. J Res Med Sci 2017; 22(1): 53.
[http://dx.doi.org/10.4103/jrms.JRMS_1050_16] [PMID: 28567072]
[2]
Joshi AY, Iyer VN, Hagan JB, St Sauver JL, Boyce TG. Incidence and temporal trends of primary immunodeficiency: A population-based cohort study. Mayo Clin Proc 2009; 84(1): 16-22.
[http://dx.doi.org/10.4065/84.1.16] [PMID: 19121249]
[3]
Davis S, Schaller J, Wedgwood R, Harvard MD. Job’s syndrome. recurrent, “cold”, staphylococcal abscesses. Lancet 1966; 287(7445): 1013-5.
[http://dx.doi.org/10.1016/S0140-6736(66)90119-X] [PMID: 4161105]
[4]
Buckley RH, Wray BB, Belmaker EZ. Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics 1972; 49(1): 59-70.
[http://dx.doi.org/10.1542/peds.49.1.59] [PMID: 5059313]
[5]
Grimbacher B, Holland SM, Gallin JI, et al. Hyper-IgE syndrome with recurrent infections : An autosomal dominant multisystem disorder. N Engl J Med 1999; 340(9): 692-702.
[http://dx.doi.org/10.1056/NEJM199903043400904] [PMID: 10053178]
[6]
Holland SM, DeLeo FR, Elloumi HZ, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 2007; 357(16): 1608-19.
[http://dx.doi.org/10.1056/NEJMoa073687] [PMID: 17881745]
[7]
Minegishi Y, Saito M, Tsuchiya S, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 2007; 448(7157): 1058-62.
[http://dx.doi.org/10.1038/nature06096] [PMID: 17676033]
[8]
Freeman AF, Milner JD. The child with elevated IgE and infection susceptibility. Curr Allergy Asthma Rep 2020; 20(11): 65.
[http://dx.doi.org/10.1007/s11882-020-00964-y] [PMID: 32830295]
[9]
Bergerson JRE, Freeman AF. An update on syndromes with a Hyper-IgE phenotype. Immunol Allergy Clin North Am 2019; 39(1): 49-61.
[http://dx.doi.org/10.1016/j.iac.2018.08.007] [PMID: 30466772]
[10]
Chandesris MO, Melki I, Natividad A, et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: Molecular, cellular, and clinical features from a French national survey. Medicine 2012; 91(4): e1-e19.
[http://dx.doi.org/10.1097/MD.0b013e31825f95b9] [PMID: 22751495]
[11]
Heimall J, Freeman A, Holland SM. Pathogenesis of hyper IgE syndrome. Clin Rev Allergy Immunol 2010; 38(1): 32-8.
[http://dx.doi.org/10.1007/s12016-009-8134-1] [PMID: 19452285]
[12]
Renner ED, Rylaarsdam S, Aňover-Sombke S, et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol 2008; 122(1): 181-7.
[http://dx.doi.org/10.1016/j.jaci.2008.04.037] [PMID: 18602572]
[13]
Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203(10): 2271-9.
[http://dx.doi.org/10.1084/jem.20061308] [PMID: 16982811]
[14]
Aujla SJ, Chan YR, Zheng M, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 2008; 14(3): 275-81.
[http://dx.doi.org/10.1038/nm1710] [PMID: 18264110]
[15]
Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 2004; 190(3): 624-31.
[http://dx.doi.org/10.1086/422329] [PMID: 15243941]
[16]
Kao CY, Chen Y, Thai P, et al. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 2004; 173(5): 3482-91.
[http://dx.doi.org/10.4049/jimmunol.173.5.3482] [PMID: 15322213]
[17]
Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2014; 4i1(4): 529-42.
[http://dx.doi.org/10.1016/j.immuni.2014.10.004]
[18]
Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: The role of T regulatory cells. Immunology 2006; 117(4): 433-42.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02321.x] [PMID: 16556256]
[19]
Kuchen S, Robbins R, Sims GP, et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol 2007; 179(9): 5886-96.
[http://dx.doi.org/10.4049/jimmunol.179.9.5886] [PMID: 17947662]
[20]
Sekhsaria V, Dodd LE, Hsu AP, et al. Plasma metalloproteinase levels are dysregulated in signal transducer and activator of transcription 3 mutated hyper-IgE syndrome. J Allergy Clin Immunol 2011; 128(5): 1124-7.
[http://dx.doi.org/10.1016/j.jaci.2011.07.046] [PMID: 21872914]
[21]
Nieminen P, Morgan NV, Fenwick AL, et al. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 2011; 89(1): 67-81.
[http://dx.doi.org/10.1016/j.ajhg.2011.05.024] [PMID: 21741611]
[22]
Gernez Y, Freeman AF, Holland SM, et al. Autosomal dominant hyper-IgE syndrome in the USIDNET registry. J Allergy Clin Immunol Pract 2018; 6(3): 996-1001.
[http://dx.doi.org/10.1016/j.jaip.2017.06.041] [PMID: 28939137]
[23]
Khourieh J, Rao G, Habib T, et al. A deep intronic splice mutation of STAT3 underlies hyper IgE syndrome by negative dominance. Proc Natl Acad Sci 2019; 116(33): 16463-72.
[http://dx.doi.org/10.1073/pnas.1901409116] [PMID: 31346092]
[24]
Heimall J, Davis J, Shaw PA, et al. Paucity of genotype–phenotype correlations in STAT3 mutation positive Hyper IgE Syndrome (HIES). Clin Immunol 2011; 139(1): 75-84.
[http://dx.doi.org/10.1016/j.clim.2011.01.001] [PMID: 21288777]
[25]
Lyons JJ, Liu Y, Ma CA, et al. ERBIN deficiency links STAT3 and TGF-β pathway defects with atopy in humans. J Exp Med 2017; 214(3): 669-80.
[http://dx.doi.org/10.1084/jem.20161435] [PMID: 28126831]
[26]
Liu D, Shi M, Duan H, Han C, Guo N. Erbin, a negative regulator in diverse signal pathways. Curr Protein Pept Sci 2010; 11(8): 759-64.
[http://dx.doi.org/10.2174/138920310794557673] [PMID: 21235511]
[27]
Ma CA, Stinson JR, Zhang Y, et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat Genet 2017; 49(8): 1192-201.
[http://dx.doi.org/10.1038/ng.3898] [PMID: 28628108]
[28]
Dadi H, Jones TA, Merico D, et al. Combined immunodeficiency and atopy caused by a dominant negative mutation in caspase activation and recruitment domain family member 11 (CARD11). J Allergy Clin Immunol 2018; 141(5): 1818-1830.e2.
[http://dx.doi.org/10.1016/j.jaci.2017.06.047] [PMID: 28826773]
[29]
Altin JA, Tian L, Liston A, Bertram EM, Goodnow CC, Cook MC. Decreased T-cell receptor signaling through CARD11 differentially compromises forkhead box protein 3–positive regulatory versus TH2 effector cells to cause allergy. J Allergy Clin Immunol 2011; 127(5): 1277-1285.e5.
[http://dx.doi.org/10.1016/j.jaci.2010.12.1081] [PMID: 21320717]
[30]
Engelhardt KR, McGhee S, Winkler S, et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol 2009; 124(6): 1289-1302.e4.
[http://dx.doi.org/10.1016/j.jaci.2009.10.038] [PMID: 20004785]
[31]
Renner ED, Puck JM, Holland SM, et al. Autosomal recessive hyperimmunoglobulin E syndrome: A distinct disease entity. J Pediatr 2004; 144(1): 93-9.
[http://dx.doi.org/10.1016/S0022-3476(03)00449-9] [PMID: 14722525]
[32]
Meller N, Merlot S, Guda C. CZH proteins: A new family of Rho-GEFs. J Cell Sci 2005; 118(21): 4937-46.
[http://dx.doi.org/10.1242/jcs.02671] [PMID: 16254241]
[33]
Kearney CJ, Randall KL, Oliaro J. DOCK8 regulates signal transduction events to control immunity. Cell Mol Immunol 2017; 14(5): 406-11.
[http://dx.doi.org/10.1038/cmi.2017.9] [PMID: 28366940]
[34]
Harada Y, Tanaka Y, Terasawa M, et al. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 2012; 119(19): 4451-61.
[http://dx.doi.org/10.1182/blood-2012-01-407098] [PMID: 22461490]
[35]
Tangye SG, Pillay B, Randall KL, et al. Dedicator of cytokinesis 8–deficient CD4 + T cells are biased to a T H 2 effector fate at the expense of T H 1 and T H 17 cells. J Allergy Clin Immunol 2017; 139(3): 933-49.
[http://dx.doi.org/10.1016/j.jaci.2016.07.016] [PMID: 27554822]
[36]
Singh AK, Eken A, Hagin D, et al. DOCK8 regulates fitness and function of regulatory T cells through modulation of IL-2 signaling. JCI Insight 2017; 2(19): e94275.
[http://dx.doi.org/10.1172/jci.insight.94275] [PMID: 28978795]
[37]
Randall KL, Chan SSY, Ma CS, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med 2011; 208(11): 2305-20.
[http://dx.doi.org/10.1084/jem.20110345] [PMID: 22006977]
[38]
Zhang Q, Dove CG, Hor JL, et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J Exp Med 2014; 211(13): 2549-66.
[http://dx.doi.org/10.1084/jem.20141307] [PMID: 25422492]
[39]
Ham H, Guerrier S, Kim J, et al. Dedicator of cytokinesis 8 interacts with talin and Wiskott-Aldrich syndrome protein to regulate NK cell cytotoxicity. J Immunol 2013; 190(7): 3661-9.
[http://dx.doi.org/10.4049/jimmunol.1202792] [PMID: 23455509]
[40]
Randall KL, Lambe T, Johnson AL, et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol 2009; 10(12): 1283-91.
[http://dx.doi.org/10.1038/ni.1820] [PMID: 19898472]
[41]
Sassi A, Lazaroski S, Wu G, et al. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol 2014; 133(5): 1410-9.e1-13.
[42]
Zhang Y, Yu X, Ichikawa M, et al. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol 2014; 133(5): 1400-9.
[43]
Pascoal C, Francisco R, Ferro T, dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43(1): 90-124.
[http://dx.doi.org/10.1002/jimd.12126] [PMID: 31095764]
[44]
Al-Shaikhly T, Ochs HD. Hyper IgE syndromes: Clinical and molecular characteristics. Immunol Cell Biol 2019; 97(4): 368-79.
[http://dx.doi.org/10.1111/imcb.12209] [PMID: 30264496]
[45]
Yang L, Fliegauf M, Grimbacher B. Hyper-IgE syndromes. Curr Opin Pediatr 2014; 26(6): 697-703.
[http://dx.doi.org/10.1097/MOP.0000000000000158] [PMID: 25365149]
[46]
Frey-Jakobs S, Hartberger JM, Fliegauf M, et al. ZNF341 controls STAT3 expression and thereby immunocompetence. Sci Immunol 2018; 3(24): eaat4941.
[http://dx.doi.org/10.1126/sciimmunol.aat4941] [PMID: 29907690]
[47]
Béziat V, Li J, Lin JX, et al. A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Sci Immunol 2018; 3(24): eaat4956.
[http://dx.doi.org/10.1126/sciimmunol.aat4956] [PMID: 29907691]
[48]
Rose-John S. Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol 2018; 10(2): a028415.
[http://dx.doi.org/10.1101/cshperspect.a028415] [PMID: 28620096]
[49]
Murakami M, Kamimura D, Hirano T. Pleiotropy and specificity: Insights from the interleukin 6 family of cytokines. Immunity 2019; 50(4): 812-31.
[http://dx.doi.org/10.1016/j.immuni.2019.03.027] [PMID: 30995501]
[50]
Chen YH, Zastrow DB, Metcalfe RD, et al. Functional and structural analysis of cytokine-selective IL6ST defects that cause recessive hyper-IgE syndrome. J Allergy Clin Immunol 2021; 148(2): 585-98.
[http://dx.doi.org/10.1016/j.jaci.2021.02.044] [PMID: 33771552]
[51]
Béziat V, Tavernier SJ, Chen YH, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med 2020; 217(6): e20191804.
[http://dx.doi.org/10.1084/jem.20191804] [PMID: 32207811]
[52]
Spencer S, Köstel Bal S, Egner W, et al. Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses. J Exp Med 2019; 216(9): 1986-98.
[http://dx.doi.org/10.1084/jem.20190344] [PMID: 31235509]
[53]
Taga T, Kishimoto T. GP 130 and the interleukin-6 family of cytokines. Annu Rev Immunol 1997; 15(1): 797-819.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.797] [PMID: 9143707]
[54]
Grimbacher B, Schäffer AA, Holland SM, et al. Genetic linkage of hyper-IgE syndrome to chromosome 4. Am J Hum Genet 1999; 65(3): 735-44.
[http://dx.doi.org/10.1086/302547] [PMID: 10441580]
[55]
Eberting CLD, Davis J, Puck JM, Holland SM, Turner ML. Dermatitis and the newborn rash of hyper-IgE syndrome. Arch Dermatol 2004; 140(9): 1119-25.
[http://dx.doi.org/10.1001/archderm.140.9.1119] [PMID: 15381553]
[56]
Minegishi Y, Saito M. Cutaneous manifestations of Hyper IgE syndrome. Allergol Int 2012; 61(2): 191-6.
[http://dx.doi.org/10.2332/allergolint.12-RAI-0423] [PMID: 22441639]
[57]
Taïeb A, Bassan-Andrieu L, Maleville J. Eosinophilic pustulosis of the scalp in childhood. J Am Acad Dermatol 1992; 27(1): 55-60.
[http://dx.doi.org/10.1016/0190-9622(92)70156-A] [PMID: 1619077]
[58]
Lucky AW, Esterly N, Heskel N, Krafchik BR, Solomon LM. Eosinophilic pustular folliculitis in infancy. Pediatr Dermatol 1984; 1(3): 202-6.
[http://dx.doi.org/10.1111/j.1525-1470.1984.tb01116.x] [PMID: 6494063]
[59]
Chamlin SL, McCalmont TH, Cunningham BB, et al. Cutaneous manifestations of hyper-IgE syndrome in infants and children. J Pediatr 2002; 141(4): 572-5.
[http://dx.doi.org/10.1067/mpd.2002.127503] [PMID: 12378200]
[60]
Hochreutener H, Wüthrich B, Huwyler T, Schopfer K, Seger R, Baerlocher K. Variant of hyper-IgE syndrome: The differentiation from atopic dermatitis is important because of treatment and prognosis. Dermatology 1991; 182(1): 7-11.
[http://dx.doi.org/10.1159/000247728] [PMID: 2013364]
[61]
Wu J, Hong L, Chen TX. Clinical manifestation of hyper IgE syndrome including otitis media. Curr Allergy Asthma Rep 2018; 18(10): 51.
[http://dx.doi.org/10.1007/s11882-018-0806-6] [PMID: 30112673]
[62]
Sastalla I, Williams K, Anderson E, et al. Molecular typing of staphylococcus aureus isolated from patients with autosomal dominant hyper IgE syndrome. Pathogens 2017; 6(2): 23.
[http://dx.doi.org/10.3390/pathogens6020023] [PMID: 28587312]
[63]
Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: A complex and evolving relationship. Trends Microbiol 2018; 26(6): 484-97.
[http://dx.doi.org/10.1016/j.tim.2017.11.008] [PMID: 29233606]
[64]
Park B, Liu GY. Staphylococcus aureus and hyper-IgE syndrome. Int J Mol Sci 2020; 21(23): 9152.
[http://dx.doi.org/10.3390/ijms21239152] [PMID: 33271763]
[65]
Minegishi Y, Saito M, Nagasawa M, et al. Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J Exp Med 2009; 206(6): 1291-301.
[http://dx.doi.org/10.1084/jem.20082767] [PMID: 19487419]
[66]
Puel A, Cypowyj S, Bustamante J, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 2011; 332(6025): 65-8.
[http://dx.doi.org/10.1126/science.1200439] [PMID: 21350122]
[67]
Conti HR, Baker O, Freeman AF, et al. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol 2011; 4(4): 448-55.
[http://dx.doi.org/10.1038/mi.2011.5] [PMID: 21346738]
[68]
Odio CD, Milligan KL, McGowan K, et al. Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. J Allergy Clin Immunol 2015; 136(5): 1411-3.
[69]
Chu EY, Freeman AF, Jing H, et al. Cutaneous manifestations of DOCK8 deficiency syndrome. Arch Dermatol 2012; 148(1): 79-84.
[http://dx.doi.org/10.1001/archdermatol.2011.262] [PMID: 21931011]
[70]
Freeman AF, Olivier KN. Hyper-IgE syndromes and the lung. Clin Chest Med 2016; 37(3): 557-67.
[http://dx.doi.org/10.1016/j.ccm.2016.04.016] [PMID: 27514600]
[71]
Freeman AF, Kleiner DE, Nadiminti H, et al. Causes of death in hyper-IgE syndrome. J Allergy Clin Immunol 2007; 119(5): 1234-40.
[http://dx.doi.org/10.1016/j.jaci.2006.12.666] [PMID: 17335882]
[72]
Vinh DC, Sugui JA, Hsu AP, Freeman AF, Holland SM. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J Allergy Clin Immunol 2010; 125(6): 1389-90.
[http://dx.doi.org/10.1016/j.jaci.2010.01.047] [PMID: 20392475]
[73]
Melia E, Freeman AF, Shea YR, Hsu AP, Holland SM, Olivier KN. Pulmonary nontuberculous mycobacterial infections in hyper-IgE syndrome. J Allergy Clin Immunol 2009; 124(3): 617-8.
[http://dx.doi.org/10.1016/j.jaci.2009.07.007] [PMID: 19733303]
[74]
Kim UR, Arora V, Khazei H, Kusagur S. Ophthalmic complications including retinal detachment in hyperimmunoglobulinemia E (Job′s) syndrome: Case report and review of literature. Indian J Ophthalmol 2009; 57(5): 385-6.
[http://dx.doi.org/10.4103/0301-4738.55076] [PMID: 19700878]
[75]
Boos AC, Hagl B, Schlesinger A, et al. Atopic dermatitis, STAT3- and DOCK8-hyper-IgE syndromes differ in IgE-based sensitization pattern. Allergy 2014; 69(7): 943-53.
[http://dx.doi.org/10.1111/all.12416] [PMID: 24898675]
[76]
Rajala HLM, Porkka K, Maciejewski JP, Loughran TP Jr, Mustjoki S. Uncovering the pathogenesis of large granular lymphocytic leukemia—novel STAT3 and STAT5b mutations. Ann Med 2014; 46(3): 114-22.
[http://dx.doi.org/10.3109/07853890.2014.882105] [PMID: 24512550]
[77]
Aydin SE, Kilic SS, Aytekin C, et al. DOCK8 deficiency: Clinical and immunological phenotype and treatment options : A review of 136 patients. J Clin Immunol 2015; 35(2): 189-98.
[http://dx.doi.org/10.1007/s10875-014-0126-0] [PMID: 25627830]
[78]
Sowerwine KJ, Shaw PA, Gu W, et al. Bone density and fractures in autosomal dominant hyper IgE syndrome. J Clin Immunol 2014; 34(2): 260-4.
[http://dx.doi.org/10.1007/s10875-013-9982-2] [PMID: 24402620]
[79]
Mitchell AL, Urban AK, Freeman AF, Hammoud DA. An unusual pattern of premature cervical spine degeneration in STAT3-LOF. J Clin Immunol 2021; 41(3): 576-84.
[http://dx.doi.org/10.1007/s10875-020-00926-z] [PMID: 33404973]
[80]
Meixner I, Hagl B, Kröner CI, et al. Retained primary teeth in STAT3 hyper-IgE syndrome: early intervention in childhood is essential. Orphanet J Rare Dis 2020; 15(1): 244.
[http://dx.doi.org/10.1186/s13023-020-01516-3] [PMID: 32912316]
[81]
Freeman AF, Avila EM, Shaw PA, et al. Coronary artery abnormalities in Hyper-IgE syndrome. J Clin Immunol 2011; 31(3): 338-45.
[http://dx.doi.org/10.1007/s10875-011-9515-9] [PMID: 21494893]
[82]
Sharma A, Kumar S, Jagia P. Pulmonary artery pseudoaneurysm in hyper-IgE syndrome: Rare complication with successful endovascular management. Vasc Endovascular Surg 2018; 52(5): 375-7.
[http://dx.doi.org/10.1177/1538574418762656] [PMID: 29552943]
[83]
Fang Y, Feng X, Xue N, Cao Y, Zhou P, Wei Z. STAT3 signaling pathway is involved in the pathogenesis of miscarriage. Placenta 2020; 101: 30-8.
[http://dx.doi.org/10.1016/j.placenta.2020.08.021] [PMID: 32916476]
[84]
Hagl B, Heinz V, Schlesinger A, et al. Key findings to expedite the diagnosis of hyper-IgE syndromes in infants and young children. Pediatr Allergy Immunol 2016; 27(2): 177-84.
[http://dx.doi.org/10.1111/pai.12512] [PMID: 26592211]
[85]
Schimke LF, Sawalle-Belohradsky J, Roesler J, et al. Diagnostic approach to the hyper-IgE syndromes: Immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis. J Allergy Clin Immunol 2010; 126(3): 611-617.e1.
[http://dx.doi.org/10.1016/j.jaci.2010.06.029] [PMID: 20816194]
[86]
Woellner C, Gertz EM, Schäffer AA, et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol 2010; 125(2): 424-432.e8.
[http://dx.doi.org/10.1016/j.jaci.2009.10.059] [PMID: 20159255]
[87]
Engelhardt KR, Gertz ME, Keles S, et al. The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol 2015; 136(2): 402-12.
[http://dx.doi.org/10.1016/j.jaci.2014.12.1945] [PMID: 25724123]
[88]
ESID Registry-Working definitions for clinical diagnosis of PID. In: European Society of Immunodefeciencies. 2019. Available from: https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria (accessed December 20, 2022).
[89]
Freeman AF, Renner ED, Henderson C, et al. Lung parenchyma surgery in autosomal dominant hyper-IgE syndrome. J Clin Immunol 2013; 33(5): 896-902.
[http://dx.doi.org/10.1007/s10875-013-9890-5] [PMID: 23584561]
[90]
Karakoc-Aydiner E, Baris S, Keles S, Ozdemir C, Chatila T, Barlan I. Inhaled alpha1-antitrypsin administered to treat pneumatocele in autosomal dominant hyperimmunoglobulin E syndrome. J Investig Allergol Clin Immunol 2013; 23(5): 359-61.
[PMID: 24260982]
[91]
Al-Zahrani D, Raddadi A, Massaad M, et al. Successful interferon-alpha 2b therapy for unremitting warts in a patient with DOCK8 deficiency. Clin Immunol 2014; 153(1): 104-8.
[http://dx.doi.org/10.1016/j.clim.2014.04.005] [PMID: 24743019]
[92]
Kimata H. High-dose intravenous γ-globulin treatment for hyperimmunoglobulinemia E syndrome. J Allergy Clin Immunol 1995; 95(3): 771-4.
[http://dx.doi.org/10.1016/S0091-6749(95)70185-0] [PMID: 7897163]
[93]
Wakim M, Alazard M, Yajima A, Speights D, Saxon A, Stiehm ER. High dose intravenous immunoglobulin in atopic dermatitis and hyper-IgE syndrome. Ann Allergy Asthma Immunol 1998; 81(2): 153-8.
[http://dx.doi.org/10.1016/S1081-1206(10)62802-5] [PMID: 9723561]
[94]
Piñones M, Vizcaya C, Pérez-Mateluna G, Hoyos-Bachiloglu R, Borzutzky A. Severe necrotic reaction to 23-valent polysaccharide pneumococcal vaccine in a patient with STAT3 deficiency. J Allergy Clin Immunol Pract 2019; 7(5): 1631-2.
[http://dx.doi.org/10.1016/j.jaip.2019.01.033] [PMID: 30777669]
[95]
Freeman AF, Yazigi N, Shah NN, et al. Tandem orthotopic living donor liver transplantation followed by same donor haploidentical hematopoietic stem cell transplantation for DOCK8 deficiency. Transplantation 2019; 103(10): 2144-9.
[http://dx.doi.org/10.1097/TP.0000000000002649] [PMID: 30720689]
[96]
Dimitrova D, Freeman AF. Current status of dedicator of cytokinesis-associated immunodeficiency. Dermatol Clin 2017; 35(1): 11-9.
[http://dx.doi.org/10.1016/j.det.2016.07.002] [PMID: 27890234]
[97]
Aydin SE, Freeman AF, Al-Herz W, et al. Hematopoietic stem cell transplantation as treatment for patients with DOCK8 deficiency. J Allergy Clin Immunol Pract 2019; 7(3): 848-55.
[http://dx.doi.org/10.1016/j.jaip.2018.10.035] [PMID: 30391550]
[98]
Nester TA, Wagnon AH, Reilly WF, Spitzer G, Kjeldsberg CR, Hill HR. Effects of allogeneic peripheral stem cell transplantation in a patient with Job syndrome of hyperimmunoglobulinemia E and recurrent infections. Am J Med 1998; 105(2): 162-4.
[http://dx.doi.org/10.1016/S0002-9343(98)00200-9] [PMID: 9727824]
[99]
Goussetis E, Peristeri I, Kitra V, et al. Successful long-term immunologic reconstitution by allogeneic hematopoietic stem cell transplantation cures patients with autosomal dominant hyper-IgE syndrome. J Allergy Clin Immunol 2010; 126(2): 392-4.
[http://dx.doi.org/10.1016/j.jaci.2010.05.005] [PMID: 20584545]
[100]
Yanagimachi M, Ohya T, Yokosuka T, et al. The potential and limits of hematopoietic stem cell transplantation for the treatment of autosomal dominant hyper-IgE syndrome. J Clin Immunol 2016; 36(5): 511-6.
[http://dx.doi.org/10.1007/s10875-016-0278-1] [PMID: 27091139]
[101]
Tsilifis C, Freeman AF, Gennery AR. STAT3 Hyper-IgE syndrome : An update and unanswered questions. J Clin Immunol 2021; 41(5): 864-80.
[http://dx.doi.org/10.1007/s10875-021-01051-1] [PMID: 33932191]
[102]
Stray-Pedersen A, Backe PH, Sorte HS, et al. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 2014; 95(1): 96-107.
[http://dx.doi.org/10.1016/j.ajhg.2014.05.007] [PMID: 24931394]
[103]
Winslow A, Jalazo ER, Evans A, Winstead M, Moran T. A De Novo cause of PGM3 deficiency treated with hematopoietic stem cell transplantation. J Clin Immunol 2022; 42(3): 691-4.
[http://dx.doi.org/10.1007/s10875-021-01196-z] [PMID: 35040011]
[104]
Lan J, Zhang Y, Song M, et al. Omalizumab for STAT3 Hyper-IgE syndromes in adulthood: A case report and literature review. Front Med 2022; 9: 835257.
[http://dx.doi.org/10.3389/fmed.2022.835257] [PMID: 35602476]
[105]
Alonso-Bello CD, Jiménez-Martínez MC, Vargas-Camaño ME, et al. Partial and transient clinical response to omalizumab in IL-21-induced low STAT3-phosphorylation on hyper-IgE syndrome. Case Reports Immunol 2019; 2019: 1-5.
[http://dx.doi.org/10.1155/2019/6357256] [PMID: 31355024]
[106]
Bard S, Paravisini A, Avilés-Izquierdo JA, Fernandez-Cruz E, Sánchez-Ramón S. Eczematous dermatitis in the setting of hyper-IgE syndrome successfully treated with omalizumab. Arch Dermatol 2008; 144(12): 1662-3.
[http://dx.doi.org/10.1001/archdermatol.2008.510] [PMID: 19075161]
[107]
Gomes N, Miranda J, Lopes S, et al. Omalizumab in the treatment of hyper-IgE syndrome: 2 case reports. J Investig Allergol Clin Immunol 2020; 30(3): 191-2.
[http://dx.doi.org/10.18176/jiaci.0469] [PMID: 31820738]
[108]
Matucci-Cerinic C, Viglizzo G, Pastorino C, et al. Remission of eczema and recovery of Th1 polarization following treatment with Dupilumab in STAT3 hyper IgE syndrome. Pediatr Allergy Immunol 2022; 33(4): e13770.
[http://dx.doi.org/10.1111/pai.13770] [PMID: 35470938]
[109]
Lévy R, Béziat V, Barbieux C, et al. Efficacy of dupilumab for controlling severe atopic dermatitis in a patient with hyper-IgE syndrome. J Clin Immunol 2020; 40(2): 418-20.
[110]
Buckley RH. The hyper-IgE syndrome. Clin Rev Allergy Immunol 2001; 20(1): 139-54.
[http://dx.doi.org/10.1385/CRIAI:20:1:139] [PMID: 11269224]
[111]
Xiang Q, Zhang L, Liu X, et al. Autosomal dominant hyper IgE syndrome from a single centre in Chongqing, China (2009-2018). Scand J Immunol 2020; 91(6): e12885.
[http://dx.doi.org/10.1111/sji.12885] [PMID: 32248557]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy