Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Preparation, Characterization, and Molecular Dynamic Simulation of Novel Coenzyme Q10 Loaded Nanostructured Lipid Carriers

Author(s): Hoda Atapour-Mashhad, Mojgan Nejabat, Farzin Hadizadeh, Afsaneh Hoseinsalari and Shiva Golmohammadzadeh*

Volume 29, Issue 27, 2023

Published on: 12 September, 2023

Page: [2177 - 2190] Pages: 14

DOI: 10.2174/1381612829666230911105913

Price: $65

Abstract

Background: Research proved that coenzyme Q10-loaded NLC effectively removes skin wrinkles, therefore, such a formulation with good characteristics is still the research goal.

Objective: This study investigated the effect of solid lipids and surfactant type on the physical characteristics of Q10-NLC. We aimed to achieve the optimum formulation for producing NLC with long-term stability and high Entrapment efficiency (E.E.) %. We compared the experimental results with the output of the Molecular dynamic (M.D.) simulations.

Methods: To develop Q10-NLC, various solid lipids, MCT oil, and surfactants were employed. The formulations were prepared by high-shear homogenization and ultrasound methods. Stability studies were carried out 1,3, and 6 months at 4, 25, and 40°C. The optimized NLC formulations were characterized by photon correlation spectroscopy (PCS), Transmission electron microscopy (TEM), Differential scanning calorimetry (DSC), and Fourier transform infrared (FT-IR). E.E. % was determined by HPLC analysis. Atomistic M.D. simulations of two model systems were performed to gain insights into the self-assembled process of co-Q10 with other formulation components.

Results: Statistical analysis (Two-way ANOVA) revealed that solid lipid and surfactant factors had a significant influence on particle size, PDI, and zeta potential (***p < 0.0001). According to the results, F1 and F6 formulations had desirable surface characterizations, physicochemical stability, and high E.E. %. The atomistic M.D. simulations confirmed that the F1 system (best) was more stable than the F31 system (worst).

Conclusion: The solid lipids: tripalmitin and compritol, stabilized with 4% tween 80 and 1% span 80, have produced stable NLC with the best surface characteristics that could be a promising formulation for the delivery of Q10. Atomistic M.D. simulation has confirmed the stability of F1 in comparison to F31.

« Previous
[1]
Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1956; 11(3): 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[2]
Hekimi S. How genetic analysis tests theories of animal aging. Nat Genet 2006; 38(9): 985-91.
[http://dx.doi.org/10.1038/ng1881] [PMID: 16941009]
[3]
Rinnerthaler M, Bischof J, Streubel M, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015; 5(2): 545-89.
[http://dx.doi.org/10.3390/biom5020545] [PMID: 25906193]
[4]
Hojerova J. Skin Health Benefits of Coenzyme Q10. In: Watson RR, Zibadi S, Eds. Bioactive Dietary Factors and Plant Extracts in Dermatology. Totowa, NJ: Humana Press 2013; pp. 197-213.
[http://dx.doi.org/10.1007/978-1-62703-167-7_20]
[5]
Hernández-Camacho JD. Bernier M, Lóَpez-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol 2018; 9: 44.
[http://dx.doi.org/10.3389/fphys.2018.00044] [PMID: 29459830]
[6]
Rosita N. Enhancing skin penetration of epigallocatechin gallate by modifying partition coefficient using reverse micelle method. Ther Deliv. 2019; 10: pp. (7)409-17.
[http://dx.doi.org/10.4155/tde-2019-0015]
[7]
Shoviantari F, Erawati T, Soeratri W. Skin Penetration of Coenzyme Q10 in nanostructure lipid carriers using olive oil and cetyl palmitate. Int J Pharm Clin Res 2017; 9(2): 142-5.
[http://dx.doi.org/10.25258/ijpcr.v9i2.8297]
[8]
Ayunin Q, Miatmoko A, Soeratri W, Erawati T, Susanto J, Legowo D. Improving the anti-ageing activity of coenzyme Q10 through protransfersome-loaded emulgel. Sci Rep 2022; 12(1): 906.
[http://dx.doi.org/10.1038/s41598-021-04708-4] [PMID: 35042910]
[9]
Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 2009; 366(1-2): 170-84.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[10]
Mohammadi-Samani S, Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci 2018; 13(4): 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[11]
Radwan IT, Baz MM, Khater H, Selim AM. Nanostructured lipid carriers (NLC) for biologically active green tea and fennel natural oils delivery: Larvicidal and adulticidal activities against Culex pipiens. Molecules 2022; 27(6): 1939.
[http://dx.doi.org/10.3390/molecules27061939] [PMID: 35335302]
[12]
Garg A, Agrawal S, Varshney V. Recent updates on applications of lipid-based nanoparticles for site-specific drug delivery. Pharm Nanotechnol 2022; 10(1): 24-41.
[http://dx.doi.org/10.2174/2211738510666220304111848] [PMID: 35249522]
[13]
Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 2012; 47(1): 139-51.
[http://dx.doi.org/10.1016/j.ejps.2012.05.010] [PMID: 22664358]
[14]
Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J 2021; 29(9): 999-1012.
[http://dx.doi.org/10.1016/j.jsps.2021.07.015] [PMID: 34588846]
[15]
Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020; 10(2): 150-65.
[http://dx.doi.org/10.34172/apb.2020.021] [PMID: 32373485]
[16]
Waghule T, Rapalli VK, Gorantla S, et al. Nanostructured lipid carriers as potential drug delivery systems for skin disorders. Curr Pharm Des 2020; 26(36): 4569-79.
[http://dx.doi.org/10.2174/1381612826666200614175236] [PMID: 32534562]
[17]
Loo Ch, Basri M, Ismail R, et al. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int J Nanomedicine 2013; 8: 13-22.
[PMID: 23293516]
[18]
Souto EB, Müller RH. Cosmetic features and applications of lipid nanoparticles (SLN®, NLC®). Int J Cosmet Sci 2008; 30(3): 157-65.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00433.x] [PMID: 18452432]
[19]
Pardeike J, Schwabe K, Müller RH. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int J Pharm 2010; 396(1-2): 166-73.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.007] [PMID: 20541000]
[20]
Korkm E, Gokce EH, Ozer O. Development and evaluation of coenzyme Q10 loaded solid lipid nanoparticle hydrogel for enhanced dermal delivery. Acta Pharm 2013; 63(4): 517-29.
[http://dx.doi.org/10.2478/acph-2013-0039] [PMID: 24451076]
[21]
Chen S, Liu W, Wan J, et al. Preparation of Coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high-pressure microfluidics technique. Drug Dev Ind Pharm 2013; 39(1): 20-8.
[http://dx.doi.org/10.3109/03639045.2011.650648] [PMID: 23116283]
[22]
Junyaprasert VB, Teeranachaideekul V, Souto EB, Boonme P, Müller RH. Q10-loaded NLC versus nanoemulsions: Stability, rheology and in vitro skin permeation. Int J Pharm 2009; 377(1-2): 207-14.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.020] [PMID: 19465098]
[23]
Schwarz JC, Baisaeng N, Hoppel M. Löw M, Keck CM, Valenta C. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm 2013; 447(1-2): 213-7.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.037] [PMID: 23438979]
[24]
Chen H, Chang X, Du D, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release 2006; 110(2): 296-306.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.052] [PMID: 16325954]
[25]
Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J Comput Chem 2008; 29(11): 1859-65.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[26]
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: Fast, flexible, and free. J Comput Chem 2005; 26(16): 1701-18.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[27]
Kim S, Lee J, Jo S, Brooks CL III, Lee HS, Im W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J Comput Chem 2017; 38(21): 1879-86.
[http://dx.doi.org/10.1002/jcc.24829] [PMID: 28497616]
[28]
Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010; 31(4): 671-90.
[PMID: 19575467]
[29]
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. J Comput Chem 1997; 18(12): 1463-72.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H]
[30]
Sijbers A, et al. HJC Berendsen. Gromacs user manual version 3.0. Nijenborgh 4, 9747 AG Groningen, The Netherlands. Internet: http://www.gromacs.org
[31]
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007; 126(1): 014101.
[http://dx.doi.org/10.1063/1.2408420] [PMID: 17212484]
[32]
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81(8): 3684-90.
[http://dx.doi.org/10.1063/1.448118]
[33]
Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 1981; 52(12): 7182-90.
[http://dx.doi.org/10.1063/1.328693]
[34]
Subramaniam B, Siddik ZH, Nagoor NH. Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations. J Nanopart Res 2020; 22(6): 141.
[http://dx.doi.org/10.1007/s11051-020-04848-0]
[35]
Müller R, Petersen R, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 2007; 59(6): 522-30.
[http://dx.doi.org/10.1016/j.addr.2007.04.012] [PMID: 17602783]
[36]
Putranti AR, Primaharinastiti R, Hendradi E. Effectivity and physicochemical stability of nanostructured lipid carrier coenzyme q10 in different ratio of lipid cetyl palmitate and alpha tocopheryl acetate as carrier. Asian J Pharm Clin Res 2017; 10(2): 146-52.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i2.14835]
[37]
How CW, Abdullah R, Abbasalipourkabir R. Physicochemical properties of nanostructured lipid carriers as colloidal carrier system stabilized with polysorbate 20 and polysorbate 80. Afr J Biotechnol 2011; 10(9): 1684-9.
[38]
Liu Y, Wu F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ Health Perspect 2010; 118(6): 818-24.
[http://dx.doi.org/10.1289/ehp.0901388] [PMID: 20172840]
[39]
Corrigan D, Healy A, Corrigan O. Preparation and release of salbutamol from chitosan and chitosan co-spray dried compacts and multiparticulates. Eur J Pharm Biopharm 2006; 62(3): 295-305.
[http://dx.doi.org/10.1016/j.ejpb.2005.09.008] [PMID: 16314079]
[40]
Azhar Shekoufeh Bahari L, Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv Pharm Bull 2016; 6(2): 143-51.
[http://dx.doi.org/10.15171/apb.2016.021] [PMID: 27478775]
[41]
Mehnert W. Mنder K. Solid lipid nanoparticles. Adv Drug Deliv Rev 2012; 64: 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[42]
Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innov Food Sci Emerg Technol 2014; 26: 366-74.
[http://dx.doi.org/10.1016/j.ifset.2014.06.012]
[43]
Chikh Ali M, Maoka T, Natsuaki KT, Natsuaki T. The simultaneous differentiation of Potato virus Y strains including the newly described strain PVYNTN-NW by multiplex PCR assay. J Virol Methods 2010; 165(1): 15-20.
[http://dx.doi.org/10.1016/j.jviromet.2009.12.010] [PMID: 20025905]
[44]
Gomes MJ, Martins S, Ferreira D, Segundo MA, Reis S. Lipid nanoparticles for topical and transdermal application for alopecia treatment: development, physicochemical characterization, and in vitro release and penetration studies. Int J Nanomedicine 2014; 9: 1231-42.
[PMID: 24634584]
[45]
Siafaka P, Okur ME. Ayla Ş Er S, Cağlar EŞ Okur Nـ. Design and characterization of nanocarriers loaded with Levofloxacin for enhanced antimicrobial activity; physicochemical properties, in vitro release and oral acute toxicity. Braz J Pharm Sci 2019; 55: e18295.
[http://dx.doi.org/10.1590/s2175-97902019000118295]
[46]
Remya PN, Damodharan N. Formulation, development and characterisation of nimodipine loaded solid lipid nanoparticles. Int J Appl Pharm 2020; pp. 265-71.
[47]
Kumari R, Kumar R, Lynn A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 2014; 54(7): 1951-62.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy