Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanosuspension: A Formulation Technology for Tackling the Poor Aqueous Solubility and Bioavailability of Poorly Soluble Drugs

Author(s): Mohamed T. Elsebay*, Noura G. Eissa, Gehan F. Balata, Mohammad Amjad Kamal* and Hanan M. Elnahas

Volume 29, Issue 29, 2023

Published on: 12 September, 2023

Page: [2297 - 2312] Pages: 16

DOI: 10.2174/1381612829666230911105922

Price: $65

Abstract

The poor water solubility of numerous novel drug candidates presents significant challenges, particularly in terms of oral administration. This limitation can result in various undesirable clinical implications, such as inter-patient variability, poor bioavailability, difficulties in achieving a safe therapeutic index, increased costs, and potential risks of toxicity or inefficacy. Biopharmaceutics Classification System (BCS) class II drugs face particular hurdles due to their limited solubility in the aqueous media of the gastrointestinal tract. In such cases, parenteral administration is often employed as an alternative strategy. To address these challenges, nanosuspension techniques offer a promising solution for enhancing drug solubility and overcoming oral delivery obstacles. This technique has the potential to bridge the gap between drug discovery and preclinical use by resolving problematic solubility. This literature review has delved into contemporary nanosuspension preparation technologies and the incorporation of stabilizing ingredients within the formulation. Furthermore, the manuscript explores nanosuspension strategies for both oral and parenteral/other delivery routes, and separate discussions have been presented to establish a suitable flow that addresses the challenges and strategies relevant to each administration method.

[1]
Zhou D. Understanding physicochemical properties for pharmaceutical product development and manufacturing II: Physical and chemical stability and excipient compatibility. J Valid Technol 2009; 15(3): 36-47.
[2]
Chaurasia G. A review on pharmaceutical preformulation studies in formulation and development of new drug molecules. Int J Pharm Sci Res 2016; 7(6): 2313-20.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.7(6).2313-20]
[3]
Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: A promising drug delivery strategy. J Pharm Pharmacol 2010; 56(7): 827-40.
[http://dx.doi.org/10.1211/0022357023691] [PMID: 15233860]
[4]
Pouton CW. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci 2000; 11(S2): S93-8.
[http://dx.doi.org/10.1016/S0928-0987(00)00167-6] [PMID: 11033431]
[5]
Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: Immediate release dosage forms. Pharm Res 1998; 15(1): 11-22.
[http://dx.doi.org/10.1023/A:1011984216775] [PMID: 9487541]
[6]
Attia MS, Hassaballah MY, Abdelqawy MA, et al. An updated review of mesoporous carbon as novel drug delivery system. Drug Dev Ind Pharm 2021; 47(7): 1029-37.
[http://dx.doi.org/10.1080/03639045.2021.1988097] [PMID: 34590548]
[7]
Attia MS, Yahya A, Monaem NA, Sabry SA. Mesoporous silica nanoparticles: Their potential as drug delivery carriers and nanoscavengers in Alzheimer’s and Parkinson’s diseases. Saudi Pharm J 2023; 31(3): 417-32.
[http://dx.doi.org/10.1016/j.jsps.2023.01.009] [PMID: 37026045]
[8]
Chaudhary A, Nagaich U, Gulati N, Sharma V, Khosa R, Partapur M. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. J Adv Pharm Educ Res 2012; 2(1): 32-67.
[9]
El-Ghamry H, Abdalla R. Formulation and evaluation of liposomal fluconazole and propolis as topical antifungal agents in candida keratitis. Zagazig J Pharm Sci 2002; 11(1): 85-94.
[http://dx.doi.org/10.21608/zjps.2002.181571]
[10]
Abdulla NA, Balata GF, El-ghamry HA, Gomaa E. Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement. Saudi Pharm J 2021; 29(12): 1466-85.
[http://dx.doi.org/10.1016/j.jsps.2021.11.006] [PMID: 35002385]
[11]
Gomaa E, Attia MS, Ghazy FE, Hassan A, Hasan AA. Pump-free electrospraying: A novel approach for fabricating Soluplus®-based solid dispersion nanoparticles. J Drug Deliv Sci Technol 2021; 67: 103027.
[http://dx.doi.org/10.1016/j.jddst.2021.103027]
[12]
Ghazy F, Sammour O, Ghareeb S, El-Ghamry H, Issa M, Atia G. Inclusion complexes of nicardipine - HCL for oral administration. Bull Pharm Sci 2005; 28(1): 119-29.
[http://dx.doi.org/10.21608/bfsa.2005.65238]
[13]
Hu J, Johnston KP, Williams RO III. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm 2004; 30(3): 233-45.
[http://dx.doi.org/10.1081/DDC-120030422] [PMID: 15109023]
[14]
Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv 2007; 4(4): 403-16.
[http://dx.doi.org/10.1517/17425247.4.4.403] [PMID: 17683253]
[15]
Mane AN, Gilda SS, Ghadge AA, Bhosekar NR, Bhosale RR, Nanosuspension A. Novel carrier for lipidic drug transfer. Sch Acad J Pharm 2014; 3(1): 82-8.
[16]
Patel D, Zode SS, Bansal AK. Formulation aspects of intravenous nanosuspensions. Int J Pharm 2020; 586: 119555.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119555] [PMID: 32562654]
[17]
Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019; 11(3): 129.
[http://dx.doi.org/10.3390/pharmaceutics11030129] [PMID: 30893852]
[18]
Hao J, Heng PWS. Buccal delivery systems. Drug Dev Ind Pharm 2003; 29(8): 821-32.
[http://dx.doi.org/10.1081/DDC-120024178] [PMID: 14570303]
[19]
Shinkar DM, Dhake AS, Setty CM. Drug delivery from the oral cavity: A focus on mucoadhesive buccal drug delivery systems. PDA J Pharm Sci Technol 2012; 66(5): 466-500.
[http://dx.doi.org/10.5731/pdajpst.2012.00877] [PMID: 23035030]
[20]
Van Den Abeele J, Rubbens J, Brouwers J, Augustijns P. The dynamic gastric environment and its impact on drug and formulation behaviour. Eur J Pharm Sci 2017; 96: 207-31.
[http://dx.doi.org/10.1016/j.ejps.2016.08.060] [PMID: 27597144]
[21]
Marsh MN, Swift JA. A study of the small intestinal mucosa using the scanning electron microscope. Gut 1969; 10(11): 940-9.
[http://dx.doi.org/10.1136/gut.10.11.940] [PMID: 5358588]
[22]
Zhang J, Zhang J, Wang R. Gut microbiota modulates drug pharmacokinetics. Drug Metab Rev 2018; 50(3): 357-68.
[http://dx.doi.org/10.1080/03602532.2018.1497647] [PMID: 30227749]
[23]
Watts PJ, Lllum L. Colonic drug delivery. Drug Dev Ind Pharm 1997; 23(9): 893-913.
[http://dx.doi.org/10.3109/03639049709148695]
[24]
Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release 2013; 172(3): 1126-41.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.006] [PMID: 23954372]
[25]
Ahire E, Thakkar S, Darshanwad M, Misra M. Parenteral nanosuspensions: A brief review from solubility enhancement to more novel and specific applications. Acta Pharm Sin B 2018; 8(5): 733-55.
[http://dx.doi.org/10.1016/j.apsb.2018.07.011] [PMID: 30245962]
[26]
Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int J Pharm 2013; 453(1): 126-41.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.019] [PMID: 23333709]
[27]
Guan J, Zhang Y, Liu Q, Zhang X, Chokshi R, Mao S. Exploration of alginates as potential stabilizers of nanosuspension. AAPS PharmSciTech 2017; 18(8): 3172-81.
[http://dx.doi.org/10.1208/s12249-017-0801-6] [PMID: 28536795]
[28]
Elmowafy M, Shalaby K, Al-Sanea MM, et al. Influence of stabilizer on the development of luteolin nanosuspension for cutaneous delivery: An in vitro and in vivo evaluation. Pharmaceutics 2021; 13(11): 1812.
[http://dx.doi.org/10.3390/pharmaceutics13111812] [PMID: 34834227]
[29]
Ubgade S, Bapat A, Kilor V. Effect of various stabilizers on the stability of lansoprazole nanosuspension prepared using high shear homogenization: Preliminary investigation. J Appl Pharm Sci 2021; 11(9): 85-92.
[http://dx.doi.org/10.7324/JAPS.2021.110910]
[30]
Afifi SA, Hassan MA, Abdelhameed AS, Elkhodairy KA. Nanosuspension: An emerging trend for bioavailability enhancement of etodolac. Int J Polym Sci 2015; 2015: 1-16.
[http://dx.doi.org/10.1155/2015/938594]
[31]
Lu Y, Wang Z, Li T, McNally H, Park K, Sturek M. Development and evaluation of transferrin-stabilized paclitaxel nanocrystal formulation. J Control Release 2014; 176: 76-85.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.018] [PMID: 24378441]
[32]
Yang H, Teng F, Wang P, et al. Investigation of a nanosuspension stabilized by Soluplus® to improve bioavailability. Int J Pharm 2014; 477(1-2): 88-95.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.025] [PMID: 25455766]
[33]
Ahuja BK, Jena SK, Paidi SK, Bagri S, Suresh S. Formulation, optimization and in vitro, in vivo evaluation of febuxostat nanosuspension. Int J Pharm 2015; 478(2): 540-52.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.003] [PMID: 25490182]
[34]
Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Deliv Rev 2001; 47(1): 113-31.
[http://dx.doi.org/10.1016/S0169-409X(00)00124-1] [PMID: 11251249]
[35]
Li G, Lu Y, Fan Y, Ning Q, Li W. Enhanced oral bioavailability of magnolol via mixed micelles and nanosuspensions based on Soluplus®-Poloxamer 188. Drug Deliv 2020; 27(1): 1010-7.
[http://dx.doi.org/10.1080/10717544.2020.1785582] [PMID: 32631085]
[36]
Lo Y. Relationships between the hydrophilic-lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco-2 cells and rat intestines. J Control Release 2003; 90(1): 37-48.
[http://dx.doi.org/10.1016/S0168-3659(03)00163-9] [PMID: 12767705]
[37]
Bogman K, Erne-Brand F, Alsenz J, Drewe J. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J Pharm Sci 2003; 92(6): 1250-61.
[http://dx.doi.org/10.1002/jps.10395] [PMID: 12761814]
[38]
Mi Y, Zhao J, Feng SS. Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. Int J Pharm 2012; 438(1-2): 98-106.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.038] [PMID: 22954445]
[39]
Yu Y, Wang ZH, Zhang L, et al. Mitochondrial targeting topotecan-loaded liposomes for treating drug-resistant breast cancer and inhibiting invasive metastases of melanoma. Biomaterials 2012; 33(6): 1808-20.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.085] [PMID: 22136714]
[40]
Gadadare R, Mandpe L, Pokharkar V. Ultra rapidly dissolving repaglinide nanosized crystals prepared via bottom-up and top-down approach: Influence of food on pharmacokinetics behavior. AAPS PharmSciTech 2015; 16(4): 787-99.
[http://dx.doi.org/10.1208/s12249-014-0267-8] [PMID: 25549790]
[41]
Song T, Wang H, Liu Y, Cai R, Yang D, Xiong Y. TPGS-modified long-circulating liposomes loading ziyuglycoside I for enhanced therapy of myelosuppression. Int J Nanomedicine 2021; 16: 6281-95.
[http://dx.doi.org/10.2147/IJN.S326629] [PMID: 34548791]
[42]
Farooq MA, Xinyu H, Jabeen A, et al. Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS- modified liposomes. Colloids Surf B Biointerfaces 2021; 199: 111523.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111523] [PMID: 33360624]
[43]
He J, Han Y, Xu G, et al. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Adv 2017; 7(22): 13053-64.
[http://dx.doi.org/10.1039/C6RA28676C]
[44]
Attia MS, Elsebaey MT, Yahya G, et al. Pharmaceutical polymers and P-glycoprotein: Current trends and possible outcomes in drug delivery. Mater Today Commun 2023; 34: 105318.
[http://dx.doi.org/10.1016/j.mtcomm.2023.105318]
[45]
Saxena V, Hussain MD. Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomedicine 2012; 7: 713-21.
[http://dx.doi.org/10.2147/IJN.S28745] [PMID: 22359450]
[46]
Tang X, Liang Y, Feng X, Zhang R, Jin X, Sun L. Co-delivery of docetaxel and Poloxamer 235 by PLGA-TPGS nanoparticles for breast cancer treatment. Mater Sci Eng C Mater Biol Appl 2015; 49: 348-55.
[http://dx.doi.org/10.1016/j.msec.2015.01.033] [PMID: 25686959]
[47]
Lee H, Bang JB, Na YG, et al. Development and evaluation of tannic acid-coated nanosuspension for enhancing oral bioavailability of curcumin. Pharmaceutics 2021; 13(9): 1460.
[http://dx.doi.org/10.3390/pharmaceutics13091460] [PMID: 34575537]
[48]
Collnot EM, Baldes C, Schaefer UF, Edgar KJ, Wempe MF, Lehr CM. Vitamin E TPGS P-glycoprotein inhibition mechanism: Influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharm 2010; 7(3): 642-51.
[http://dx.doi.org/10.1021/mp900191s] [PMID: 20205474]
[49]
Li H, Li M, Fu J, Ao H, Wang W, Wang X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv 2021; 28(1): 1226-36.
[http://dx.doi.org/10.1080/10717544.2021.1927244] [PMID: 34142631]
[50]
Hardung H, Djuric D, Ali S. Combining HME & solubilization: Soluplus®-the solid solution. Drug Deliv Technol 2010; 10(3): 20-7.
[51]
Shamma RN, Basha M. Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation. Powder Technol 2013; 237: 406-14.
[http://dx.doi.org/10.1016/j.powtec.2012.12.038]
[52]
Shamim R, Shafique S, Kanwal U, et al. Surfactant-assisted wet granulation: A simpler approach to improve solubility and sustain ketoprofen release. Lat Am J Pharm 2019; 38: 281-90.
[53]
Hussain A, Misbah M, Abbas N, et al. Design and in vitro characterization of orally disintegrating modified release tablets of naproxen sodium. Turk J Pharm Sci 2020; 17(5): 486-91.
[http://dx.doi.org/10.4274/tjps.galenos.2019.24445] [PMID: 33177928]
[54]
Attia MS, Elshahat A, Hamdy A, et al. Soluplus® as a solubilizing excipient for poorly water-soluble drugs: Recent advances in formulation strategies and pharmaceutical product features. J Drug Deliv Sci Technol 2023; 84: 104519.
[http://dx.doi.org/10.1016/j.jddst.2023.104519]
[55]
Yeom DW, Chae BR, Son HY, et al. Enhanced oral bioavailability of valsartan using a polymer-based supersaturable self-microemulsifying drug delivery system. Int J Nanomedicine 2017; 12: 3533-45.
[http://dx.doi.org/10.2147/IJN.S136599] [PMID: 28507434]
[56]
Gajera BY, Shah DA, Dave RH. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Int J Pharm 2019; 559(January): 348-59.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.054] [PMID: 30721724]
[57]
Tian R, Wang H, Xiao Y, et al. Fabrication of nanosuspensions to improve the oral bioavailability of total flavones from hippophae rhamnoides l. and their comparison with an inclusion complex. AAPS PharmSciTech 2020; 21(7): 249.
[http://dx.doi.org/10.1208/s12249-020-01788-9] [PMID: 32875458]
[58]
Vanti G, Wang M, Bergonzi MC, Zhidong L, Bilia AR. Hydroxypropyl methylcellulose hydrogel of berberine chloride-loaded escinosomes: Dermal absorption and biocompatibility. Int J Biol Macromol 2020; 164: 232-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.129] [PMID: 32682035]
[59]
Md S, Alhakamy NA, Akhter S, et al. Development of polymer and surfactant based naringenin nanosuspension for improvement of stability, antioxidant, and antitumour activity. J Chem 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/3489393]
[60]
Ambhore NP, Dandagi PM, Gadad AP. Formulation and comparative evaluation of HPMC and water soluble chitosan-based sparfloxacin nanosuspension for ophthalmic delivery. Drug Deliv Transl Res 2016; 6(1): 48-56.
[http://dx.doi.org/10.1007/s13346-015-0262-y] [PMID: 26545605]
[61]
Tuomela A, Hirvonen J, Peltonen L. Stabilizing agents for drug nanocrystals: Effect on bioavailability. Pharmaceutics 2016; 8(2): 16.
[http://dx.doi.org/10.3390/pharmaceutics8020016] [PMID: 27213435]
[62]
Xie J, Luo Y, Liu Y, Ma Y, Yue P, Yang M. Novel redispersible nanosuspensions stabilized by co-processed nanocrystalline cellulose–sodium carboxymethyl starch for enhancing dissolution and oral bioavailability of baicalin. Int J Nanomedicine 2019; 14: 353-69.
[http://dx.doi.org/10.2147/IJN.S184374] [PMID: 30655668]
[63]
Na YG, Pham TMA, Byeon JJ, et al. Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor. Int J Pharm 2020; 581: 119287.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119287] [PMID: 32243963]
[64]
Ahuja M, Verma P, Bhatia M. Preparation and evaluation of chitosan-itraconazole co-precipitated nanosuspension for ocular delivery. J Exp Nanosci 2015; 10(3): 209-21.
[http://dx.doi.org/10.1080/17458080.2013.822108]
[65]
Liu Y, Wu F, Ding Y, Zhu B, Su Y, Zhu X. Preparation and characterization of paclitaxel/chitosan nanosuspensions for drug delivery system and cytotoxicity evaluation in vitro. Adv Fiber Mater 2019; 1(2): 152-62.
[http://dx.doi.org/10.1007/s42765-019-00012-z]
[66]
Duong BH, Truong HN, Phan Nguyen QA, Nguyen Phu TN, Hong Nhan LT. Preparation of curcumin nanosuspension with gum arabic as a natural stabilizer: Process optimization and product characterization. Processes 2020; 8(8): 970.
[http://dx.doi.org/10.3390/pr8080970]
[67]
Farooq MA, Aquib M, Ghayas S, et al. Whey protein: A functional and promising material for drug delivery systems recent developments and future prospects. Polym Adv Technol 2019; 30(9): 2183-91.
[http://dx.doi.org/10.1002/pat.4676]
[68]
Fuhrmann K, Schulz JD, Gauthier MA, Leroux JC. PEG nanocages as non-sheddable stabilizers for drug nanocrystals. ACS Nano 2012; 6(2): 1667-76.
[http://dx.doi.org/10.1021/nn2046554] [PMID: 22296103]
[69]
Ye L, Miao M, Li S, Hao K. Nanosuspensions of a new compound, ER-β005, for enhanced oral bioavailability and improved analgesic efficacy. Int J Pharm 2017; 531(1): 246-56.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.103] [PMID: 28847666]
[70]
Mohammadian M, Waly MI, Moghadam M, Emam-Djomeh Z, Salami M, Moosavi-Movahedi AA. Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Sci Hum Wellness 2020; 9(3): 199-213.
[http://dx.doi.org/10.1016/j.fshw.2020.04.009]
[71]
Grigoriev DO, Miller R. Mono- and multilayer covered drops as carriers. Curr Opin Colloid Interface Sci 2009; 14(1): 48-59.
[http://dx.doi.org/10.1016/j.cocis.2008.03.003]
[72]
Mangano KM, Bao Y, Zhao C. Nutritional properties of whey proteins. Whey protein production, chemistry, functionality, and applications. Wiley Online Library 2019; pp. 103-40.
[http://dx.doi.org/10.1002/9781119256052.ch5]
[73]
Kontopidis G, Holt C, Sawyer L. Invited review: β-lactoglobulin: Binding properties, structure, and function. J Dairy Sci 2004; 87(4): 785-96.
[http://dx.doi.org/10.3168/jds.S0022-0302(04)73222-1] [PMID: 15259212]
[74]
Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release 2011; 153(3): 206-16.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.010] [PMID: 21338636]
[75]
Sun Z, Wang M, Han S, et al. Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Sci Rep 2018; 8(1): 15430.
[http://dx.doi.org/10.1038/s41598-018-32024-x] [PMID: 30337546]
[76]
He W, Lu Y, Qi J, Chen L, Yin L, Wu W. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: Physical characterization, redispersibility, and dissolution. Int J Nanomedicine 2013; 8: 3119-28.
[http://dx.doi.org/10.2147/IJN.S46207] [PMID: 23983465]
[77]
Muhamad II, Selvakumaran S, Lazim NAM. Designing polymeric nanoparticles for targeted drug delivery system. In: Alexander Seifalian Professor, Mel Achala de, Kalaskar Deepak M, Eds. Nanomed. One Central Press (OCP) 2014; 287: pp. 287-313.
[78]
Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 2012; 157(2): 168-82.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[79]
Attia MS, Radwan MF, Ibrahim TS, Ibrahim TM. Development of carvedilol-loaded albumin-based nanoparticles with factorial design to optimize in vitro and in vivo performance. Pharmaceutics 2023; 15(5): 1425.
[http://dx.doi.org/10.3390/pharmaceutics15051425] [PMID: 37242667]
[80]
Cavalli R, Bocca C, Miglietta A, Caputo O, Gasco MR. Albumin adsorption on stealth and non-stealth solid lipid nanoparticles. STP Pharma Sci 1999; T(29): 183-9.
[81]
Norman ME, Williams P, Illum L. Human serum albumin as a probe for surface conditioning (opsonization) of block copolymer- coated microspheres. Biomaterials 1992; 13(12): 841-9.
[http://dx.doi.org/10.1016/0142-9612(92)90177-P] [PMID: 1457677]
[82]
Kim TH, Jiang HH, Youn YS, et al. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm 2011; 403(1-2): 285-91.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.041] [PMID: 21035530]
[83]
Khoder M, Abdelkader H, ElShaer A, Karam A, Najlah M, Alany RG. Efficient approach to enhance drug solubility by particle engineering of bovine serum albumin. Int J Pharm 2016; 515(1-2): 740-8.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.019] [PMID: 27832954]
[84]
Han M, Yu X, Guo Y, Wang Y, Kuang H, Wang X. Honokiol nanosuspensions: Preparation, increased oral bioavailability and dramatically enhanced biodistribution in the cardio-cerebro-vascular system. Colloids Surf B Biointerfaces 2014; 116: 114-20.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.056] [PMID: 24448177]
[85]
Pahuja P, Arora S, Pawar P. Ocular drug delivery system: A reference to natural polymers. Expert Opin Drug Deliv 2012; 9(7): 837-61.
[http://dx.doi.org/10.1517/17425247.2012.690733] [PMID: 22703523]
[86]
Kumar R, Nagarwal RC, Dhanawat M, Pandit JK. In vitro and in vivo study of indomethacin loaded gelatin nanoparticles. J Biomed Nanotechnol 2011; 7(3): 325-33.
[http://dx.doi.org/10.1166/jbn.2011.1290] [PMID: 21830472]
[87]
Zhang C, Zhang H. Formation and stability of core-shell nanofibers by electrospinning of gel-like corn oil-in-water emulsions stabilized by gelatin. J Agric Food Chem 2018; 66(44): 11681-90.
[http://dx.doi.org/10.1021/acs.jafc.8b04270] [PMID: 30296080]
[88]
Suderman N, Isa MIN, Sarbon NM. The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review. Food Biosci 2018; 24: 111-9.
[http://dx.doi.org/10.1016/j.fbio.2018.06.006]
[89]
Mahor A, Prajapati SK, Verma A, Gupta R, Iyer AK, Kesharwani P. Moxifloxacin loaded gelatin nanoparticles for ocular delivery: Formulation and in-vitro, in-vivo evaluation. J Colloid Interface Sci 2016; 483: 132-8.
[http://dx.doi.org/10.1016/j.jcis.2016.08.018] [PMID: 27552421]
[90]
Shahlaei M, Saeidifar M, Zamanian A. Increasing the effectiveness of oxaliplatin using colloidal immunoglobulin G nanoparticles: Synthesis, cytotoxicity, interaction, and release studies. Colloids Surf B Biointerfaces 2020; 195: 111255.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111255] [PMID: 32683237]
[91]
Wackerlig J, Schirhagl R. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: A review. Anal Chem 2016; 88(1): 250-61.
[http://dx.doi.org/10.1021/acs.analchem.5b03804] [PMID: 26539750]
[92]
Du J, Li X, Zhao H, et al. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm 2015; 495(2): 738-49.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.021] [PMID: 26383838]
[93]
Mohammady M, mohammadi Y, Yousefi G. Freeze-drying of pharmaceutical and nutraceutical nanoparticles: The effects of formulation and technique parameters on nanoparticles characteristics. J Pharm Sci 2020; 109(11): 3235-47.
[http://dx.doi.org/10.1016/j.xphs.2020.07.015] [PMID: 32702373]
[94]
Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 2002; 82(1): 105-14.
[http://dx.doi.org/10.1016/S0168-3659(02)00127-X] [PMID: 12106981]
[95]
Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv Drug Deliv Rev 2006; 58(15): 1688-713.
[http://dx.doi.org/10.1016/j.addr.2006.09.017] [PMID: 17118485]
[96]
Andreani T, Kiill CP, de Souza ALR, et al. Effect of cryoprotectants on the reconstitution of silica nanoparticles produced by sol–gel technology. J Therm Anal Calorim 2015; 120(1): 1001-7.
[http://dx.doi.org/10.1007/s10973-014-4275-4]
[97]
Hirst JC, Hutchinson EC. Single-particle measurements of filamentous influenza virions reveal damage induced by freezing. J Gen Virol 2019; 100(12): 1631-40.
[http://dx.doi.org/10.1099/jgv.0.001330] [PMID: 31553305]
[98]
Sánchez-López E, Souto EB, Espina M, Cano A, Ettcheto M, Camins A. Nanoparticle products for the eye: Preformulation, formulation, and manufacturing considerations. Ophthalmic Product Development. Springer 2021; pp. 409-47.
[http://dx.doi.org/10.1007/978-3-030-76367-1_15]
[99]
Voci S, Gagliardi A, Salvatici MC, Fresta M, Cosco D. Influence of the dispersion medium and cryoprotectants on the physico- chemical features of gliadin- and zein-based nanoparticles. Pharmaceutics 2022; 14(2): 332.
[http://dx.doi.org/10.3390/pharmaceutics14020332] [PMID: 35214063]
[100]
Beirowski J, Inghelbrecht S, Arien A, Gieseler H. Freeze-drying of nanosuspensions, 1: Freezing rate versus formulation design as critical factors to preserve the original particle size distribution. J Pharm Sci 2011; 100(5): 1958-68.
[http://dx.doi.org/10.1002/jps.22425] [PMID: 21374626]
[101]
Jakubowska E, Bielejewski M, Milanowski B, Lulek J. Freeze-drying of drug nanosuspension-study of formulation and processing factors for the optimization and characterization of redispersible cilostazol nanocrystals. J Drug Deliv Sci Technol 2022; 74: 103528.
[http://dx.doi.org/10.1016/j.jddst.2022.103528]
[102]
Lee MK, Kim MY, Kim S, Lee J. Cryoprotectants for freeze drying of drug nano-suspensions: Effect of freezing rate. J Pharm Sci 2009; 98(12): 4808-17.
[http://dx.doi.org/10.1002/jps.21786] [PMID: 19475555]
[103]
Liu D, Xu H, Tian B, et al. Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation-ultrasonication method for the improvement of dissolution rate and oral bioavailability. AAPS PharmSciTech 2012; 13(1): 295-304.
[http://dx.doi.org/10.1208/s12249-011-9750-7] [PMID: 22246736]
[104]
Van Eerdenbrugh B, Froyen L, Martens JA, et al. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int J Pharm 2007; 338(1-2): 198-206.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.005] [PMID: 17363200]
[105]
Ibrahim AH, Rosqvist E, Smått JH, et al. Formulation and optimization of lyophilized nanosuspension tablets to improve the physicochemical properties and provide immediate release of silymarin. Int J Pharm 2019; 563: 217-27.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.064] [PMID: 30946894]
[106]
Zhao Y, Wang Z, Liu S, et al. Lyoprotectant formulation and optimization of the J-aggregates astaxanthin/BSA/chitosan nanosuspension. Biomolecules 2023; 13(3): 496.
[http://dx.doi.org/10.3390/biom13030496] [PMID: 36979431]
[107]
Sigfridsson K, Nordmark A, Theilig S, Lindahl A. A formulation comparison between micro- and nanosuspensions: The importance of particle size for absorption of a model compound, following repeated oral administration to rats during early development. Drug Dev Ind Pharm 2011; 37(2): 185-92.
[http://dx.doi.org/10.3109/03639045.2010.504209] [PMID: 20653464]
[108]
Starciuc T, Guinet Y, Paccou L, Hedoux A. Influence of a small amount of glycerol on the trehalose bioprotective action analyzed in situ during freeze-drying of lyzozyme formulations by micro-Raman spectroscopy. J Pharm Sci 2017; 106(10): 2988-97.
[http://dx.doi.org/10.1016/j.xphs.2017.05.040] [PMID: 28624416]
[109]
Leung DH. Development of nanosuspension formulations compatible with inkjet printing for the convenient and precise dispensing of poorly soluble drugs. Pharmaceutics 2022; 14(2): 449.
[http://dx.doi.org/10.3390/pharmaceutics14020449] [PMID: 35214180]
[110]
Maruyama K. PEG-Immunoliposome. Biosci Rep 2002; 22(2): 251-66.
[http://dx.doi.org/10.1023/A:1020138622686] [PMID: 12428903]
[111]
Chung NO, Lee MK, Lee J. Mechanism of freeze-drying drug nanosuspensions. Int J Pharm 2012; 437(1-2): 42-50.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.068] [PMID: 22877696]
[112]
Tsai S, Chong G, Meng PJ, Lin C. Sugars as supplemental cryoprotectants for marine organisms. Rev Aquacult 2018; 10(3): 703-15.
[http://dx.doi.org/10.1111/raq.12195]
[113]
Nounou MM, El-Khordagui L, Khalafallah N, Khalil S. Influence of different sugar cryoprotectants on the stability and physico- chemical characteristics of freeze-dried 5-fluorouracil plurilamellar vesicles. DARU J Pharm Sci 2005; 13(4): 133-42.
[114]
Teeranachaideekul V, Junyaprasert VB, Souto EB, Müller RH. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int J Pharm 2008; 354(1-2): 227-34.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.062] [PMID: 18242898]
[115]
Eroglu A, Toner M, Toth TL. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil Steril 2002; 77(1): 152-8.
[http://dx.doi.org/10.1016/S0015-0282(01)02959-4] [PMID: 11779606]
[116]
Crowe LM, Reid DS, Crowe JH. Is trehalose special for preserving dry biomaterials? Biophys J 1996; 71(4): 2087-93.
[http://dx.doi.org/10.1016/S0006-3495(96)79407-9] [PMID: 8889183]
[117]
Wang L, Ma Y, Gu Y, et al. Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers. J Microencapsul 2018; 35(3): 241-8.
[http://dx.doi.org/10.1080/02652048.2018.1462416] [PMID: 29624090]
[118]
Bartos C, Ambrus R, Katona G, et al. Transformation of meloxicam containing nanosuspension into surfactant-free solid compositions to increase the product stability and drug bioavailability for rapid analgesia. Drug Des Devel Ther 2019; 13: 4007-20.
[http://dx.doi.org/10.2147/DDDT.S220876] [PMID: 31819372]
[119]
Zhang L, Wei Y, Liao W, et al. Impact of trehalose on physicochemical stability of β-carotene high loaded microcapsules fabricated by wet-milling coupled with spray drying. Food Hydrocoll 2021; 121: 106977.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106977]
[120]
Yue PF, Li G, Dan JX, et al. Study on formability of solid nanosuspensions during solidification: II novel roles of freezing stress and cryoprotectant property. Int J Pharm 2014; 475(1-2): 35-48.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.041] [PMID: 25158243]
[121]
Müller R, Peters K, Becker R, Kruss B. Nanosuspensions for the iv administration of poorly soluble drugs-stability during sterilization and long-term storage. Proceedings of the 22nd International Symposium on Controlled Release of Bioactive Materials, 1995 Jul 30, pp 574-5.
[122]
Sucker H, Sucker H. An Alternative for the parenteral use of poorly water-soluble active ingredients. Pharm Technol Mod Dosage Forms 1998; 383-91.
[123]
Hao J, Gao Y, Zhao J, et al. Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using Box-Behnken design. AAPS PharmSciTech 2015; 16(1): 118-28.
[http://dx.doi.org/10.1208/s12249-014-0211-y] [PMID: 25209687]
[124]
Clark JH, Tavener SJ. Alternative solvents: Shades of green. Org Process Res Dev 2007; 11(1): 149-55.
[http://dx.doi.org/10.1021/op060160g]
[125]
Sutton AT, Fraige K, Leme GM, et al. Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography-searching for alternatives to organic solvents. Anal Bioanal Chem 2018; 410(16): 3705-13.
[http://dx.doi.org/10.1007/s00216-018-1027-5] [PMID: 29651524]
[126]
Campardelli R, Reverchon E. α-Tocopherol nanosuspensions produced using a supercritical assisted process. J Food Eng 2015; 149: 131-6.
[http://dx.doi.org/10.1016/j.jfoodeng.2014.10.015]
[127]
Cocero MJ, Martín Á, Mattea F, Varona S. Encapsulation and co- precipitation processes with supercritical fluids: Fundamentals and applications. J Supercrit Fluids 2009; 47(3): 546-55.
[http://dx.doi.org/10.1016/j.supflu.2008.08.015]
[128]
Kumar A, Sahoo SK, Padhee K, Kochar PS, Sathapathy A, Pathak N. Review on solubility enhancement techniques for hydrophobic drugs. Pharm Glob 2011; 3(3): 1-7.
[129]
Agrawal YK, Patel VR. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res 2011; 2(2): 81-7.
[http://dx.doi.org/10.4103/2231-4040.82950] [PMID: 22171298]
[130]
Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 2008; 364(1): 64-75.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.023] [PMID: 18721869]
[131]
Pinar S, Celebi N. Optimization and evaluation of cyclosporine A nanosuspension stabilized by combination stabilizers using high pressure homogenization method. J Res Pharm Pract 2019; 23(6): 1009-21.
[http://dx.doi.org/10.35333/jrp.2019.65]
[132]
Patnaik S, Chunduri LAA, Akilesh MS, Bhagavatham SS, Kamisetti V. Enhanced dissolution characteristics of piroxicam- Soluplus® nanosuspensions. J Exp Nanosci 2016; 11(12): 916-29.
[http://dx.doi.org/10.1080/17458080.2016.1178402]
[133]
Langguth P, Hanafy A, Frenzel D, et al. Nanosuspension formulations for low-soluble drugs: Pharmacokinetic evaluation using spironolactone as model compound. Drug Dev Ind Pharm 2005; 31(3): 319-29.
[http://dx.doi.org/10.1081/DDC-52182] [PMID: 15830727]
[134]
Dinda SC, Panda SK. Formulation and in-vitro/in-vivo assessment of enhanced bioavailability of lacidipine using nano pure technique. Albanian J Pharm Sci 2014; 1(1): 20-5.
[135]
Varghese JJ, Mallya R. Formulation development and evaluation of antioxidant potential of hesperidin nanocrystals. World J Pharm Res 2015; 4(08): 1149-70.
[136]
Dong Y, Ng WK, Hu J, Shen S, Tan RBH. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs. Int J Pharm 2010; 386(1-2): 256-61.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.007] [PMID: 19922777]
[137]
Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007; 59(7): 617-30.
[http://dx.doi.org/10.1016/j.addr.2007.05.011] [PMID: 17597252]
[138]
Joye IJ, McClements DJ. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci Technol 2013; 34(2): 109-23.
[http://dx.doi.org/10.1016/j.tifs.2013.10.002]
[139]
Vedaga S, Gondkar S, Saudagar R. Nanosuspension: An emerging trend to improve solubility of poorly water soluble drugs. J Drug Deliv Ther 2019; 9(3): 549-53.
[140]
Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004; 3(9): 785-96.
[http://dx.doi.org/10.1038/nrd1494] [PMID: 15340388]
[141]
Tran TTD, Tran PHL, Nguyen MNU, et al. Amorphous isradipine nanosuspension by the sonoprecipitation method. Int J Pharm 2014; 474(1-2): 146-50.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.017] [PMID: 25138256]
[142]
Ono M, Honda M, Wahyudiono, Yasuda K, Kanda H, Goto M. Production of β-carotene nanosuspensions using supercritical CO2 and improvement of its efficiency by Z-isomerization pre-treatment. J Supercrit Fluids 2018; 138: 124-31.
[http://dx.doi.org/10.1016/j.supflu.2018.04.006]
[143]
Murthy SN, Shivakumar H. Topical and transdermal drug delivery.Handbook of non-invasive drug delivery systems. Elsevier 2010; pp. 1-36.
[http://dx.doi.org/10.1016/B978-0-8155-2025-2.10001-0]
[144]
Zeng H, Li X, Zhang G, Dong J. Preparation and characterization of beta cypermethrin nanosuspensions by diluting O/W microemulsions. J Dispers Sci Technol 2008; 29(3): 358-61.
[http://dx.doi.org/10.1080/01932690701716085]
[145]
Franco P, De Marco I. Nanoparticles and nanocrystals by supercritical CO2-assisted techniques for pharmaceutical applications: A review. Appl Sci 2021; 11(4): 1476.
[http://dx.doi.org/10.3390/app11041476]
[146]
Mittapelly N, Rachumallu R, Pandey G, et al. Investigation of salt formation between memantine and pamoic acid: Its exploitation in nanocrystalline form as long acting injection. Eur J Pharm Biopharm 2016; 101: 62-71.
[http://dx.doi.org/10.1016/j.ejpb.2016.01.003] [PMID: 26850817]
[147]
Wanjare M, Sharma PK, Koka SS, Gupta A, Sharma R, Darwhekar G. Nanosuspension: A promising approach to improve solubility, dissolution rate and bioavailability of poorly soluble drug. Int J Pharm Life Sci 2021; 12(8): 48-53.
[148]
Müller R, Grau M, Hildebrand G. Increase of solubility of poorly soluble drugs by transfer to Dissocubes using high pressure homogenization. Proc Int Symp Control Rel Bioact Mater 1999; 26: 112-3.
[149]
Keck C, Müller R. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006; 62(1): 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[150]
Mu RH. DissoCubes-a novel formulation for poorly soluble and poorly bioavailable drugs.Modified-release drug delivery technology. CRC Press 2002; pp. 159-74.
[151]
George M, Ghosh I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur J Pharm Sci 2013; 48(1-2): 142-52.
[http://dx.doi.org/10.1016/j.ejps.2012.10.004] [PMID: 23085547]
[152]
Loh ZH, Samanta AK, Heng PWS. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 2015; 10(4): 255-74.
[http://dx.doi.org/10.1016/j.ajps.2014.12.006]
[153]
Singh SK, Srinivasan KK, Gowthamarajan K, Singare DS, Prakash D, Gaikwad NB. Investigation of preparation parameters of nanosuspension by top-down media milling to improve the dissolution of poorly water-soluble glyburide. Eur J Pharm Biopharm 2011; 78(3): 441-6.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.014] [PMID: 21439378]
[154]
Li J, Yang Y, Zhao M, Xu H, Ma J, Wang S. Improved oral bioavailability of probucol by dry media-milling. Mater Sci Eng C 2017; 78: 780-6.
[http://dx.doi.org/10.1016/j.msec.2017.04.141] [PMID: 28576049]
[155]
Chingunpitak J, Puttipipatkhachorn S, Chavalitshewinkoon-Petmitr P, Tozuka Y, Moribe K, Yamamoto K. Formation, physical stability and in vitro antimalarial activity of dihydroartemisinin nanosuspensions obtained by co-grinding method. Drug Dev Ind Pharm 2008; 34(3): 314-22.
[http://dx.doi.org/10.1080/03639040701662388] [PMID: 18363147]
[156]
Löbmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur J Pharm Biopharm 2012; 81(1): 159-69.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.004] [PMID: 22353489]
[157]
Kipp JE, Wong JCT, Doty MJ, Werling J, Rebbeck CL, Brynjelsen S. Method for preparing submicron particle suspensions. US Patent 7037528B2, 2005.
[158]
Lakshmi P, Kumar GA. Nanosuspension technology: A review. Int J Pharma Sci 2010; 2(4): 35-40.
[159]
Johnston KP, Maynard JA, Truskett TM, et al. Concentrated dispersions of equilibrium protein nanoclusters that reversibly dissociate into active monomers. ACS Nano 2012; 6(2): 1357-69.
[http://dx.doi.org/10.1021/nn204166z] [PMID: 22260218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy