Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

In Silico Identification of Cadmium Binding Protein and its Secreted Metalloproteins in Stenotrophomonas maltophilia

Author(s): Nandhana Ganapathy Salini, Rikhia Majumdar, Shahjahan Ahamad and Shobana Sugumar*

Volume 17, Issue 3, 2023

Published on: 13 September, 2023

Page: [191 - 195] Pages: 5

DOI: 10.2174/2212796817666230911094043

Price: $65

Abstract

Background: Stenotrophomonas maltophilia is a pathogenic bacteria that causes serious infectious complications in humans, especially in immune-compromised patients. Stenotrophomonas maltophilia is a gram-negative bacterium that is multidrug-resistant.

Objective: The purpose of the study is to understand the diverse cellular and biological functions of cadmium-binding metalloproteins and to predict their role in pathogenicity, regulation, and growth.

Methodology: Different in silico approaches were used to check the Functional Annotation, Subcellular Localization, Gene Ontology, and Bacterial toxin prediction have been used to identify the cellular and biological function of Cd-binding metalloproteins in Stenotrophomonas maltophilia.

Results: Identified 116 Cd-binding proteins from the whole proteome sequence and functional domain, family, localization, and toxicity were also studied.

Conclusion: The outcomes revealed that this study could be used in understanding the 116 cadmiumbinding proteins from the whole proteome sequence. This study shows the survival, growth, and pathogenicity of the bacteria.

Graphical Abstract

[1]
Parisi, E. Metalloproteins: Chromatography. Encycl Sep Sci., 2000, (Jan), 3380-3386.
[2]
Robert, H.K.; Vladimir, N.U.; Eugene, A.P. Encyclopedia of Metalloproteins; Springer: New York, 2013.
[3]
Sharma, A.; Sharma, D.; Verma, S.K. In silico study of iron, zinc, and copper-binding proteins of Pseudomonas syringae pv. lapse: Em-phasis on secreted metalloproteins. Front. Microbiol., 2018, 9(JUL), 1-19.
[4]
Frawley, E.R.; Fang, F.C. The ins and outs of bacterial iron metabolism. Mol. Microbiol., 2014, 93(4), 609-616.
[http://dx.doi.org/10.1111/mmi.12709] [PMID: 25040830]
[5]
Kim, B.J.; Park, J.H.; Park, T.H.; Bronstein, P.A.; Schneider, D.J.; Cartinhour, S.W.; Shuler, M.L. Effect of iron concentration on the growth rate of Pseudomonas syringae and the expression of virulence factors in hrp-inducing minimal medium. Appl. Environ. Microbiol., 2009, 75(9), 2720-2726.
[http://dx.doi.org/10.1128/AEM.02738-08] [PMID: 19270129]
[6]
Butler, A. Marine siderophores and microbial iron mobilization. Biometals, 2005, 18(4), 369-374.
[http://dx.doi.org/10.1007/s10534-005-3711-0] [PMID: 16158229]
[7]
Lee, S.M.; Grass, G.; Rensing, C.; Barrett, S.R.; Yates, C.J.D.; Stoyanov, J.V.; Brown, N.L. The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem. Biophys. Res. Commun., 2002, 295(3), 616-620.
[http://dx.doi.org/10.1016/S0006-291X(02)00726-X] [PMID: 12099683]
[8]
Bannister, J.V.; Bannister, W.H.; Rotilio, G.; Rotilio, G. Aspects of the structure, function, and applications of superoxide dismutase. Crit. Rev. Biochem., 1987, 22(2), 111-180.
[http://dx.doi.org/10.3109/10409238709083738] [PMID: 3315461]
[9]
De la Cerda, B.; Navarro, J.A.; Hervás, M.; De la Rosa, M.A. Changes in the reaction mechanism of electron transfer from plastocyanin to photosystem I in the cyanobacterium Synechocystis sp. PCC 6803 as induced by site-directed mutagenesis of the copper protein. Biochemistry, 1997, 36(33), 10125-10130.
[http://dx.doi.org/10.1021/bi9708601] [PMID: 9254609]
[10]
Nakamura, K. Function and molecular evolution of multicopper blue proteins. Cell. Mol. Life Sci., 2005, 62(18), 2050-2066.
[11]
Waisberg, M.; Joseph, P.; Hale, B.; Beyersmann, D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 2003, 192(2-3), 95-117.
[http://dx.doi.org/10.1016/S0300-483X(03)00305-6] [PMID: 14580780]
[12]
Laddaga, R.A.; Bessen, R.; Silver, S. Cadmium-resistant mutant of Bacillus subtilis 168 with reduced cadmium transport. J. Bacteriol., 1985, 162(3), 1106-1110.
[http://dx.doi.org/10.1128/jb.162.3.1106-1110.1985] [PMID: 3922941]
[13]
Grass, G.; Wong, M.D.; Rosen, B.P.; Smith, R.L.; Rensing, C. ZupT is a Zn(II) uptake system in Escherichia coli. J. Bacteriol., 2002, 184(3), 864-866.
[http://dx.doi.org/10.1128/JB.184.3.864-866.2002] [PMID: 11790762]
[14]
Bruins, M.; Kapil, S. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf., 2000, 45(3), 198-207.
[15]
Vallee, B.L.; Ulmer, D.D. Biochemical effects of mercury, cadmium, and lead. Annu. Rev. Biochem., 2003, 41(10), 91-128.
[http://dx.doi.org/10.1146/annurev.bi41070172000515]
[16]
Liu, B.; Tong, S. An investigation of Stenotrophomonas maltophilia-positive culture caused by fiberoptic bronchoscope contamination. BMC Infect. Dis., 2019, 19(1), 1072.
[http://dx.doi.org/10.1186/s12879-019-4670-3] [PMID: 31864284]
[17]
Lara-Oya, A. Stenotrophomonas, burkholderia and other related microorganisms. Encycl Infect Immun., 2022, (Jan), 656-661.
[18]
Ichinose, Y.; Taguchi, F.; Mukaihara, T. Pathogenicity and virulence factors of Pseudomonas syringae. J. Gen. Plant Pathol., 2013, 79(5), 285-296.
[http://dx.doi.org/10.1007/s10327-013-0452-8]
[19]
Putignano, V.; Rosato, A.; Banci, L.; Andreini, C. MetalPDB in 2018: A database of metal sites in biological macromolecular structures. Nucleic Acids Res., 2018, 46(D1), D459-D464.
[http://dx.doi.org/10.1093/nar/gkx989] [PMID: 29077942]
[20]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analy-sis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[21]
Quevillon, E.; Silventoinen, V.; Pillai, S.; Harte, N.; Mulder, N.; Apweiler, R.; Lopez, R. InterProScan: Protein domains identifier. Nucleic Acids Res., 2005, 33(Web Server issue), W116-20.
[PMID: 15980438]
[22]
Yu, C.S.; Cheng, C.W.; Su, W.C.; Chang, K.C.; Huang, S.W.; Hwang, J.K.; Lu, C.H. CELLO2GO: A web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One, 2014, 9(6), e99368.
[http://dx.doi.org/10.1371/journal.pone.0099368] [PMID: 24911789]
[23]
Zhang, C.; Zhang, F.; Zhou, P.; Zhang, C. Functional role of metalloproteins in genome stability. Front. Biol., 2016, 11(2), 119-131.
[http://dx.doi.org/10.1007/s11515-016-1392-4]
[24]
Chuanboon, K.; Na Nakorn, P.; Pannengpetch, S.; Laengsri, V.; Nuchnoi, P.; Isarankura-Na-Ayudhya, C.; Isarankura-Na-Ayudhya, P. Proteomics and bioinformatics analysis reveal potential roles of cadmium-binding proteins in cadmium tolerance and accumulation of Enterobacter cloacae. PeerJ, 2019, 7(9), e6904.
[http://dx.doi.org/10.7717/peerj.6904] [PMID: 31534833]
[25]
Sharma, D.; Sharma, A.; Singh, B.; Verma, S.K. Bioinformatic exploration of metal-binding proteome of zoonotic pathogen Orientia tsutsugamushi. Front. Genet., 2019, 10, 797.
[http://dx.doi.org/10.3389/fgene.2019.00797] [PMID: 31608099]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy