Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

DOCK4 is a Novel Prognostic Biomarker and Correlated with Immune Infiltrates in Colon Adenocarcinoma

Author(s): Xingjiang Xie*, Yi Lu, Bo Wang, Xiaobin Yin and Jianfeng Chen

Volume 27, Issue 8, 2024

Published on: 19 September, 2023

Page: [1119 - 1130] Pages: 12

DOI: 10.2174/1386207326666230912094101

Price: $65

Abstract

Background: Dedicator for cytokinesis 4 (DOCK4) is a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1. However, the functions of DOCK4 concerning the tumor microenvironment (TME) in colon adenocarcinoma (COAD) remain uncertain.

Methods: The TIMER and GEPIA databases were used to analyze the DOCK4 expression between COAD tissues and adjunct normal tissues. The PrognoScan database was used to assess the prognosis of DOCK4 expression in COAD. The co-expression networks of DOCK4 in COAD were constructed by the LinkedOmics website. Furthermore, the correlation between DOCK4 expression and TME of COAD was explored using TIMER and TISIDB databases. Finally, the clone formation assay was used to further verify the function of DOCK4 in COAD. The Western blotting assay was used to confirm the mechanism related to DOCK4 in COAD.

Results: The DOCK4 expression was different significantly in COAD tissues and paracancerous tissues. The DOCK4 was found to play a poor role in the prognosis of patients with COAD. The DOCK4 was found to participate in the TME by promoting immune evasion of COAD. The reduction of DOCK4 expression inhibited the clone formation and Ras-associated protein 1A (Rap1A) expression of HCT116 cells.

Conclusions: DOCK4 potentially plays an important role in the regulation of TME in COAD. DOCK4 facilitates the development through the Rap1A pathway, thus becoming a novel prognostic biomarker in COAD.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Garborg, K.; Holme, Ø.; Løberg, M.; Kalager, M.; Adami, H.O.; Bretthauer, M. Current status of screening for colorectal cancer. Ann. Oncol., 2013, 24(8), 1963-1972.
[http://dx.doi.org/10.1093/annonc/mdt157] [PMID: 23619033]
[3]
Edwards, B.K.; Ward, E.; Kohler, B.A.; Eheman, C.; Zauber, A.G.; Anderson, R.N.; Jemal, A.; Schymura, M.J.; Lansdorp-Vogelaar, I.; Seeff, L.C.; van Ballegooijen, M.; Goede, S.L.; Ries, L.A.G. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer, 2010, 116(3), 544-573.
[http://dx.doi.org/10.1002/cncr.24760] [PMID: 19998273]
[4]
Calon, A.; Espinet, E.; Palomo-Ponce, S.; Tauriello, D.V.F.; Iglesias, M.; Céspedes, M.V.; Sevillano, M.; Nadal, C.; Jung, P.; Zhang, X.H.F.; Byrom, D.; Riera, A.; Rossell, D.; Mangues, R.; Massagué, J.; Sancho, E.; Batlle, E. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell, 2012, 22(5), 571-584.
[http://dx.doi.org/10.1016/j.ccr.2012.08.013] [PMID: 23153532]
[5]
Picard, E.; Verschoor, C.P.; Ma, G.W.; Pawelec, G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front. Immunol., 2020, 11, 369.
[http://dx.doi.org/10.3389/fimmu.2020.00369] [PMID: 32210966]
[6]
Cao, H.; Xu, E.; Liu, H.; Wan, L.; Lai, M. Epithelial–mesenchymal transition in colorectal cancer metastasis: A system review. Pathol. Res. Pract., 2015, 211(8), 557-569.
[http://dx.doi.org/10.1016/j.prp.2015.05.010] [PMID: 26092594]
[7]
Dou, R.; Liu, K.; Yang, C.; Zheng, J.; Shi, D.; Lin, X.; Wei, C.; Zhang, C.; Fang, Y.; Huang, S.; Song, J.; Wang, S.; Xiong, B. EMT‐cancer cells‐derived exosomal miR‐27b‐3p promotes circulating tumour cells‐mediated metastasis by modulating vascular permeability in colorectal cancer. Clin. Transl. Med., 2021, 11(12), e595.
[http://dx.doi.org/10.1002/ctm2.595] [PMID: 34936736]
[8]
Wang, H.; Liu, J.; Li, J.; Zang, D.; Wang, X.; Chen, Y.; Gu, T.; Su, W.; Song, N. Identification of gene modules and hub genes in colon adenocarcinoma associated with pathological stage based on WGCNA analysis. Cancer Genet., 2020, 242, 1-7.
[http://dx.doi.org/10.1016/j.cancergen.2020.01.052] [PMID: 32036224]
[9]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Ge, J.; Xiang, B.; Wu, X.; Ma, J.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Guo, C.; Zeng, Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1), 10.
[http://dx.doi.org/10.1186/s12943-018-0928-4] [PMID: 30646912]
[10]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[11]
Maker, A.V. Precise identification of immunotherapeutic targets for solid malignancies using clues within the tumor microenvironment—Evidence to turn on the LIGHT. OncoImmunology, 2016, 5(1), e1069937.
[http://dx.doi.org/10.1080/2162402X.2015.1069937] [PMID: 26942091]
[12]
Qiu, C.; Shi, W.; Wu, H.; Zou, S.; Li, J.; Wang, D.; Liu, G.; Song, Z.; Xu, X.; Hu, J.; Geng, H. Identification of molecular subtypes and a prognostic signature based on inflammation-related genes in colon adenocarcinoma. Front. Immunol., 2021, 12, 769685.
[http://dx.doi.org/10.3389/fimmu.2021.769685] [PMID: 35003085]
[13]
Katz, S.C.; Bamboat, Z.M.; Maker, A.V.; Shia, J.; Pillarisetty, V.G.; Yopp, A.C.; Hedvat, C.V.; Gonen, M.; Jarnagin, W.R.; Fong, Y.; D’Angelica, M.I.; DeMatteo, R.P. Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann. Surg. Oncol., 2013, 20(3), 946-955.
[http://dx.doi.org/10.1245/s10434-012-2668-9] [PMID: 23010736]
[14]
Maker, A.V.; Ito, H.; Mo, Q.; Weisenberg, E.; Qin, L.X.; Turcotte, S.; Maithel, S.; Shia, J.; Blumgart, L.; Fong, Y.; Jarnagin, W.R.; DeMatteo, R.P.; D’Angelica, M.I. Genetic evidence that intratumoral T-cell proliferation and activation are associated with recurrence and survival in patients with resected colorectal liver metastases. Cancer Immunol. Res., 2015, 3(4), 380-388.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0212] [PMID: 25600439]
[15]
Lazarus, J.; Maj, T.; Smith, J.J.; Perusina Lanfranca, M.; Rao, A.; D’Angelica, M.I.; Delrosario, L.; Girgis, A.; Schukow, C.; Shia, J.; Kryczek, I.; Shi, J.; Wasserman, I.; Crawford, H.; Nathan, H.; Pasca Di Magliano, M.; Zou, W.; Frankel, T.L. Spatial and phenotypic immune profiling of metastatic colon cancer. JCI Insight, 2018, 3(22), e121932.
[http://dx.doi.org/10.1172/jci.insight.121932] [PMID: 30429368]
[16]
Yajnik, V.; Paulding, C.; Sordella, R.; McClatchey, A.I.; Saito, M.; Wahrer, D.C.R.; Reynolds, P.; Bell, D.W.; Lake, R.; van den Heuvel, S.; Settleman, J.; Haber, D.A. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell, 2003, 112(5), 673-684.
[http://dx.doi.org/10.1016/S0092-8674(03)00155-7] [PMID: 12628187]
[17]
Mei, Y.; Li, K.; Zhang, Z.; Li, M.; Yang, H.; Wang, H.; Huang, X.; Li, X.; Shi, S.; Yang, H. miR-33b-3p acts as a tumor suppressor by targeting DOCK4 in prostate cancer. Front. Oncol., 2021, 11, 740452.
[http://dx.doi.org/10.3389/fonc.2021.740452] [PMID: 34804930]
[18]
Debruyne, D.N.; Turchi, L.; Burel-Vandenbos, F.; Fareh, M.; Almairac, F.; Virolle, V.; Figarella-Branger, D.; Baeza-Kallee, N.; Lagadec, P.; kubiniek, V.; Paquis, P.; Fontaine, D.; Junier, M-P.; Chneiweiss, H.; Virolle, T. DOCK4 promotes loss of proliferation in glioblastoma progenitor cells through nuclear beta-catenin accumulation and subsequent miR-302-367 cluster expression. Oncogene, 2018, 37(2), 241-254.
[http://dx.doi.org/10.1038/onc.2017.323] [PMID: 28925399]
[19]
Aladowicz, E.; Granieri, L.; Marocchi, F.; Punzi, S.; Giardina, G.; Ferrucci, P.F.; Mazzarol, G.; Capra, M.; Viale, G.; Confalonieri, S.; Gandini, S.; Lotti, F.; Lanfrancone, L.; Shc, D. ShcD binds DOCK4, promotes ameboid motility and metastasis dissemination, predicting poor prognosis in melanoma. Cancers (Basel), 2020, 12(11), 3366.
[http://dx.doi.org/10.3390/cancers12113366] [PMID: 33202906]
[20]
Zhao, Q.; Zhong, J.; Lu, P.; Feng, X.; Han, Y.; Ling, C.; Guo, W.; Zhou, W.; Yu, F.; Li, J. DOCK4 is a platinum-chemosensitive and prognostic-related biomarker in ovarian cancer. PPAR Res., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/6629842] [PMID: 33613670]
[21]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[22]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[23]
Mizuno, H.; Kitada, K.; Nakai, K.; Sarai, A. PrognoScan: A new database for meta-analysis of the prognostic value of genes. BMC Med. Genomics, 2009, 2(1), 18.
[http://dx.doi.org/10.1186/1755-8794-2-18] [PMID: 19393097]
[24]
Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res., 2018, 46(D1), D956-D963.
[http://dx.doi.org/10.1093/nar/gkx1090] [PMID: 29136207]
[25]
Ru, B.; Wong, C.N.; Tong, Y.; Zhong, J.Y.; Zhong, S.S.W.; Wu, W.C.; Chu, K.C.; Wong, C.Y.; Lau, C.Y.; Chen, I.; Chan, N.W.; Zhang, J.; Wren, J. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics, 2019, 35(20), 4200-4202.
[http://dx.doi.org/10.1093/bioinformatics/btz210] [PMID: 30903160]
[26]
Wu, Y.; Zhou, J.; Li, Y.; Zhou, Y.; Cui, Y.; Yang, G.; Hong, Y. Rap1A Regulates Osteoblastic Differentiation via the ERK and p38 Mediated Signaling. PLoS One, 2015, 10(11), e0143777.
[http://dx.doi.org/10.1371/journal.pone.0143777] [PMID: 26599016]
[27]
Haggar, F.; Boushey, R. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg., 2009, 22(4), 191-197.
[http://dx.doi.org/10.1055/s-0029-1242458] [PMID: 21037809]
[28]
O’Connell, J.B.; Maggard, M.A.; Ko, C.Y. Colon cancer survival rates with the new American joint committee on Cancer J Natl Cancer Inst., 2004, 96(19), 1420-1425.
[29]
Mahajan, U.M.; Langhoff, E.; Goni, E.; Costello, E.; Greenhalf, W.; Halloran, C.; Ormanns, S.; Kruger, S.; Boeck, S.; Ribback, S.; Beyer, G.; Dombroswki, F.; Weiss, F.U.; Neoptolemos, J.P.; Werner, J.; D’Haese, J.G.; Bazhin, A.; Peterhansl, J.; Pichlmeier, S.; Büchler, M.W.; Kleeff, J.; Ganeh, P.; Sendler, M.; Palmer, D.H.; Kohlmann, T.; Rad, R.; Regel, I.; Lerch, M.M.; Mayerle, J. Immune cell and stromal signature associated with progression-free survival of patients with resected pancreatic ductal adenocarcinoma. Gastroenterology, 2018, 155(5), 1625-1639.e2.
[http://dx.doi.org/10.1053/j.gastro.2018.08.009] [PMID: 30092175]
[30]
Bilotta, M.T.; Antignani, A.; Fitzgerald, D.J. Managing the TME to improve the efficacy of cancer therapy. Front. Immunol., 2022, 13, 954992.
[http://dx.doi.org/10.3389/fimmu.2022.954992] [PMID: 36341428]
[31]
Singh, P.P.; Sharma, P.K.; Krishnan, G.; Lockhart, A.C. Immune checkpoints and immunotherapy for colorectal cancer. Gastroenterol. Rep. (Oxf.), 2015, 3(4), gov053.
[http://dx.doi.org/10.1093/gastro/gov053] [PMID: 26510455]
[32]
Kalyan, A.; Kircher, S.; Shah, H.; Mulcahy, M.; Benson, A. Updates on immunotherapy for colorectal cancer. J. Gastrointest. Oncol., 2018, 9(1), 160-169.
[http://dx.doi.org/10.21037/jgo.2018.01.17] [PMID: 29564182]
[33]
Glaire, M.A.; Ryan, N.A.J.; Ijsselsteijn, M.E.; Kedzierska, K.; Obolenski, S.; Ali, R.; Crosbie, E.J.; Bosse, T.; Miranda, N.F.C.C.; Church, D.N. Discordant prognosis of mismatch repair deficiency in colorectal and endometrial cancer reflects variation in antitumour immune response and immune escape. J. Pathol., 2022, 257(3), 340-351.
[http://dx.doi.org/10.1002/path.5894] [PMID: 35262923]
[34]
Kunimura, K.; Uruno, T.; Fukui, Y. DOCK family proteins: Key players in immune surveillance mechanisms. Int. Immunol., 2020, 32(1), 5-15.
[http://dx.doi.org/10.1093/intimm/dxz067] [PMID: 31630188]
[35]
Ge, W.; Cai, W.; Bai, R.; Hu, W.; Wu, D.; Zheng, S.; Hu, H. A novel 4-gene prognostic signature for hypermutated colorectal cancer. Cancer Manag. Res., 2019, 11, 1985-1996.
[http://dx.doi.org/10.2147/CMAR.S190963] [PMID: 30881123]
[36]
Yu, J.; Wu, W.K.K.; Li, X.; He, J.; Li, X.X.; Ng, S.S.M.; Yu, C.; Gao, Z.; Yang, J.; Li, M.; Wang, Q.; Liang, Q.; Pan, Y.; Tong, J.H.; To, K.F.; Wong, N.; Zhang, N.; Chen, J.; Lu, Y.; Lai, P.B.S.; Chan, F.K.L.; Li, Y.; Kung, H.F.; Yang, H.; Wang, J.; Sung, J.J.Y. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer. Gut, 2015, 64(4), 636-645.
[http://dx.doi.org/10.1136/gutjnl-2013-306620] [PMID: 24951259]
[37]
Yu, J.R.; Tai, Y.; Jin, Y.; Hammell, M.C.; Wilkinson, J.E.; Roe, J.S.; Vakoc, C.R.; Van Aelst, L. TGF-β/Smad signaling through DOCK4 facilitates lung adenocarcinoma metastasis. Genes Dev., 2015, 29(3), 250-261.
[http://dx.doi.org/10.1101/gad.248963.114] [PMID: 25644601]
[38]
Westbrook, J.A.; Wood, S.L.; Cairns, D.A.; McMahon, K.; Gahlaut, R.; Thygesen, H.; Shires, M.; Roberts, S.; Marshall, H.; Oliva, M.R.; Dunning, M.J.; Hanby, A.M.; Selby, P.J.; Speirs, V.; Mavria, G.; Coleman, R.E.; Brown, J.E. Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer. J. Pathol., 2019, 247(3), 381-391.
[http://dx.doi.org/10.1002/path.5197] [PMID: 30426503]
[39]
Hiramoto, K.; Negishi, M.; Katoh, H. Dock4 is regulated by RhoG and promotes Rac-dependent cell migration. Exp. Cell Res., 2006, 312(20), 4205-4216.
[http://dx.doi.org/10.1016/j.yexcr.2006.09.006] [PMID: 17027967]
[40]
Wang, Y.Y.; Yan, L.; Yang, S.; Xu, H.N.; Chen, T.T.; Dong, Z.Y.; Chen, S.L.; Wang, W.R.; Yang, Q.L.; Chen, C.J. Long noncoding RNA AC073284.4 suppresses epithelial–mesenchymal transition by sponging miR‐18b‐5p in paclitaxel‐resistant breast cancer cells. J. Cell. Physiol., 2019, 234(12), 23202-23215.
[http://dx.doi.org/10.1002/jcp.28887] [PMID: 31215650]
[41]
Steidl, C.; Lee, T.; Shah, S.P.; Farinha, P.; Han, G.; Nayar, T.; Delaney, A.; Jones, S.J.; Iqbal, J.; Weisenburger, D.D.; Bast, M.A.; Rosenwald, A.; Muller-Hermelink, H.K.; Rimsza, L.M.; Campo, E.; Delabie, J.; Braziel, R.M.; Cook, J.R.; Tubbs, R.R.; Jaffe, E.S.; Lenz, G.; Connors, J.M.; Staudt, L.M.; Chan, W.C.; Gascoyne, R.D. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl. J. Med., 2010, 362(10), 875-885.
[http://dx.doi.org/10.1056/NEJMoa0905680] [PMID: 20220182]
[42]
Nishikawa, H.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol., 2014, 27, 1-7.
[http://dx.doi.org/10.1016/j.coi.2013.12.005] [PMID: 24413387]
[43]
Koelzer, V.H.; Canonica, K.; Dawson, H.; Sokol, L.; Karamitopoulou-Diamantis, E.; Lugli, A.; Zlobec, I. Phenotyping of tumor-associated macrophages in colorectal cancer: Impact on single cell invasion (tumor budding) and clinicopathological outcome. OncoImmunology, 2016, 5(4), e1106677.
[http://dx.doi.org/10.1080/2162402X.2015.1106677] [PMID: 27141391]
[44]
Sinicrope, F.A.; Rego, R.L.; Ansell, S.M.; Knutson, K.L.; Foster, N.R.; Sargent, D.J. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology, 2009, 137(4), 1270-1279.
[http://dx.doi.org/10.1053/j.gastro.2009.06.053] [PMID: 19577568]
[45]
Fiegle, E.; Doleschel, D.; Koletnik, S.; Rix, A.; Weiskirchen, R.; Borkham-Kamphorst, E.; Kiessling, F.; Lederle, W. Dual CTLA-4 and PD-L1 blockade inhibits tumor growth and liver metastasis in a highly aggressive orthotopic mouse model of colon cancer. Neoplasia, 2019, 21(9), 932-944.
[http://dx.doi.org/10.1016/j.neo.2019.07.006] [PMID: 31412307]
[46]
van Willigen, W.W.; Bloemendal, M.; Gerritsen, W.R.; Schreibelt, G.; de Vries, I.J.M.; Bol, K.F. Dendritic cell cancer therapy: Vaccinating the right patient at the right time. Front. Immunol., 2018, 9, 2265.
[http://dx.doi.org/10.3389/fimmu.2018.02265] [PMID: 30327656]
[47]
Llosa, N.J.; Cruise, M.; Tam, A.; Wicks, E.C.; Hechenbleikner, E.M.; Taube, J.M.; Blosser, R.L.; Fan, H.; Wang, H.; Luber, B.S.; Zhang, M.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Sears, C.L.; Anders, R.A.; Pardoll, D.M.; Housseau, F. The vigorous immune micro-environment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov., 2015, 5(1), 43-51.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0863] [PMID: 25358689]
[48]
Azimi, F.; Scolyer, R.A.; Rumcheva, P.; Moncrieff, M.; Murali, R.; McCarthy, S.W.; Saw, R.P.; Thompson, J.F. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J. Clin. Oncol., 2012, 30(21), 2678-2683.
[http://dx.doi.org/10.1200/JCO.2011.37.8539] [PMID: 22711850]
[49]
Hattori, M.; Minato, N. Rap1 GTPase: Functions, regulation, and malignancy. J. Biochem., 2003, 134(4), 479-484.
[http://dx.doi.org/10.1093/jb/mvg180] [PMID: 14607972]
[50]
Crosas-Molist, E.; Samain, R.; Kohlhammer, L.; Orgaz, J.L.; George, S.L.; Maiques, O.; Barcelo, J.; Sanz-Moreno, V. Rho GTPase signaling in cancer progression and dissemination. Physiol. Rev., 2022, 102(1), 455-510.
[http://dx.doi.org/10.1152/physrev.00045.2020] [PMID: 34541899]
[51]
Huang, M.; Liang, C.; Li, S.; Zhang, J.; Guo, D.; Zhao, B.; Liu, Y.; Peng, Y.; Xu, J.; Liu, W.; Guo, G.; Shi, L. Two Autism/Dyslexia Linked Variations of DOCK4 Disrupt the Gene Function on Rac1/Rap1 Activation, Neurite Outgrowth, and Synapse Development. Front. Cell. Neurosci., 2020, 13, 577.
[http://dx.doi.org/10.3389/fncel.2019.00577] [PMID: 32009906]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy