Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Why do some Children Get Sick with Recurrent Respiratory Infections?

Author(s): Fabio Cardinale, Francesco La Torre, Lucia Grazia Tricarico, Giuseppe Verriello and Carla Mastrorilli*

Volume 20, Issue 3, 2024

Published on: 18 September, 2023

Page: [203 - 215] Pages: 13

DOI: 10.2174/1573396320666230912103056

Price: $65

Abstract

Respiratory tract infections (RTI) represent a frequent condition, particularly among preschool children, with an important burden on the affected children and their families. It has been estimated that recurrent RTIs affect up to 25% of children during the first 4 years of life. These infections are mainly caused by viruses and are generally self-limiting. Social and environmental factors have been studied in determining the incidence of recurrent RTIs and the mostly recognized are precocious day care attendance, tobacco exposure and pollution. Primary immune defects, local anatomical factors, and genetic disorders such as primary ciliary dyskinesia or cystic fibrosis, may be also involved in recurrent RTIs of a subgroup of children, typically characterized by more severe and chronic symptoms. However, there is increasing awareness that RTIs have a complex pathophysiology and that some underrecognized factors, including genetic susceptibility to infections, low levels of some micronutrients, and respiratory microbiota might shape the probability for the child to develop RTIs. The sum (i.e. the number) of these factors may help in explaining why some children get sick for RTIs whilst other not. In some children iatrogenic factors, including improper use of antibiotics and NSAIDS or glucocorticoids might also aggravate this condition, further weakening the host's immune response and the possibly of establishing a “vicious circle”. The present review aims to focus on several possible factors involved in influencing RTIs and to propose a unifying hypothesis on pathophysiological mechanisms of unexplained recurrent RTIs in children.

Graphical Abstract

[1]
Chiappini E, Santamaria F, Marseglia GL, et al. Prevention of recurrent respiratory infections. Ital J Pediatr 2021; 47(1): 211.
[http://dx.doi.org/10.1186/s13052-021-01150-0] [PMID: 34696778]
[2]
Nokso-Koivisto J, Pitkäranta A, Blomqvist S, et al. Viral etiology of frequently recurring respiratory tract infections in children. Clin Infect Dis 2002; 35(5): 540-6.
[http://dx.doi.org/10.1086/341773] [PMID: 12173127]
[3]
Bellanti JA. Recurrent respiratory tract infections in paediatric patients. Drugs 1997; 54 (1): 1-4.
[http://dx.doi.org/10.2165/00003495-199700541-00003] [PMID: 9378072]
[4]
Toivonen L, Karppinen S, Schuez-Havupalo L, et al. Burden of recurrent respiratory tract infections in children: A prospective cohort study. Pediatr Infect Dis J 2016; 35(12): e362-9.
[http://dx.doi.org/10.1097/INF.0000000000001304] [PMID: 27455443]
[5]
Monto AS. Epidemiology of viral respiratory infections. Am J Med 2002; 112(6) (6A): 4-12.
[http://dx.doi.org/10.1016/S0002-9343(01)01058-0] [PMID: 11955454]
[6]
Kusel MMH, de Klerk N, Holt PG, Landau LI, Sly PD. Occurrence and management of acute respiratory illnesses in early childhood. J Paediatr Child Health 2007; 43(3): 139-46.
[http://dx.doi.org/10.1111/j.1440-1754.2007.01033.x] [PMID: 17316187]
[7]
von Linstow ML, Holst KK, Larsen K, Koch A, Andersen PK, Høgh B. Acute respiratory symptoms and general illness during the first year of life: A population-based birth cohort study. Pediatr Pulmonol 2008; 43(6): 584-93.
[http://dx.doi.org/10.1002/ppul.20828] [PMID: 18435478]
[8]
Kamper-Jørgensen M, Wohlfahrt J, Simonsen J, Grønbæk M, Benn CS. Population-based study of the impact of childcare attendance on hospitalizations for acute respiratory infections. Pediatrics 2006; 118(4): 1439-46.
[http://dx.doi.org/10.1542/peds.2006-0373] [PMID: 17015534]
[9]
de Martino M, Ballotti S. The child with recurrent respiratory infections: Normal or not? Pediatr Allergy Immunol 2007; 18(s18) (18): 13-8.
[http://dx.doi.org/10.1111/j.1399-3038.2007.00625.x] [PMID: 17767600]
[10]
Winkelstein JA, Childs B. Why do some individuals have more infections than others? JAMA 2001; 285(10): 1348-9.
[http://dx.doi.org/10.1001/jama.285.10.1348] [PMID: 11255392]
[11]
Casanova JL. Human genetic basis of interindividual variability in the course of infection. Proc Natl Acad Sci 2015; 112(51): E7118-27.
[http://dx.doi.org/10.1073/pnas.1521644112] [PMID: 26621739]
[12]
Sørensen TIA, Nielsen GG, Andersen PK, Teasdale TW. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 1988; 318(12): 727-32.
[http://dx.doi.org/10.1056/NEJM198803243181202] [PMID: 3347221]
[13]
Petersen L, Andersen PK, Sørensen TIA. Genetic influences on incidence and case-fatality of infectious disease. PLoS One 2010; 5(5): e10603.
[http://dx.doi.org/10.1371/journal.pone.0010603] [PMID: 20498716]
[14]
Casselbrant ML, Mandel EM, Fall PA, et al. The heritability of otitis media: A twin and triplet study. JAMA 1999; 282(22): 2125-30.
[http://dx.doi.org/10.1001/jama.282.22.2125] [PMID: 10591333]
[15]
Kvestad E, Kværner KJ, Røysamb E, Tambs K, Harris JR, Magnus P. Heritability of recurrent tonsillitis. Arch Otolaryngol Head Neck Surg 2005; 131(5): 383-7.
[http://dx.doi.org/10.1001/archotol.131.5.383] [PMID: 15897415]
[16]
Bochud PY, Bochud M, Telenti A, Calandra T. Innate immunogenetics: A tool for exploring new frontiers of host defence. Lancet Infect Dis 2007; 7(8): 531-42.
[http://dx.doi.org/10.1016/S1473-3099(07)70185-8] [PMID: 17646026]
[17]
Waterer GW, Wunderink RG. Genetic susceptibility to pneumonia. Clin Chest Med 2005; 26(1): 29-38.
[http://dx.doi.org/10.1016/j.ccm.2004.10.002] [PMID: 15802163]
[18]
Waterer GW, Bruns AHW. Genetic risk of acute pulmonary infections and sepsis. Expert Rev Respir Med 2010; 4(2): 229-38.
[http://dx.doi.org/10.1586/ers.10.13] [PMID: 20406089]
[19]
Kwiatkowski D. Science, medicine, and the future: Susceptibility to infection. BMJ 2000; 321(7268): 1061-5.
[http://dx.doi.org/10.1136/bmj.321.7268.1061] [PMID: 11053181]
[20]
Liao WW, Asri M, Ebler J, et al. A draft human pangenome reference. Nature 2023; 617(7960): 312-24.
[http://dx.doi.org/10.1038/s41586-023-05896-x] [PMID: 37165242]
[21]
Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020; 581(7809): 434-43.
[http://dx.doi.org/10.1038/s41586-020-2308-7] [PMID: 32461654]
[22]
Newport MJ, Huxley CM, Huston S, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 1996; 335(26): 1941-9.
[http://dx.doi.org/10.1056/NEJM199612263352602] [PMID: 8960473]
[23]
Rosain J, Kong XF, Martinez-Barricarte R, et al. Mendelian susceptibility to mycobacterial disease: 2014–2018 update. Immunol Cell Biol 2019; 97(4): 360-7.
[http://dx.doi.org/10.1111/imcb.12210] [PMID: 30264912]
[24]
Boisson-Dupuis S, Ramirez-Alejo N, Li Z, et al. Tuberculosis and impaired IL-23–dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol 2018; 3(30): eaau8714.
[http://dx.doi.org/10.1126/sciimmunol.aau8714] [PMID: 30578352]
[25]
Kerner G, Ramirez-Alejo N, Seeleuthner Y, et al. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc Natl Acad Sci 2019; 116(21): 10430-4.
[http://dx.doi.org/10.1073/pnas.1903561116] [PMID: 31068474]
[26]
Roy S, Knox K, Segal S, et al. MBL genotype and risk of invasive pneumococcal disease: A case-control study. Lancet 2002; 359(9317): 1569-73.
[http://dx.doi.org/10.1016/S0140-6736(02)08516-1] [PMID: 12047967]
[27]
Asgari S, Schlapbach LJ, Anchisi S, et al. Severe viral respiratory infections in children with IFIH1 loss-of-function mutations. Proc Natl Acad Sci 2017; 114(31): 8342-7.
[http://dx.doi.org/10.1073/pnas.1704259114] [PMID: 28716935]
[28]
Löfgren J, Rämet M, Renko M, Marttila R, Hallman M. Association between surfactant protein A gene locus and severe respiratory syncytial virus infection in infants. J Infect Dis 2002; 185(3): 283-9.
[http://dx.doi.org/10.1086/338473] [PMID: 11807709]
[29]
Roth DE, Jones AB, Prosser C, Robinson JL, Vohra S. Vitamin D receptor polymorphisms and the risk of acute lower respiratory tract infection in early childhood. J Infect Dis 2008; 197(5): 676-80.
[http://dx.doi.org/10.1086/527488] [PMID: 18266602]
[30]
Patel JA, Nair S, Revai K, et al. Association of proinflammatory cytokine gene polymorphisms with susceptibility to otitis media. Pediatrics 2006; 118(6): 2273-9.
[http://dx.doi.org/10.1542/peds.2006-0764] [PMID: 17142509]
[31]
van Ingen G, Li J, Goedegebure A, et al. Genome-wide association study for acute otitis media in children identifies FNDC1 as disease contributing gene. Nat Commun 2016; 7(1): 12792.
[http://dx.doi.org/10.1038/ncomms12792] [PMID: 27677580]
[32]
Geng R, Wang Q, Chen E, Zheng QY. Current understanding of host genetics of otitis media. Front Genet 2020; 10: 1395.
[http://dx.doi.org/10.3389/fgene.2019.01395] [PMID: 32117425]
[33]
Wang X, Moylan B, Leopold DA, et al. Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA 2000; 284(14): 1814-9.
[http://dx.doi.org/10.1001/jama.284.14.1814] [PMID: 11025834]
[34]
Chang EH, Willis AL, McCrary HC, et al. Association between the CDHR3 rs6967330 risk allele and chronic rhinosinusitis. J Allergy Clin Immunol 2017; 139(6): 1990-1992.e2.
[http://dx.doi.org/10.1016/j.jaci.2016.10.027] [PMID: 27923563]
[35]
Orb Q, Curtin K, Oakley GM, et al. Familial risk of pediatric chronic rhinosinusitis. Laryngoscope 2016; 126(3): 739-45.
[http://dx.doi.org/10.1002/lary.25469] [PMID: 26228920]
[36]
Cardinale F, Chinellato I, Marseglia GL, et al. Prevalence of atopic symptoms among blood donor carriers of mannose-binding lectin variant alleles. Int J Immunopathol Pharmacol 2008; 21(3): 735-8.
[http://dx.doi.org/10.1177/039463200802100329] [PMID: 18831943]
[37]
Hibberd ML, Sumiya M, Summerfield JA, Booy R, Levin M. Association of variants of the gene for mannose-binding lectin with susceptibility to meningococcal disease. Lancet 1999; 353(9158): 1049-53.
[http://dx.doi.org/10.1016/S0140-6736(98)08350-0] [PMID: 10199352]
[38]
Bautista-Rodriguez C, Launes C, Jordan I, et al. Mannose-binding lectin-deficient genotypes as a risk factor of pneumococcal meningitis in infants. PLoS One 2017; 12(5): e0178377.
[http://dx.doi.org/10.1371/journal.pone.0178377] [PMID: 28562692]
[39]
Garcia-Laorden MI, Sole-Violan J, Rodriguez de Castro F, et al. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J Allergy Clin Immunol 2008; 122(2): 368-74.
[http://dx.doi.org/10.1016/j.jaci.2008.05.037]
[40]
Garred P, Pressler T, Madsen HO, et al. Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J Clin Invest 1999; 104(4): 431-7.
[http://dx.doi.org/10.1172/JCI6861] [PMID: 10449435]
[41]
Koch A, Melbye M, Sørensen P, et al. Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood. JAMA 2001; 285(10): 1316-21.
[http://dx.doi.org/10.1001/jama.285.10.1316] [PMID: 11255386]
[42]
Koturoglu G, Onay H, Midilli R, et al. Evidence of an association between mannose binding lectin codon 54 polymorphism and adenoidectomy and/or tonsillectomy in children. Int J Pediatr Otorhinolaryngol 2007; 71(8): 1157-61.
[http://dx.doi.org/10.1016/j.ijporl.2007.05.004] [PMID: 17559949]
[43]
Wiertsema S, Herpers B, Veenhoven R, et al. Functional polymorphisms in the mannan-binding lectin 2 gene: Effect on MBL levels and otitis media. J Allergy Clin Immunol 2006; 117(6): 1344-50.
[http://dx.doi.org/10.1016/j.jaci.2006.01.031] [PMID: 16750996]
[44]
Rämet M, Löfgren J, Alho OP, Hallman M. Surfactant protein-A gene locus associated with recurrent otitis media. J Pediatr 2001; 138(2): 266-8.
[http://dx.doi.org/10.1067/mpd.2001.110133] [PMID: 11174628]
[45]
Santos-Cortez RLP, Chiong CM, Reyes-Quintos MRT, et al. Rare A2ML1 variants confer susceptibility to otitis media. Nat Genet 2015; 47(8): 917-20.
[http://dx.doi.org/10.1038/ng.3347] [PMID: 26121085]
[46]
Santos-Cortez RLP, Hutchinson DS, Ajami NJ, et al. Middle ear microbiome differences in indigenous Filipinos with chronic otitis media due to a duplication in the A2ML1 gene. Infect Dis Poverty 2016; 5(1): 97.
[http://dx.doi.org/10.1186/s40249-016-0189-7] [PMID: 27799062]
[47]
Hawn TR, Verbon A, Lettinga KD, et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 2003; 198(10): 1563-72.
[http://dx.doi.org/10.1084/jem.20031220] [PMID: 14623910]
[48]
Tal G, Mandelberg A, Dalal I, et al. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis 2004; 189(11): 2057-63.
[http://dx.doi.org/10.1086/420830] [PMID: 15143473]
[49]
Talbot TR, Hartert TV, Mitchel E, et al. Asthma as a risk factor for invasive pneumococcal disease. N Engl J Med 2005; 352(20): 2082-90.
[http://dx.doi.org/10.1056/NEJMoa044113] [PMID: 15901861]
[50]
Jung JA, Kita H, Yawn BP, et al. Increased risk of serious pneumococcal disease in patients with atopic conditions other than asthma. J Allergy Clin Immunol 2010; 125(1): 217-21.
[http://dx.doi.org/10.1016/j.jaci.2009.10.045] [PMID: 20109748]
[51]
Ciprandi G, Tosca MA, Fasce L. Allergic children have more numerous and severe respiratory infections than non-allergic children. Pediatr Allergy Immunol 2006; 17(5): 389-91.
[http://dx.doi.org/10.1111/j.1399-3038.2006.00413.x] [PMID: 16846459]
[52]
Christou EAA, Giardino G, Stefanaki E, Ladomenou F. Asthma: An undermined state of immunodeficiency. Int Rev Immunol 2019; 38(2): 70-8.
[http://dx.doi.org/10.1080/08830185.2019.1588267] [PMID: 30939053]
[53]
Cardinale F, Giordano P, Chinellato I, Tesse R. Respiratory epithelial imbalances in asthma pathophysiology. Allergy Asthma Proc 2013; 34(2): 143-9.
[http://dx.doi.org/10.2500/aap.2013.34.3631] [PMID: 23484889]
[54]
Contoli M, Message SD, Laza-Stanca V, et al. Role of deficient type III interferon-λ production in asthma exacerbations. Nat Med 2006; 12(9): 1023-6.
[http://dx.doi.org/10.1038/nm1462] [PMID: 16906156]
[55]
Chonmaitree T, Jennings K, Golovko G, et al. Nasopharyngeal microbiota in infants and changes during viral upper respiratory tract infection and acute otitis media. PLoS One 2017; 12(7): e0180630.
[http://dx.doi.org/10.1371/journal.pone.0180630] [PMID: 28708872]
[56]
Hilty M, Qi W, Brugger SD, et al. Nasopharyngeal microbiota in infants with acute otitis media. J Infect Dis 2012; 205(7): 1048-55.
[http://dx.doi.org/10.1093/infdis/jis024] [PMID: 22351941]
[57]
Zhang G, Rowe J, Kusel M, et al. Interleukin-10/interleukin-5 responses at birth predict risk for respiratory infections in children with atopic family history. Am J Respir Crit Care Med 2009; 179(3): 205-11.
[http://dx.doi.org/10.1164/rccm.200803-438OC] [PMID: 18996999]
[58]
Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 1993; 14(7): 353-6.
[http://dx.doi.org/10.1016/0167-5699(93)90235-D] [PMID: 8363725]
[59]
Rowe J, Macaubas C, Monger T, et al. Heterogeneity in diphtheria-tetanus-acellular pertussis vaccine-specific cellular immunity during infancy: relationship to variations in the kinetics of postnatal maturation of systemic th1 function. J Infect Dis 2001; 184(1): 80-8.
[http://dx.doi.org/10.1086/320996] [PMID: 11398113]
[60]
Copenhaver CC, Gern JE, Li Z, et al. Cytokine response patterns, exposure to viruses, and respiratory infections in the first year of life. Am J Respir Crit Care Med 2004; 170(2): 175-80.
[http://dx.doi.org/10.1164/rccm.200312-1647OC] [PMID: 15087299]
[61]
Silverberg JI, Silverberg NB. Childhood atopic dermatitis and warts are associated with increased risk of infection: A US population-based study. J Allergy Clin Immunol 2014; 133(4): 1041-7.
[http://dx.doi.org/10.1016/j.jaci.2013.08.012] [PMID: 24094542]
[62]
Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002; 347(15): 1151-60.
[http://dx.doi.org/10.1056/NEJMoa021481] [PMID: 12374875]
[63]
Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010; 125(2) (2): S3-S23.
[http://dx.doi.org/10.1016/j.jaci.2009.12.980] [PMID: 20176265]
[64]
Anaya JM, Shoenfeld Y, Rojas-Villarraga A, Levy RA, Cervera R, Eds. Autoimmunity: From Bench to Bedside. Bogota (Colombia): El Rosario University Press 2013.
[PMID: 29087650]
[65]
Janzi M, Kull I, Sjöberg R, et al. Selective IgA deficiency in early life: Association to infections and allergic diseases during childhood. Clin Immunol 2009; 133(1): 78-85.
[http://dx.doi.org/10.1016/j.clim.2009.05.014] [PMID: 19541543]
[66]
Kutukculer N, Karaca NE, Demircioglu O, Aksu G. Increases in serum immunoglobulins to age-related normal levels in children with IgA and/or IgG subclass deficiency. Pediatr Allergy Immunol 2007; 18(2): 167-73.
[http://dx.doi.org/10.1111/j.1399-3038.2006.00491.x] [PMID: 17338791]
[67]
Cardinale F, Gentile V, Brunetti L, Hanson LÅ, Armenio L. Titres of specific antibodies to poliovirus type 3 and tetanus toxoid in saliva and serum of children with recurrent upper respiratory tract infections. Pediatr Allergy Immunol 2001; 12(1): 42-8.
[http://dx.doi.org/10.1034/j.1399-3038.2001.012001042.x] [PMID: 11251864]
[68]
Sharma SK, Casey JR, Pichichero ME. Reduced memory CD4+ T-cell generation in the circulation of young children may contribute to the otitis-prone condition. J Infect Dis 2011; 204(4): 645-53.
[http://dx.doi.org/10.1093/infdis/jir340] [PMID: 21791667]
[69]
Sanders L, Rijkers G, Kuis W, et al. Defective antipneumococcal polysaccharide antibody response in children with recurrent respiratory tract infections. J Allergy Clin Immunol 1993; 91(1): 110-9.
[http://dx.doi.org/10.1016/0091-6749(93)90303-W] [PMID: 8423268]
[70]
Ambrosino DM, Umetsu DT, Siber GR, et al. Selective defect in the antibody response to Haemophilus influenzae type b in children with recurrent infections and normal serum IgG subclass levels. J Allergy Clin Immunol 1988; 81(6): 1175-9.
[http://dx.doi.org/10.1016/0091-6749(88)90887-1] [PMID: 3259962]
[71]
Principi N, Esposito S. Mycoplasma pneumoniae and Chlamydia pneumoniae cause lower respiratory tract disease in paediatric patients. Curr Opin Infect Dis 2002; 15(3): 295-300.
[http://dx.doi.org/10.1097/00001432-200206000-00013] [PMID: 12015465]
[72]
Esposito S, Bosis S, Faelli N, et al. Role of atypical bacteria and azithromycin therapy for children with recurrent respiratory tract infections. Pediatr Infect Dis J 2005; 24(5): 438-44.
[http://dx.doi.org/10.1097/01.inf.0000160949.99560.8d] [PMID: 15876944]
[73]
Peters J, Singh H, Brooks eg , et al. Persistence of community-acquired respiratory distress syndrome toxin-producing Mycoplasma pneumoniae in refractory asthma. Chest 2011; 140(2): 401-7.
[http://dx.doi.org/10.1378/chest.11-0221] [PMID: 21622549]
[74]
Kraft M, Cassell GH, Pak J, Martin RJ. Mycoplasma pneumoniae and Chlamydia pneumoniae in Asthma. Chest 2002; 121(6): 1782-8.
[http://dx.doi.org/10.1378/chest.121.6.1782] [PMID: 12065339]
[75]
Esposito S, Bosis S, Begliatti E, et al. Acute tonsillopharyngitis associated with atypical bacterial infection in children: Natural history and impact of macrolide therapy. Clin Infect Dis 2006; 43(2): 206-9.
[http://dx.doi.org/10.1086/505120] [PMID: 16779748]
[76]
Esposito S, Marchisio P, Capaccio P, et al. Role of atypical bacteria in children undergoing tonsillectomy because of severely recurrent acute tonsillopharyngitis. Eur J Clin Microbiol Infect Dis 2008; 27(12): 1233-7.
[http://dx.doi.org/10.1007/s10096-008-0560-0] [PMID: 18566843]
[77]
Falagas ME, Kompoti M. Obesity and infection. Lancet Infect Dis 2006; 6(7): 438-46.
[http://dx.doi.org/10.1016/S1473-3099(06)70523-0] [PMID: 16790384]
[78]
Jedrychowski W, Maugeri U, Flak E, Mroz E, Bianchi I. Predisposition to acute respiratory infections among overweight preadolescent children. Public Health 1998; 112(3): 189-95.
[http://dx.doi.org/10.1038/sj.ph.1900438] [PMID: 9629027]
[79]
He Q, Wong T, Du L, et al. Respiratory health in overweight and obese Chinese children. Pediatr Pulmonol 2009; 44(10): 997-1002.
[http://dx.doi.org/10.1002/ppul.21091] [PMID: 19768805]
[80]
Wilkinson RJ, Llewelyn M, Toossi Z, et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: A case-control study. Lancet 2000; 355(9204): 618-21.
[http://dx.doi.org/10.1016/S0140-6736(99)02301-6] [PMID: 10696983]
[81]
Bornman L, Campbell SJ, Fielding K, et al. Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: A case-control and family study. J Infect Dis 2004; 190(9): 1631-41.
[http://dx.doi.org/10.1086/424462] [PMID: 15478069]
[82]
Ginde AA, Mansbach JM, Camargo CA Jr. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the third national health and nutrition examination survey. Arch Intern Med 2009; 169(4): 384-90.
[http://dx.doi.org/10.1001/archinternmed.2008.560] [PMID: 19237723]
[83]
Reid D, Morton R, Salkeld L, Bartley J. Vitamin D and tonsil disease : Preliminary observations. Int J Pediatr Otorhinolaryngol 2011; 75(2): 261-4.
[http://dx.doi.org/10.1016/j.ijporl.2010.11.012] [PMID: 21131064]
[84]
Önerci M, Kuş S, Öğretmenoğlu O. Trace elements in children with chronic and recurrent tonsillitis. Int J Pediatr Otorhinolaryngol 1997; 41(1): 47-51.
[http://dx.doi.org/10.1016/S0165-5876(97)00071-2] [PMID: 9279635]
[85]
Camargo CA Jr, Ingham T, Wickens K, et al. Cord-blood 25-hydroxyvitamin D levels and risk of respiratory infection, wheezing, and asthma. Pediatrics 2011; 127(1): e180-7.
[http://dx.doi.org/10.1542/peds.2010-0442] [PMID: 21187313]
[86]
McNally JD, Leis K, Matheson LA, Karuananyake C, Sankaran K, Rosenberg AM. Vitamin D deficiency in young children with severe acute lower respiratory infection. Pediatr Pulmonol 2009; 44(10): 981-8.
[http://dx.doi.org/10.1002/ppul.21089] [PMID: 19746437]
[87]
Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr 2010; 91(5): 1255-60.
[http://dx.doi.org/10.3945/ajcn.2009.29094] [PMID: 20219962]
[88]
Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis. Health Technol Assess 2019; 23(2): 1-44.
[http://dx.doi.org/10.3310/hta23020] [PMID: 30675873]
[89]
Cemek M, Dede S, Bayiroğlu F, Çaksen H, Cemek F, Yuca K. Oxidant and antioxidant levels in children with acute otitis media and tonsillitis: A comparative study. Int J Pediatr Otorhinolaryngol 2005; 69(6): 823-7.
[http://dx.doi.org/10.1016/j.ijporl.2005.01.016] [PMID: 15885336]
[90]
Strand TA, Taneja S, Bhandari N, et al. Folate, but not vitamin B-12 status, predicts respiratory morbidity in north Indian children. Am J Clin Nutr 2007; 86(1): 139-44.
[http://dx.doi.org/10.1093/ajcn/86.1.139] [PMID: 17616773]
[91]
Håberg SE, London SJ, Stigum H, Nafstad P, Nystad W. Folic acid supplements in pregnancy and early childhood respiratory health. Arch Dis Child 2009; 94(3): 180-4.
[http://dx.doi.org/10.1136/adc.2008.142448] [PMID: 19052032]
[92]
Toivonen L, Hasegawa K, Waris M, et al. Early nasal microbiota and acute respiratory infections during the first years of life. Thorax 2019; 74(6): 592-9.
[http://dx.doi.org/10.1136/thoraxjnl-2018-212629] [PMID: 31076501]
[93]
Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 2016; 8(343): 343ra82.
[http://dx.doi.org/10.1126/scitranslmed.aad7121] [PMID: 27306664]
[94]
Bogaert D, Keijser B, Huse S, et al. Variability and diversity of nasopharyngeal microbiota in children: A metagenomic analysis. PLoS One 2011; 6(2): e17035.
[http://dx.doi.org/10.1371/journal.pone.0017035] [PMID: 21386965]
[95]
Biesbroek G, Bosch AATM, Wang X, et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am J Respir Crit Care Med 2014; 190(3): 298-308.
[http://dx.doi.org/10.1164/rccm.201401-0073OC] [PMID: 24921688]
[96]
Bosch AATM, Levin E, van Houten MA, et al. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery. EBioMedicine 2016; 9: 336-45.
[http://dx.doi.org/10.1016/j.ebiom.2016.05.031] [PMID: 27333043]
[97]
Bosch AATM, Piters WAAS, van Houten MA, et al. Maturation of the infant respiratory microbiota, environmental drivers, and health consequences: A prospective cohort study. Am J Respir Crit Care Med 2017; 196(12): 1582-90.
[http://dx.doi.org/10.1164/rccm.201703-0554OC] [PMID: 28665684]
[98]
de Steenhuijsen Piters WAA, Heinonen S, Hasrat R, et al. Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection. Am J Respir Crit Care Med 2016; 194(9): 1104-15.
[http://dx.doi.org/10.1164/rccm.201602-0220OC] [PMID: 27135599]
[99]
Teo SM, Mok D, Pham K, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015; 17(5): 704-15.
[http://dx.doi.org/10.1016/j.chom.2015.03.008] [PMID: 25865368]
[100]
de Steenhuijsen Piters WAA, Sanders EAM, Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Philos Trans R Soc Lond B Biol Sci 2015; 370(1675): 20140294.
[http://dx.doi.org/10.1098/rstb.2014.0294] [PMID: 26150660]
[101]
Gascon M, Casas M, Morales E, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol 2015; 135(2): 370-378.e7.
[http://dx.doi.org/10.1016/j.jaci.2014.09.030] [PMID: 25445825]
[102]
Casas L, Espinosa A, Borràs-Santos A, et al. Domestic use of bleach and infections in children: A multicentre cross-sectional study. Occup Environ Med 2015; 72(8): 602-4.
[http://dx.doi.org/10.1136/oemed-2014-102701] [PMID: 25838260]
[103]
Casas L, Zock JP, Carsin AE, et al. The use of household cleaning products during pregnancy and lower respiratory tract infections and wheezing during early life. Int J Public Health 2013; 58(5): 757-64.
[http://dx.doi.org/10.1007/s00038-012-0417-2] [PMID: 23064260]
[104]
Herr M, Just J, Nikasinovic L, et al. Influence of host and environmental factors on wheezing severity in infants: Findings from the PARIS birth cohort. Clin Exp Allergy 2012; 42(2): 275-83.
[http://dx.doi.org/10.1111/j.1365-2222.2011.03933.x] [PMID: 22288513]
[105]
Sherriff A, Farrow A, Golding J, Henderson J. Frequent use of chemical household products is associated with persistent wheezing in pre-school age children. Thorax 2005; 60(1): 45-9.
[http://dx.doi.org/10.1136/thx.2004.021154] [PMID: 15618582]
[106]
Zock JP, Plana E, Antó JM, et al. Domestic use of hypochlorite bleach, atopic sensitization, and respiratory symptoms in adults. J Allergy Clin Immunol 2009; 124(4): 731-738.e1.
[http://dx.doi.org/10.1016/j.jaci.2009.06.007] [PMID: 19665775]
[107]
Nickmilder M, Carbonnelle S, Bernard A. House cleaning with chlorine bleach and the risks of allergic and respiratory diseases in children. Pediatr Allergy Immunol 2007; 18(1): 27-35.
[http://dx.doi.org/10.1111/j.1399-3038.2006.00487.x] [PMID: 17295796]
[108]
Nystad W, Njå F, Magnus P, Nafstad P. Baby swimming increases the risk of recurrent respiratory tract infections and otitis media. Acta Paediatr 2003; 92(8): 905-9.
[http://dx.doi.org/10.1111/j.1651-2227.2003.tb00622.x] [PMID: 12948064]
[109]
Nemery B, Hoet PHM, Nowak D. Indoor swimming pools, water chlorination and respiratory health. Eur Respir J 2002; 19(5): 790-3.
[http://dx.doi.org/10.1183/09031936.02.00308602] [PMID: 12030714]
[110]
Ruotsalainen R, Jaakkola N, Jaakkola JJK. Dampness and molds in day-care centers as an occupational health problem. Int Arch Occup Environ Health 1995; 66(6): 369-74.
[http://dx.doi.org/10.1007/BF00383142] [PMID: 7782119]
[111]
Platts-Mills TAE, Ward GW Jr, Sporik R, Gelber LE, Chapman MD, Heymann PW. Epidemiology of the relationship between exposure to indoor allergens and asthma. Int Arch Allergy Immunol 1991; 94(1-4): 339-45.
[http://dx.doi.org/10.1159/000235398] [PMID: 1937896]
[112]
Koch A, Mølbak K, Homøe P, et al. Risk factors for acute respiratory tract infections in young Greenlandic children. Am J Epidemiol 2003; 158(4): 374-84.
[http://dx.doi.org/10.1093/aje/kwg143] [PMID: 12915503]
[113]
Hesselvik L. Respiratory infections among children in day care nurseries. Acta Paediatr Scand 1949; 38: 1-103.
[114]
Hurwitz ES, Gunn WJ, Pinsky PF, Schonberger LB. Risk of respiratory illness associated with day-care attendance: A nationwide study. Pediatrics 1991; 87(1): 62-9.
[http://dx.doi.org/10.1542/peds.87.1.62] [PMID: 1984620]
[115]
Wright AL, Holberg C, Martinez FD, Taussig LM. Relationship of parental smoking to wheezing and nonwheezing lower respiratory tract illnesses in infancy. J Pediatr 1991; 118(2): 207-14.
[http://dx.doi.org/10.1016/S0022-3476(05)80484-6] [PMID: 1993946]
[116]
Cook DG, Strachan DP. Health effects of passive smoking 10: Summary of effects of parental smoking on the respiratory health of children and implications for research. Thorax 1999; 54(4): 357-66.
[http://dx.doi.org/10.1136/thx.54.4.357] [PMID: 10092699]
[117]
Jedrychowski W, Flak E. Maternal smoking during pregnancy and postnatal exposure to environmental tobacco smoke as predisposition factors to acute respiratory infections. Environ Health Perspect 1997; 105(3): 302-6.
[http://dx.doi.org/10.1289/ehp.97105302] [PMID: 9171991]
[118]
Hersh AL, Jackson MA, Hicks LA, et al. Principles of judicious antibiotic prescribing for upper respiratory tract infections in pediatrics. Pediatrics 2013; 132(6): 1146-54.
[http://dx.doi.org/10.1542/peds.2013-3260] [PMID: 24249823]
[119]
Clavenna A, Bonati M. Differences in antibiotic prescribing in paediatric outpatients. Arch Dis Child 2011; 96(6): 590-5.
[http://dx.doi.org/10.1136/adc.2010.183541] [PMID: 21233078]
[120]
Piovani D, Clavenna A, Cartabia M, Bonati M. The regional profile of antibiotic prescriptions in Italian outpatient children. Eur J Clin Pharmacol 2012; 68(6): 997-1005.
[http://dx.doi.org/10.1007/s00228-011-1204-3] [PMID: 22271296]
[121]
Malik U, Armstrong D, Ashworth M, et al. Association between prior antibiotic therapy and subsequent risk of community-acquired infections: A systematic review. J Antimicrob Chemother 2018; 73(2): 287-96.
[http://dx.doi.org/10.1093/jac/dkx374]
[122]
Margolis DJ, Bowe WP, Hoffstad O, Berlin JA. Antibiotic treatment of acne may be associated with upper respiratory tract infections. Arch Dermatol 2005; 141(9): 1132-6.
[http://dx.doi.org/10.1001/archderm.141.9.1132] [PMID: 16172310]
[123]
Bauer M. The liver-gut-axis: Initiator and responder to sepsis. Curr Opin Crit Care 2022; 28(2): 216-20.
[http://dx.doi.org/10.1097/MCC.0000000000000921] [PMID: 35185139]
[124]
Bernard-Raichon L, Venzon M, Klein J, et al. Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat Commun 2022; 13(1): 5926.
[http://dx.doi.org/10.1038/s41467-022-33395-6] [PMID: 36319618]
[125]
Yang J. Mechanism of azithromycin in airway diseases. J Int Med Res 2020; 48(6): 300060520932104.
[http://dx.doi.org/10.1177/0300060520932104] [PMID: 32589092]
[126]
Silva Lagos L, Luu TV, De Haan B, Faas M, De Vos P. TLR2 and TLR4 activity in monocytes and macrophages after exposure to amoxicillin, ciprofloxacin, doxycycline and erythromycin. J Antimicrob Chemother 2022; 77(11): 2972-83.
[http://dx.doi.org/10.1093/jac/dkac254] [PMID: 35897135]
[127]
Sullivan JE, Farrar HC. Fever and antipyretic use in children. Pediatrics 2011; 127(3): e20103852.
[http://dx.doi.org/10.1542/peds.2010-3852] [PMID: 21357332]
[128]
Milani GP, Corsello A, Fadda M, et al. Perception, knowledge and attitude towards childhood fever: A survey among final-year medical students. Br J Clin Pharmacol 2023; 89(1): 261-7.
[http://dx.doi.org/10.1111/bcp.15493] [PMID: 35982532]
[129]
Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 2015; 15(6): 335-49.
[http://dx.doi.org/10.1038/nri3843] [PMID: 25976513]
[130]
Prymula R, Siegrist CA, Chlibek R, et al. Effect of prophylactic paracetamol administration at time of vaccination on febrile reactions and antibody responses in children: Two open-label, randomised controlled trials. Lancet 2009; 374(9698): 1339-50.
[http://dx.doi.org/10.1016/S0140-6736(09)61208-3] [PMID: 19837254]
[131]
Kaplan HB, Edelson HS, Korchak HM, Given WP, Abramson S, Weissmann G. Effects of non-steroidal anti-inflammatory agents on human neutrophil functions in vitro and in vivo. Biochem Pharmacol 1984; 33(3): 371-8.
[http://dx.doi.org/10.1016/0006-2952(84)90228-4] [PMID: 6422946]
[132]
Demeslay J, De Bonnecaze G, Vairel B, et al. Possible role of anti-inflammatory drugs in complications of pharyngitis. A retrospective analysis of 163 cases. Eur Ann Otorhinolaryngol Head Neck Dis 2014; 131(5): 299-303.
[http://dx.doi.org/10.1016/j.anorl.2013.08.005] [PMID: 25439625]
[133]
François P, Desrumaux A, Cans C, Pin I, Pavese P, Labarère J. Prevalence and risk factors of suppurative complications in children with pneumonia. Acta Paediatr 2010; 99(6): 861-6.
[http://dx.doi.org/10.1111/j.1651-2227.2010.01734.x] [PMID: 20178517]
[134]
Voiriot G, Philippot Q, Elabbadi A, Elbim C, Chalumeau M, Fartoukh M. Risks related to the use of non-steroidal anti-inflammatory drugs in community-acquired pneumonia in adult and pediatric patients. J Clin Med 2019; 8(6): 786.
[http://dx.doi.org/10.3390/jcm8060786] [PMID: 31163625]
[135]
Esposito AL. Aspirin impairs antibacterial mechanisms in experimental pneumococcal pneumonia. Am Rev Respir Dis 1984; 130(5): 857-62.
[http://dx.doi.org/10.1164/arrd.1984.130.5.857] [PMID: 6238561]
[136]
Mikaeloff Y, Kezouh A, Suissa S. Nonsteroidal anti-inflammatory drug use and the risk of severe skin and soft tissue complications in patients with varicella or zoster disease. Br J Clin Pharmacol 2008; 65(2): 203-9.
[http://dx.doi.org/10.1111/j.1365-2125.2007.02997.x] [PMID: 18251759]
[137]
Hossny E, Rosario N, Lee BW, et al. The use of inhaled corticosteroids in pediatric asthma: Update. World Allergy Organ J 2016; 9: 26.
[http://dx.doi.org/10.1186/s40413-016-0117-0] [PMID: 27551328]
[138]
Chauhan BF, Chartrand C, Ducharme FM. Intermittent versus daily inhaled corticosteroids for persistent asthma in children and adults. Cochrane Libr 2013; 2(2): CD009611.
[http://dx.doi.org/10.1002/14651858.CD009611.pub3] [PMID: 23450606]
[139]
Martinez FD, Chinchilli VM, Morgan WJ, et al. Use of beclomethasone dipropionate as rescue treatment for children with mild persistent asthma (TREXA): A randomised, double-blind, placebo-controlled trial. Lancet 2011; 377(9766): 650-7.
[http://dx.doi.org/10.1016/S0140-6736(10)62145-9] [PMID: 21324520]
[140]
Castro-Rodriguez JA, Beckhaus AA, Forno E. Efficacy of oral corticosteroids in the treatment of acute wheezing episodes in asthmatic preschoolers: Systematic review with meta-analysis. Pediatr Pulmonol 2016; 51(8): 868-76.
[http://dx.doi.org/10.1002/ppul.23429] [PMID: 27074244]
[141]
Anderson-James S, Marchant JM, Acworth JP, Turner C, Chang AB. Inhaled corticosteroids for subacute cough in children. Cochrane Libr 2013; 2013(2): CD008888.
[http://dx.doi.org/10.1002/14651858.CD008888.pub2] [PMID: 23450591]
[142]
Hall CB, Powell KR, MacDonald NE, et al. Respiratory syncytial viral infection in children with compromised immune function. N Engl J Med 1986; 315(2): 77-81.
[http://dx.doi.org/10.1056/NEJM198607103150201] [PMID: 3724802]
[143]
McAllister CS, Ansaldi D, Growcott EJ, et al. Dexamethasone inhibits respiratory syncytial virus-driven mucus production while increasing viral replication without altering antiviral interferon signaling. Virology 2020; 540: 195-206.
[http://dx.doi.org/10.1016/j.virol.2019.10.007] [PMID: 31929001]
[144]
Fiel SB, Vincken W. Systemic corticosteroid therapy for acute asthma exacerbations. J Asthma 2006; 43(5): 321-31.
[http://dx.doi.org/10.1080/02770900600567163] [PMID: 16801135]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy