Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Purification, Characterization and Evaluation of the Anticoagulant Effect of an Uncompetitive Trypsin Inhibitor obtained from Bauhinia pulchella (Benth) Seeds

Author(s): Renato R. Roma, Lucas P. Dias, Ana L.E. Santos, Romério R.S. Silva, Maria H.C. Santos, Bruno A.M. Rocha, Rômulo F. Carneiro, Celso S. Nagano, Alexandre H. Sampaio, Maria L.V Oliva, Cláudio G.L. Silva, Racquel O.S. Souza and Claudener S. Teixeira*

Volume 25, Issue 2, 2024

Published on: 09 October, 2023

Page: [172 - 182] Pages: 11

DOI: 10.2174/1389203724666230908114115

Price: $65

Abstract

Introduction: Trypsin inhibitors (TIs) have the ability to competitively or non-competitively bind to trypsin and inhibit its action. These inhibitors are commonly found in plants and are used in protease inhibition studies involved in biochemical pathways of pharmacological interest.

Objectives: This work aimed to purify a trypsin inhibitor from Bauhinia pulchella seeds (BpuTI), describing its kinetic mechanism and anticoagulant effect.

Methods: Affinity chromatography, protein assay, and SDS-PAGE were used to purify the inhibitor. Mass spectrometry, inhibition assays, and enzyme kinetics were used to characterize the inhibitor. In vitro assays were performed to verify its ability to prolong blood clotting time.

Results: Affinity chromatography on a Trypsin-Sepharose 4B column gave a yield of 43.1. BpuTI has an apparent molecular mass of 20 kDa with glycosylation (1.15%). Protein identification was determined by MS/MS, and BpuTI showed similarity to several Kunitz-type trypsin inhibitors. BpuTI inhibited bovine trypsin as an uncompetitive inhibitor with IC50 (3 x 10-6 M) and Ki (1.05 x 10-6 M). Additionally, BpuTI showed high stability to temperature and pH variations, maintaining its activity up to 100ºC and in extreme pH ranges. However, the inhibitor was susceptible to reducing agents, such as DTT, which completely abolished its activity. BpuTI showed an anticoagulant effect in vitro at a concentration of 33 μM, prolonging clotting time by 2.6 times.

Conclusion: Our results suggest that BpuTI can be a biological tool to be used in blood clotting studies.

Graphical Abstract

[1]
Sabotič, J.; Kos, J. Microbial and fungal protease inhibitors—current and potential applications. Appl. Microbiol. Biotechnol., 2012, 93(4), 1351-1375.
[http://dx.doi.org/10.1007/s00253-011-3834-x] [PMID: 22218770]
[2]
Lima, A.I.; Mota, J.; Monteiro, S.A.; Ferreira, R.M. Legume seeds and colorectal cancer revisited: Protease inhibitors reduce MMP-9 activity and colon cancer cell migration. Food Chem., 2016, 197(Pt A), 30-38.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.063]
[3]
Lecaille, F.; Lalmanach, G.; Andrault, P.M. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie, 2016, 122, 151-168.
[http://dx.doi.org/10.1016/j.biochi.2015.08.014] [PMID: 26341472]
[4]
Hsieh, C.C.; Hernández-Ledesma, B.; Jeong, H.J.; Park, J.H.; de Lumen, B.O. Complementary roles in cancer prevention: Protease inhibitor makes the cancer preventive peptide lunasin bioavailable. PLoS One., 2010, 5(1), e8890. Published 2010 Jan 26
[http://dx.doi.org/10.1371/journal.pone.0008890]
[5]
Dias, L.P.; Oliveira, J.T.A.; Rocha-Bezerra, L.C.B.; Sousa, D.O.B.; Costa, H.P.S.; Araujo, N.M.S.; Carvalho, A.F.U.; Tabosa, P.M.S.; Monteiro-Moreira, A.C.O.; Lobo, M.D.P.; Moreno, F.B.M.B.; Rocha, B.A.M.; Lopes, J.L.S.; Beltramini, L.M.; Vasconcelos, I.M. A trypsin inhibitor purified from Cassia leiandra seeds has insecticidal activity against Aedes aegypti. Process Biochem., 2017, 57, 228-238.
[http://dx.doi.org/10.1016/j.procbio.2017.03.015]
[6]
Cristina, O.de.L.V.; Piuvezam, G.; Leal, L.M.B.; Heloneida, de A.M.A. Trypsin inhibitors: Promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J. Enzyme Inhib. Med. Chem., 2019, 34(1), 405-419.
[http://dx.doi.org/10.1080/14756366.2018.1542387] [PMID: 30734596]
[7]
Almeida-Reis, R.; Theodoro-Junior, O.A.; Oliveira, B.T.M.; Oliva, L.V.; Toledo-Arruda, A.C.; Bonturi, C.R.; Brito, M.V.; Lopes, F.D.T.Q.S.; Prado, C.M.; Florencio, A.C.; Martins, M.A.; Owen, C.A.; Leick, E.A.; Oliva, M.L.V.; Tibério, I.F.L.C. Plant proteinase inhibitor BbCI modulates lung inflammatory responses and mechanic and remodeling alterations induced by elastase in mice. BioMed Res. Int., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/8287125] [PMID: 28466019]
[8]
Salu, B.R.; Pando, S.C.; Brito, M.V.D.; Medina, A.F.; Odei-Addo, F.; Frost, C.; Naude, R.; Sampaio, M.U.; Emsley, J.; Maffei, F.H.A.; Oliva, M.L.V. Improving the understanding of plasma kallikrein contribution to arterial thrombus formation using two plant protease inhibitors. Platelets, 2019, 30(3), 305-313.
[http://dx.doi.org/10.1080/09537104.2018.1428738] [PMID: 29442535]
[9]
Vg, M.K.; K, M. Solanum protease inhibitors and their therapeutic potentialities: A review. Int. J. Pharm. Pharm. Sci., 2016, 8(12), 14-21.
[http://dx.doi.org/10.22159/ijpps.2016v8i12.14836]
[10]
Herwade, A.P.; Kasar, S.S.; Rane, N.R.; Ahmed, S.; Maras, J.S.; Pawar, P.K. Characterization of a Bowman–Birk type trypsin inhibitor purified from seeds of Solanum surattense. Sci. Rep., 2021, 11(1), 8648.
[http://dx.doi.org/10.1038/s41598-021-87980-8] [PMID: 33883624]
[11]
Filho, V.C. Chemical composition and biological potential of plants from the genus Bauhinia. Phytother. Res., 2009, 23(10), 1347-1354.
[http://dx.doi.org/10.1002/ptr.2756] [PMID: 19170142]
[12]
Oliva, M.L.V.; Silva, M.C.C.; Sallai, R.C.; Brito, M.V.; Sampaio, M.U. A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie, 2010, 92(11), 1667-1673.
[http://dx.doi.org/10.1016/j.biochi.2010.03.021] [PMID: 20363284]
[13]
Brito, M.V.; de Oliveira, C.; Salu, B.R.; Andrade, S.A.; Malloy, P.M.D.; Sato, A.C.; Vicente, C.P.; Sampaio, M.U.; Maffei, F.H.A.; Oliva, M.L.V. The Kallikrein inhibitor from Bauhinia bauhinioides (BbKI) shows antithrombotic properties in venous and arterial thrombosis models. Thromb. Res., 2014, 133(5), 945-951.
[http://dx.doi.org/10.1016/j.thromres.2014.02.027] [PMID: 24642009]
[14]
Bortolozzo, A.S.S.; Rodrigues, A.P.D.; Arantes-Costa, F.M.; Saraiva-Romanholo, B.M.; Souza, F.C.R.; Brüggemann, T.R.; Brito, M.V.; Ferreira, R.S.; Correia, M.T.S.; Paiva, P.M.G.; Prado, C.M.; Leick, E.A.; Oliva, M.L.V.; Martins, M.A.; Ruiz-Schutz, V.C.; Righetti, R.F.; Tibério, I.F.L.C. The plant proteinase inhibitor CrataBL plays a role in controlling asthma response in mice. BioMed Res. Int., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/9274817] [PMID: 30364003]
[15]
Oliveira, C.; Valois, M.V.; Ottaiano, T.F.; Miranda, A.; Hansen, D.; Sampaio, M.U.; Oliva, M.L.V.; de Abreu, M.F.H. The recombinant plant Bauhinia bauhinioides elastase inhibitor reduces rat thrombus without alterations in hemostatic parameters. Sci. Rep., 2021, 11(1), 13475.
[http://dx.doi.org/10.1038/s41598-021-92745-4] [PMID: 34188079]
[16]
Valois, M.V.; de Oliveira, C.; Lapa, A.J.; Souccar, C.; Oliva, M.L.V. Bauhinia protease inhibitors attenuate gastric ulcer by blocking neutrophil enzymes. Planta med., 2021, 87(1-02), 169-176.
[http://dx.doi.org/10.1055/a-1202-4799]
[17]
De Souza, D.A.; Salu, B.R.; Nogueira, R.S.; de Carvalho, N.J.C.S.; Maffei, F.H.A.; Oliva, M.L.V. Peptides derived from a plant protease inhibitor of the coagulation contact system decrease arterial thrombus formation in a murine model, without impairing hemostatic parameters. J. Clin. Med., 2023, 12(5), 1810.
[http://dx.doi.org/10.3390/jcm12051810] [PMID: 36902597]
[18]
Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian J. Anaesth., 2014, 58(5), 515-523.
[http://dx.doi.org/10.4103/0019-5049.144643] [PMID: 25535411]
[19]
Pawlaczyk, I.; Czerchawski, L.; Kuliczkowski, W.; Karolko, B.; Pilecki, W.; Witkiewicz, W.; Gancarz, R. Anticoagulant and anti-platelet activity of polyphenolic-polysaccharide preparation isolated from the medicinal plant Erigeron canadensis L. Thromb. Res., 2011, 127(4), 328-340.
[http://dx.doi.org/10.1016/j.thromres.2010.11.031] [PMID: 21172723]
[20]
Shi, Z.H.; Li, N.G.; Tang, Y.P.; Wei-Li; Lian-Yin; Yang, J.P.; Hao-Tang; Duan, J.A. Metabolism-based synthesis, biologic evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors. Eur. J. Med. Chem., 2012, 54, 210-222.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.044] [PMID: 22647223]
[21]
Brandão, G.M.S.; Cândido, R.C.F.; Rollo, H.A.; Sobreira, M.L.; Junqueira, D.R. Direct oral anticoagulants for treatment of deep vein thrombosis: Overview of systematic reviews. J. Vasc. Bras., 2018, 17(4), 310-317.
[http://dx.doi.org/10.1590/1677-5449.005518] [PMID: 30787949]
[22]
Ostrowski, A.P.; Valentini, S.A.; Pavanelli, M.F. Anticoagulant activity of the aqueous, hydroethanolic and essential oil extract of the leaves of Tropaeolum majus, SaBios: Rev. Health and Biol., 2014, 9, 46-53.2014, Available in: http://revista2.grupointegrado.br/revista/index.php/sabios2/article/view/1624
[23]
Félix-Silva, J.; Souza, T.; Camara, R.B.B.G.; Cabral, B.; Silva-Júnior, A.A.; Rebecchi, I.M.M.; Zucolotto, S.M.; Rocha, H.A.O.; Fernandes-Pedrosa, M.F. In vitro anticoagulant and antioxidant activities of Jatropha gossypiifolia L. (Euphorbiaceae) leaves aiming therapeutical applications. BMC Complement. Altern. Med., 2014, 14(1), 405.
[http://dx.doi.org/10.1186/1472-6882-14-405] [PMID: 25328027]
[24]
Bonturi, C.R.; Silva Teixeira, A.B.; Rocha, V.M.; Valente, P.F.; Oliveira, J.R.; Filho, C.M.B.; Fátima, C.B.I.; Oliva, M.L.V. Plant kunitz inhibitors and their interaction with proteases: Current and potential pharmacological targets. Int. J. Mol. Sci., 2022, 23(9), 4742.
[http://dx.doi.org/10.3390/ijms23094742] [PMID: 35563133]
[25]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[26]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[27]
DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28(3), 350-356.
[http://dx.doi.org/10.1021/ac60111a017] [PMID: 14875032]
[28]
Shevchenko, A.; Tomas, H.; Havli, J.; Olsen, J.V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc., 2006, 1(6), 2856-2860.
[http://dx.doi.org/10.1038/nprot.2006.468] [PMID: 17406544]
[29]
Carneiro, R.F.; Almeida, A.S.; Melo, A.A.; Alencar, D.B.; Sousa, O.V.; Delatorre, P.; Nascimento, K.S.; Saker-Sampaio, S.; Cavada, B.S.; Nagano, C.S.; Sampaio, A.H. A chromophore-containing agglutinin from Haliclona manglaris: Purification and biochemical characterization. Int. J. Biol. Macromol., 2015, 72, 1368-1375.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.003] [PMID: 25312602]
[30]
Carneiro, R.F.; de Melo, A.A.; de Almeida, A.S.; Moura, R.M.; Chaves, R.P.; de Sousa, B.L.; do Nascimento, K.S.; Sampaio, S.S.; Lima, J.P.M.S.; Cavada, B.S.; Nagano, C.S.; Sampaio, A.H. H-3, a new lectin from the marine sponge Haliclona caerulea: Purification and mass spectrometric characterization. Int. J. Biochem. Cell Biol., 2013, 45(12), 2864-2873.
[http://dx.doi.org/10.1016/j.biocel.2013.10.005] [PMID: 24144578]
[31]
Carneiro, R.F.; Torres, R.C.F.; Chaves, R.P.; de Vasconcelos, M.A.; de Sousa, B.L.; Goveia, A.C.R.; Arruda, F.V.; Matos, M.N.C.; Matthews-Cascon, H.; Freire, V.N.; Teixeira, E.H.; Nagano, C.S.; Sampaio, A.H. Purification, biochemical characterization, and amino acid sequence of a novel type of lectin from Aplysia dactylomela eggs with antibacterial/antibiofilm potential. Mar. Biotechnol., 2017, 19(1), 49-64.
[http://dx.doi.org/10.1007/s10126-017-9728-x] [PMID: 28150103]
[32]
Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res., 2014, 42(W1), W320-W324.
[http://dx.doi.org/10.1093/nar/gku316] [PMID: 24753421]
[33]
Erlanger, B.F.; Kokowsky, N.; Cohen, W. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys., 1961, 95(2), 271-278.
[http://dx.doi.org/10.1016/0003-9861(61)90145-X] [PMID: 13890599]
[34]
Abe, M.; Abe, K.; Kuroda, M.; Arai, S. Corn Kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin. Molecular cloning and expression studies. Eur. J. Biochem., 1992, 209(3), 933-937.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb17365.x] [PMID: 1425699]
[35]
Dixon, M. The determination of enzyme inhibitor constants. Biochem. J., 1953, 55(1), 170-171.
[http://dx.doi.org/10.1042/bj0550170] [PMID: 13093635]
[36]
Klomklao, S.; Benjakul, S.; Kishimura, H.; Chaijan, M. Extraction, purification and properties of trypsin inhibitor from Thai mung bean (Vigna radiata (L.) R. Wilczek). Food Chem., 2011, 129(4), 1348-1354.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.029]
[37]
da Silva Bezerra, C.; de Oliveira, C.F.R.; Machado, O.L.T.; de Mello, G.S.V.; da Rocha Pitta, M.G.; de Melo, R.M.J.B.; Napoleão, T.H.; Paiva, P.M.G.; de Fátima Ferreira Ribeiro, S.; Gomes, V.M.; Silva, O.N.; Maria-Neto, S.; Franco, O.L.; Macedo, M.L.R. Exploiting the biological roles of the trypsin inhibitor from Inga vera seeds: A multifunctional Kunitz inhibitor. Process Biochem., 2016, 51(6), 792-803.
[http://dx.doi.org/10.1016/j.procbio.2016.03.008]
[38]
Costa, H.P.S.; Oliveira, J.T.A.; Sousa, D.O.B.; Morais, J.K.S.; Moreno, F.B.; Monteiro-Moreira, A.C.O.; Viegas, R.A.; Vasconcelos, I.M. JcTI-I: A novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment. Front. Microbiol., 2014, 5, 5.
[http://dx.doi.org/10.3389/fmicb.2014.00005] [PMID: 24523715]
[39]
Melo, I.R.S.; Dias, L.P.; Araújo, N.M.S.; Vasconcelos, I.M.; Martins, T.F.; de Morais, G.A.; Gonçalves, J.F.C.; Nagano, C.S.; Carneiro, R.F.; Oliveira, J.T.A. ClCPI, a cysteine protease inhibitor purified from Cassia leiandra seeds has antifungal activity against Candida tropicalis by inducing disruption of the cell surface. Int. J. Biol. Macromol., 2019, 133, 1115-1124.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.174] [PMID: 31034905]
[40]
Chevreuil, L.R.; Gonçalves, J.F.C.; Calderon, L.A.; Souza, L.A.G.; Pando, S.C.; Borges, E.E.L. Partial purification of trypsin inhibitors from Parkia seeds (Fabaceae). Hoehnea, 2014, 41(2), 181-186.
[http://dx.doi.org/10.1590/S2236-89062014000200003]
[41]
Vishvakarma, R.; Mishra, A. Production of a protease inhibitor from edible mushroom Agaricus bisporus and its statistical optimization by response surface methodology. Prep. Biochem. Biotechnol., 2017, 47(5), 450-457.
[http://dx.doi.org/10.1080/10826068.2017.1286851] [PMID: 28140750]
[42]
Luiza, V.O.M.; da Silva, F.R.; Gasperazzo, F.J.; Alessandra, A.de P.C.; Salas, E.C.; Uemura, S.M. Structural and functional properties of kunitz proteinase inhibitors from leguminosae: A mini review. Curr. Protein Pept. Sci., 2011, 12(5), 348-357.
[http://dx.doi.org/10.2174/138920311796391061] [PMID: 21418019]
[43]
Ryan, C.A. Proteinase inhibitors, The biochem. of plants., 2014, 6, 351-370.
[http://dx.doi.org/10.1016/B978-0-12-675406-3.50015-3]
[44]
Rawlings, N.D.; Barrett, A.J.; Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res., 2016, 44(D1), D343-D350.
[http://dx.doi.org/10.1093/nar/gkv1118] [PMID: 26527717]
[45]
Nakahata, A.M.; Bueno, N.R.; Rocha, H.A.O.; Franco, C.R.C.; Chammas, R.; Nakaie, C.R.; Jasiulionis, M.G.; Nader, H.B.; Santana, L.A.; Sampaio, M.U.; Oliva, M.L.V. Structural and inhibitory properties of a plant proteinase inhibitor containing the RGD motif. Int. J. Biol. Macromol., 2006, 40(1), 22-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.05.008] [PMID: 16846639]
[46]
Sampaio, C.A.; Oliva, M.L.; Tanaka, A.S.; Sampaio, M.U. Brazilian Leguminosae. Mem. Inst. Oswaldo Cruz., 1991, 2((86 Suppl)), 207-209.
[47]
Cornish-Bowden, A. Principles of Enzyme Kinetics; Butterworths & Co Ltd.: London, 2014.
[48]
Bijina, B.; Chellappan, S.; Basheer, S.M.; Elyas, K.K.; Bahkali, A.H.; Chandrasekaran, M. Protease inhibitor from Moringa oleifera leaves: Isolation, purification, and characterization. Process Biochem., 2011, 46(12), 2291-2300.
[http://dx.doi.org/10.1016/j.procbio.2011.09.008]
[49]
Machado, R.J.A.; Monteiro, N.K.V.; Migliolo, L.; Silva, O.N.; Pinto, M.F.S.; Oliveira, A.S.; Franco, O.L.; Kiyota, S.; Bemquerer, M.P.; Uchoa, A.F.; Morais, A.H.A.; Santos, E.A. Characterization and pharmacological properties of a novel multifunctional Kunitz inhibitor from Erythrina velutina seeds. PLoS One, 2013, 8(5), e63571.
[http://dx.doi.org/10.1371/journal.pone.0063571] [PMID: 23737945]
[50]
dos Santos, C.W.V.; da Costa, M.M.E.; de Araújo, T.H.; de Miranda, E.C.; Vieira, P.H.J. Purification and characterization of trypsin from Luphiosilurus alexandri pyloric cecum. Biochem. Biophys. Rep., 2016, 8, 29-33.
[http://dx.doi.org/10.1016/j.bbrep.2016.08.003] [PMID: 28955938]
[51]
Joshi, R.S.; Mishra, M.; Suresh, C.G.; Gupta, V.S.; Giri, A.P. Complementation of intramolecular interactions for structural–functional stability of plant serine proteinase inhibitors. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(11), 5087-5094.
[http://dx.doi.org/10.1016/j.bbagen.2013.07.019] [PMID: 23891708]
[52]
Vilela, O.M.L.; Sampaio, M.U. Bauhinia Kunitz-type proteinase inhibitors: structural characteristics and biological properties. bchm, 2008, 389(8), 1007-1013.
[http://dx.doi.org/10.1515/BC.2008.119] [PMID: 18754727]
[53]
Brandão-Costa, R.M.P.; Araújo, V.F.; Porto, A.L.F. CgTI, a novel thermostable Kunitz trypsin-inhibitor purified from Cassia grandis seeds: Purification, characterization and termiticidal activity. Int. J. Biol. Macromol., 2018, 118(Pt B), 2296-2306.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.110] [PMID: 30030073]
[54]
Yoshida, R.A.; Yoshida, W.B.; Rollo, H.A. New oral anticoagulants for the prophylaxis and treatment of venous thromboembolism in major orthopedic surgeries. J. Vasc. Bras., 2011, 10, 145-153.
[http://dx.doi.org/10.1590/S1677-54492011000200009]
[55]
Conners, R.; Konarev, A.V.; Forsyth, J.; Lovegrove, A.; Marsh, J.; Joseph-Horne, T.; Shewry, P.; Brady, R.L. An unusual helix-turn-helix protease inhibitory motif in a novel trypsin inhibitor from seeds of Veronica (Veronica hederifolia L.). J. Biol. Chem., 2007, 282(38), 27760-27768.
[http://dx.doi.org/10.1074/jbc.M703871200] [PMID: 17640870]
[56]
Cotabarren, J.; Broitman, D.J.; Quiroga, E.; Obregón, W.D. GdTI, the first thermostable trypsin inhibitor from Geoffroea decorticans seeds. A novel natural drug with potential application in biomedicine. Int. J. Biol. Macromol., 2020, 148, 869-879.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.214] [PMID: 31981666]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy