Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Involvement of the Transient Receptor Channels in Preclinical Models of Musculoskeletal Pain

Author(s): Sabrina Qader Kudsi, Fernanda Tibolla Viero, Leonardo Gomes Pereira and Gabriela Trevisan*

Volume 22, Issue 1, 2024

Published on: 08 September, 2023

Page: [72 - 87] Pages: 16

DOI: 10.2174/1570159X21666230908094159

Price: $65

Abstract

Background: Musculoskeletal pain is a condition that affects bones, muscles, and tendons and is present in various diseases and/or clinical conditions. This type of pain represents a growing problem with enormous socioeconomic impacts, highlighting the importance of developing treatments tailored to the patient's needs. TRP is a large family of non-selective cation channels involved in pain perception. Vanilloid (TRPV1 and TRPV4), ankyrin (TRPA1), and melastatin (TRPM8) are involved in physiological functions, including nociception, mediation of neuropeptide release, heat/cold sensing, and mechanical sensation.

Objective: In this context, we provide an updated view of the most studied preclinical models of muscle hyperalgesia and the role of transient receptor potential (TRP) in these models.

Methods: This review describes preclinical models of muscle hyperalgesia induced by intramuscular administration of algogenic substances and/or induction of muscle damage by physical exercise in the masseter, gastrocnemius, and tibial muscles.

Results: The participation of TRPV1, TRPA1, and TRPV4 in different models of musculoskeletal pain was evaluated using pharmacological and genetic tools. All the studies detected the antinociceptive effect of respective antagonists or reduced nociception in knockout mice.

Conclusion: Hence, TRPV1, TRPV4, and TRPA1 blockers could potentially be utilized in the future for inducing analgesia in muscle hypersensitivity pathologies.

« Previous
Graphical Abstract

[1]
El-Tallawy, S.N.; Nalamasu, R.; Salem, G.I.; LeQuang, J.A.K.; Pergolizzi, J.V.; Christo, P.J. Management of musculoskeletal pain: An update with emphasis on chronic musculoskeletal pain. Pain Ther., 2021, 10(1), 181-209.
[http://dx.doi.org/10.1007/s40122-021-00235-2] [PMID: 33575952]
[2]
Queme, L.F.; Jankowski, M.P. Sex differences and mechanisms of muscle pain. Curr. Opin. Physiol., 2019, 11, 1-6.
[http://dx.doi.org/10.1016/j.cophys.2019.03.006] [PMID: 31245656]
[3]
Queme, L.F.; Dourson, A.; Hofmann, M.C.; Butterfield, A.; Paladini, R.D.; Jankowski, MP. Disruption of hyaluronic acid in skeletal muscle induces decreased voluntary activity via chemosensitive muscle afferent sensitization in male mice. eNeuro, 2022, 9(2), ENEURO.0522-21.2022.
[http://dx.doi.org/10.1523/ENEURO.0522-21.2022] [PMID: 35387844]
[4]
Perrot, S.; Cohen, M.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.D. The IASP classification of chronic pain for ICD-11: Chronic secondary musculoskeletal pain. Pain, 2019, 160(1), 77-82.
[http://dx.doi.org/10.1097/j.pain.0000000000001389] [PMID: 30586074]
[5]
Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; Giamberardino, M.A.; Kaasa, S.; Korwisi, B.; Kosek, E.; Lavand’homme, P.; Nicholas, M.; Perrot, S.; Scholz, J.; Schug, S.; Smith, B.H.; Svensson, P.; Vlaeyen, J.W.S.; Wang, S.J. Chronic pain as a symptom or a disease: The IASP classification of chronic pain for the international classification of diseases (ICD-11). Pain, 2019, 160(1), 19-27.
[http://dx.doi.org/10.1097/j.pain.0000000000001384] [PMID: 30586067]
[6]
SantAnna, J.P.C.; Pedrinelli, A.; Hernandez, A.J.; Fernandes, T.L. Muscle injury: Pathophysiology, diagnosis, and treatment. Rev. Bras. Ortop., 2022, 57(1), 1-13.
[http://dx.doi.org/10.1055/s-0041-1731417]
[7]
Singh, D.P.; Barani, L.Z.; Woodruff, M.A.; Parker, T.J.; Steck, R.; Peake, J.M. Effects of topical icing on inflammation, angiogenesis, revascularization, and myofiber regeneration in skeletal muscle following contusion injury. Front. Physiol., 2017, 8, 93.
[http://dx.doi.org/10.3389/fphys.2017.00093] [PMID: 28326040]
[8]
Fernandes, T.L.; Pedrinelli, A.; Hernandez, A.J. Lesão muscular: Fsiopatologia, diagnóstico, tratamento e apresentação clínica. Rev. Bras. Ortop., 2011, 46(3), 247-255.
[http://dx.doi.org/10.1590/S0102-36162011000300003] [PMID: 27047816]
[9]
Rosa, C.G.S.; Schemitt, E.G.; Hartmann, R.M.; Josieli, R.C.; Jayne, T.S.; Silvia, B.A.; Moreira, J.; Cristian, A.O.; Jaqueline, N.P.; Daniel, P.C.; Alexandre, S.D.; Norma, A.P.M. Effect of therapeutic ultrasound on the quadriceps muscle injury in rats: Evaluation of oxidative stress and inflammatory process. Am. J. Transl. Res., 2019, 11(10), 6660-6671.
[PMID: 31737216]
[10]
Kudsi, S.Q.; Antoniazzim, C.T.D.; Camponogara, C.; Evelyne, S.B.; Indiara, B.; Diulle, S.P. Susana, Paula, M.F.; Diéssica, P.D.; Carolina Dos Santos, S.; Rubya, P.Z.; Paulo, Cesar, L.S.; Rafael, N.M.; Sara, M.O.; Gabriela, T. Characterisation of nociception and inflammation observed in a traumatic muscle injury model in rats. Eur. J. Pharmacol., 2020, 883, 173284-4.
[http://dx.doi.org/10.1016/j.ejphar.2020.173284] [PMID: 32679186]
[11]
Huard, J.; Lu, A.; Mu, X.; Guo, P.; Li, Y. Muscle injuries and repair: What’s new on the horizon! Cells Tissues Organs, 2016, 202(3-4), 227-236.
[http://dx.doi.org/10.1159/000443926] [PMID: 27825155]
[12]
Howard, E.E.; Pasiakos, S.M.; Blesso, C.N.; Fussell, M.A.; Rodriguez, N.R. Divergent roles of inflammation in skeletal muscle recovery from injury. Front. Physiol., 2020, 11, 87.
[http://dx.doi.org/10.3389/fphys.2020.00087] [PMID: 32116792]
[13]
Parihar, A.; Parihar, M.S.; Milner, S.; Bhat, S. Oxidative stress and anti-oxidative mobilization in burn injury. Burns, 2008, 34(1), 6-17.
[http://dx.doi.org/10.1016/j.burns.2007.04.009] [PMID: 17905515]
[14]
Pinho-Ribeiro, F.A.; Verri, W.A., Jr; Chiu, I.M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol., 2017, 38(1), 5-19.
[http://dx.doi.org/10.1016/j.it.2016.10.001] [PMID: 27793571]
[15]
Riemann, A.; Schneider, B.; Ihling, A.; Martin, N.; Christoph, S.; Oliver, T.; Michael, G. Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS One, 2011, 6(7), e22445-e5.
[http://dx.doi.org/10.1371/journal.pone.0022445] [PMID: 21818325]
[16]
De Logu, F. Simone, Li Puma.; Landini, L.; Francesca, P.; Alessandro Innocenti, Daniel, S. M. de A.; Malvin, N. J.; Riccardo, P.; Nigel, W. B.; Pierangelo, G.; Romina, N. Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice. J. Clin. Invest., 2019, 129(12), 5424-5441.
[http://dx.doi.org/10.1172/JCI128022] [PMID: 31487269]
[17]
Lee, K.I.; Lee, H.T.; Lin, H.C.; Huey-Jen, T.; Feng-Chuan, T.; Song-K, S.; Tzong-Shyuan, L. Role of transient receptor potential ankyrin 1 channels in Alzheimer’s disease. J. Neuroinflammation, 2016, 13(1), 92-2.
[http://dx.doi.org/10.1186/s12974-016-0557-z] [PMID: 27121378]
[18]
Camponogara, C.; Oliveira, S.M. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? Environ. Toxicol. Pharmacol., 2022, 92, 103836-6.
[http://dx.doi.org/10.1016/j.etap.2022.103836] [PMID: 35248760]
[19]
Taylor, D.F.; Bishop, D.J. Transcription factor movement and exercise-induced mitochondrial biogenesis in human skeletal muscle: Current knowledge and future perspectives. Int. J. Mol. Sci., 2022, 23(3), 1517-7.
[http://dx.doi.org/10.3390/ijms23031517] [PMID: 35163441]
[20]
Loeser, J.D.; Treede, R.D. The kyoto protocol of IASP basic pain terminology. Pain, 2008, 137(3), 473-477.
[http://dx.doi.org/10.1016/j.pain.2008.04.025] [PMID: 18583048]
[21]
Muley, M.M.; Krustev, E.; McDougall, J.J. Preclinical assessment of inflammatory pain. CNS Neurosci. Ther., 2016, 22(2), 88-101.
[http://dx.doi.org/10.1111/cns.12486] [PMID: 26663896]
[22]
Lotteau, S.; Ducreux, S.; Romestaing, C.; Legrand, C.; Van Coppenolle, F. Characterization of functional TRPV1 channels in the sarcoplasmic reticulum of mouse skeletal muscle. PLoS One, 2013, 8(3), e58673-e3.
[http://dx.doi.org/10.1371/journal.pone.0058673] [PMID: 23536811]
[23]
Lafoux, A.; Lotteau, S.; Huchet, C.; Ducreux, S. The contractile phenotype of skeletal muscle in TRPV1 knockout mice is gender-specific and exercise-dependent. Life, 2020, 10(10), 233-3.
[http://dx.doi.org/10.3390/life10100233] [PMID: 33036239]
[24]
Kudsi, S.Q.; Piccoli, B.C.; Ardisson-Araújo, D.; Trevisan, G. Transcriptional landscape of TRPV1, TRPA1, TRPV4, and TRPM8 channels throughout human tissues. Life Sci., 2022, 308, 120977-7.
[http://dx.doi.org/10.1016/j.lfs.2022.120977] [PMID: 36126722]
[25]
Gregory, N.S.; Whitley, P.E.; Sluka, K.A. Effect of intramuscular protons, lactate, and ATP on muscle hyperalgesia in rats. PLoS One, 2015, 10(9), e0138576.
[http://dx.doi.org/10.1371/journal.pone.0138576] [PMID: 26378796]
[26]
Chang, C.T.; Fong, S.W.; Lee, C.H.; Chuang, Y.C.; Lin, S.H.; Chen, C.C. Involvement of acid-sensing ion channel 1b in the development of acid-induced chronic muscle pain. Front. Neurosci., 2019, 13, 1247.
[http://dx.doi.org/10.3389/fnins.2019.01247] [PMID: 31824248]
[27]
Jorge, C.O.; de Azambuja, G.; Gomes, B.B.; Rodrigues, H.L.; Luchessi, A.D.; de Oliveira-Fusaro, M.C.G. P2X3 receptors contribute to transition from acute to chronic muscle pain. Purinergic Signal., 2020, 16(3), 403-414.
[http://dx.doi.org/10.1007/s11302-020-09718-x] [PMID: 32766958]
[28]
Barcelos, R.P.; Bresciani, G.; Cuevas, M.J.; Martínez-Flórez, S.; Soares, F.A.A.; González-Gallego, J. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway. Appl. Physiol. Nutr. Metab., 2017, 42(7), 757-764.
[http://dx.doi.org/10.1139/apnm-2016-0593] [PMID: 28235185]
[29]
Silveira, P.C.L.; Victor, E.G.; Schefer, D.; Luciano, A.S.; Emilio, L.S.; Marcos, M.P.; Ricardo, A.P. Effects of therapeutic pulsed ultrasound and dimethylsulfoxide (DMSO) phonophoresis on parameters of oxidative stress in traumatized muscle. Ultrasound Med. Biol., 2010, 36(1), 44-50.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2009.09.001] [PMID: 19900747]
[30]
de Almeida, P.; Lopes-Martins, R.Á.B.; Tomazoni, S.S.; Gianna, M. Albuquerque-Pontes.; Larissa, A.S.; Adriane, A.V.; Lucio, F.; Rodolfo, P. V.; Regiane, A.; Paulo de T. Camillo de Carvalho, Ernesto, C. P. Leal-Junior. Low-level laser therapy and sodium diclofenac in acute inflammatory response induced by skeletal muscle trauma: effects in muscle morphology and mRNA gene expression of inflammatory markers. Photochem. Photobiol., 2013, 89(2), 501-507.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01232.x] [PMID: 22937980]
[31]
Silveira, P.C.L.; Scheffer, D.L.; Glaser, V.; Aline, P.R. Ricardo, Aurino, P.; Aderbal, S.; Aguiar, J.; Alexandra, L. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic. Res., 2016, 50(5), 503-513.
[http://dx.doi.org/10.3109/10715762.2016.1147649] [PMID: 26983894]
[32]
Malanga, G.A.; Yan, N.; Stark, J. Mechanisms and efficacy of heat and cold therapies for musculoskeletal injury. Postgrad. Med., 2015, 127(1), 57-65.
[http://dx.doi.org/10.1080/00325481.2015.992719] [PMID: 25526231]
[33]
Mense, S.; Gerwin, R. Muscle Pain: Understanding the Mechanisms; Springer: Berlin, Heidelberg, 2010.
[http://dx.doi.org/10.1007/978-3-540-85021-2]
[34]
Startek, J.; Boonen, B.; Talavera, K.; Meseguer, V. TRP channels as sensors of chemically-induced changes in cell membrane mechanical properties. Int. J. Mol. Sci., 2019, 20(2), 371-1.
[http://dx.doi.org/10.3390/ijms20020371] [PMID: 30654572]
[35]
Koivisto, A.P.; Belvisi, M.G.; Gaudet, R.; Szallasi, A. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat. Rev. Drug Discov., 2022, 21(1), 41-59.
[http://dx.doi.org/10.1038/s41573-021-00268-4] [PMID: 34526696]
[36]
Liu, C.; Montell, C. Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biochem. Biophys. Res. Commun., 2015, 460(1), 22-25.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.067] [PMID: 25998730]
[37]
Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol., 2013, 29(1), 355-384.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155833] [PMID: 24099085]
[38]
Nilius, B.; Voets, T.; Peters, J. TRP channels in disease. Sci. STKE, 2005, 2005(295), re8.
[http://dx.doi.org/10.1126/stke.2952005re8] [PMID: 16077087]
[39]
Froghi, S.; Grant, C.R.; Tandon, R.; Quaglia, A.; Davidson, B.; Fuller, B. New insights on the role of TRP channels in calcium signalling and immunomodulation: Review of pathways and implications for clinical practice. Clin. Rev. Allergy Immunol., 2021, 60(2), 271-292.
[http://dx.doi.org/10.1007/s12016-020-08824-3] [PMID: 33405100]
[40]
Laing, R.J.; Dhaka, A. ThermoTRPs and pain. Neuroscientist, 2016, 22(2), 171-187.
[http://dx.doi.org/10.1177/1073858414567884] [PMID: 25608689]
[41]
Clapham, D.E.; Runnels, L.W.; Strübing, C. The trp ion channel family. Nat. Rev. Neurosci., 2001, 2(6), 387-396.
[http://dx.doi.org/10.1038/35077544] [PMID: 11389472]
[42]
Maglie, R.; Souza, M. de A. D.; Antiga, E.; Geppetti, P.; Nassini, R.; De Logu, F. The role of TRPA1 in skin physiology and pathology. Int. J. Mol. Sci., 2021, 22(6), 3065-5.
[http://dx.doi.org/10.3390/ijms22063065] [PMID: 33802836]
[43]
Moore, C.; Gupta, R.; Jordt, S.E.; Chen, Y.; Liedtke, W.B. Regulation of pain and itch by TRP channels. Neurosci. Bull., 2018, 34(1), 120-142.
[http://dx.doi.org/10.1007/s12264-017-0200-8] [PMID: 29282613]
[44]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[45]
Dietrich, A. Modulators of transient receptor potential (TRP) channels as therapeutic options in lung disease. Pharmaceuticals, 2019, 12(1), 23-3.
[http://dx.doi.org/10.3390/ph12010023] [PMID: 30717260]
[46]
Storozhuk, M.V.; Moroz, O.F.; Zholos, A.V. Multifunctional TRPV1 ion channels in physiology and pathology with focus on the brain, vasculature, and some visceral systems. BioMed Res. Int., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/5806321] [PMID: 31263706]
[47]
Sugiyama, D.; Kang, S.; Arpey, N.; Arunakul, P.; Usachev, Y.M.; Brennan, T.J. Hydrogen peroxide induces muscle nociception via Transient receptor potential ankyrin 1 receptors. Anesthesiology, 2017, 127(4), 695-708.
[http://dx.doi.org/10.1097/ALN.0000000000001756] [PMID: 28640016]
[48]
Sugiyama, D.; Kang, S.; Brennan, T.J. Muscle reactive oxygen species (ROS) contribute to post-incisional guarding via the TRPA1 receptor. PLoS One, 2017, 12(1), e0170410.
[http://dx.doi.org/10.1371/journal.pone.0170410] [PMID: 28103292]
[49]
Fang, Y.; Zhu, J.; Duan, W.; Xie, Y.; Ma, C. Inhibition of muscular nociceptive afferents via the activation of cutaneous nociceptors in a rat model of inflammatory muscle pain. Neurosci. Bull., 2020, 36(1), 1-10.
[http://dx.doi.org/10.1007/s12264-019-00406-4] [PMID: 31230211]
[50]
Simonic-Kocijan, S.; Zhao, X.; Liu, W.; Wu, Y.; Uhac, I.; Wang, K. TRPV1 channel-mediated bilateral allodynia induced by unilateral masseter muscle inflammation in rats. Mol. Pain, 2013, 9, 68.
[http://dx.doi.org/10.1186/1744-8069-9-68]
[51]
Wang, S.; Lim, J.; Joseph, J.; Sen, W.; Feng, W.; Jin, Y. Ro, Man-K. C. Spontaneous and bite-evoked muscle pain are mediated by a common nociceptive pathway with differential contribution by TRPV1. J. Pain, 2017, 18(11), 1333-1345.
[http://dx.doi.org/10.1016/j.jpain.2017.06.005] [PMID: 28669862]
[52]
Wang, S.; Brigoli, B.; Lim, J.; Karley, A.; Chung, M.K. Roles of TRPV1 and TRPA1 in spontaneous pain from inflamed masseter muscle. Neuroscience, 2018, 384, 290-299.
[http://dx.doi.org/10.1016/j.neuroscience.2018.05.048] [PMID: 29890293]
[53]
Bai, X.; Zhang, X.; Zhou, Q. Effect of testosterone on TRPV1 expression in a model of orofacial myositis pain in the rat. J. Mol. Neurosci., 2018, 64(1), 93-101.
[http://dx.doi.org/10.1007/s12031-017-1009-7] [PMID: 29209900]
[54]
Ro, J.Y.; Lee, J.S.; Zhang, Y. Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia. Pain, 2009, 144(3), 270-277.
[http://dx.doi.org/10.1016/j.pain.2009.04.021] [PMID: 19464796]
[55]
Lee, J.; Saloman, J.L.; Weiland, G.; Auh, Q.S.; Chung, M.K.; Ro, J.Y. Functional interactions between NMDA receptors and TRPV1 in trigeminal sensory neurons mediate mechanical hyperalgesia in the rat masseter muscle. Pain, 2012, 153(7), 1514-1524.
[http://dx.doi.org/10.1016/j.pain.2012.04.015] [PMID: 22609428]
[56]
Saloman, J.L.; Chung, M.K.; Ro, J.Y. P2X3 and TRPV1 functionally interact and mediate sensitization of trigeminal sensory neurons. Neuroscience, 2013, 232, 226-238.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.015] [PMID: 23201260]
[57]
Chung, M.K.; Lee, J.; Joseph, J.; Saloman, J.; Ro, J.Y. Peripheral group I metabotropic glutamate receptor activation leads to muscle mechanical hyperalgesia through TRPV1 phosphorylation in the rat. J. Pain, 2015, 16(1), 67-76.
[http://dx.doi.org/10.1016/j.jpain.2014.10.008] [PMID: 25451626]
[58]
Fujii, Y.; Ozaki, N.; Taguchi, T.; Mizumura, K.; Furukawa, K.; Sugiura, Y. TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain, 2008, 140(2), 292-304.
[http://dx.doi.org/10.1016/j.pain.2008.08.013] [PMID: 18834667]
[59]
Murase, S.; Kato, K.; Taguchi, T.; Mizumura, K. Glial cell line-derived neurotrophic factor sensitized the mechanical response of muscular thin-fibre afferents in rats. Eur. J. Pain, 2014, 18(5), 629-638.
[http://dx.doi.org/10.1002/j.1532-2149.2013.00411.x] [PMID: 24174387]
[60]
Walder, R.Y.; Radhakrishnan, R.; Loo, L.; Lynn, A.R.; Durga, P.M.; Steven, P.W.; Kathleen, A.S. TRPV1 is important for mechanical and heat sensitivity in uninjured animals and development of heat hypersensitivity after muscle inflammation. Pain, 2012, 153(8), 1664-1672.
[http://dx.doi.org/10.1016/j.pain.2012.04.034] [PMID: 22694790]
[61]
Chen, W.N.; Lee, C.H.; Lin, S.H.; Chia-Wen, W.; Wei-Hsin, S.; John, N.W.; Chih-Cheng, C. Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia. Mol. Pain, 2014, 10(1), 40.
[http://dx.doi.org/10.1016/j.jpain.2014.01.165] [PMID: 24957987]
[62]
Schmelz, M.; Schmid, R.; Handwerker, H.O.; Torebjörk, H.E. Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain, 2000, 123(3), 560-571.
[http://dx.doi.org/10.1093/brain/123.3.560] [PMID: 10686178]
[63]
Marchettini, P.; Simone, D.A.; Caputi, G.; Ochoa, J. Pain from excitation of identified muscle nociceptors in humans. Brain Res., 1996, 740(1-2), 109-116.
[http://dx.doi.org/10.1016/S0006-8993(96)00851-7] [PMID: 8973804]
[64]
Gregory, N.S.; Sluka, K.A. Anatomical and physiological factors contributing to chronic muscle pain. Curr. Top. Behav. Neurosci., 2014, 20, 327-348.
[http://dx.doi.org/10.1007/7854_2014_294]
[65]
Amann, M.; Sidhu, S.K.; Weavil, J.C.; Mangum, T.S.; Venturelli, M. Autonomic responses to exercise: Group III/IV muscle afferents and fatigue. Auton. Neurosci., 2015, 188, 19-23.
[http://dx.doi.org/10.1016/j.autneu.2014.10.018] [PMID: 25458423]
[66]
Laurin, J.; Pertici, V.; Dousset, E.; Marqueste, T.; Decherchi, P. Group III and IV muscle afferents: Role on central motor drive and clinical implications. Neuroscience, 2015, 290, 543-551.
[http://dx.doi.org/10.1016/j.neuroscience.2015.01.065] [PMID: 25659344]
[67]
Christianson, J.A.; McIlwrath, S.L.; Koerber, H.R.; Davis, B.M. Transient receptor potential vanilloid 1-immunopositive neurons in the mouse are more prevalent within colon afferents compared to skin and muscle afferents. Neuroscience, 2006, 140(1), 247-257.
[http://dx.doi.org/10.1016/j.neuroscience.2006.02.015] [PMID: 16564640]
[68]
Shin, D.S.; Kim, E.H.; Song, K.Y.; Hong, H.J.; Kong, M.H.; Hwang, S.J. Neurochemical characterization of the TRPV1-positive nociceptive primary afferents innervating skeletal muscles in the rats. J. Korean Neurosurg. Soc., 2008, 43(2), 97-104.
[http://dx.doi.org/10.3340/jkns.2008.43.2.97] [PMID: 19096612]
[69]
Lin, Y-W.; Chen, C-C. Electrophysiological characteristics of IB4-negative TRPV1-expressing muscle afferent DRG neurons. Biophysics, 2015, 11, 9-16.
[http://dx.doi.org/10.2142/biophysics.11.9]
[70]
Andersson, D.A.; Gentry, C.; Moss, S.; Bevan, S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci., 2008, 28(10), 2485-2494.
[http://dx.doi.org/10.1523/JNEUROSCI.5369-07.2008] [PMID: 18322093]
[71]
Arendt-Nielsen, L.; Svensson, P.; Sessle, B.J.; Wang, K. Interactions between glutamate and capsaicin in inducing muscle pain and sensitization in humans. Eur. J. Pain, 2008, 12(5), 661-670.
[http://dx.doi.org/10.1016/j.ejpain.2007.10.013]
[72]
Connor, M.; Naves, L.A.; McCleskey, E.W. Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat. Mol. Pain, 2005, 1, 1744-8069-1-31.
[http://dx.doi.org/10.1186/1744-8069-1-31] [PMID: 16242047]
[73]
Sato, M.; Sato, T.; Yajima, T.; Shimazaki, K.; Ichikawa, H. The transient receptor potential cation channel subfamily V members 1 and 2, P2X purinoceptor 3 and calcitonin gene-related peptide in sensory neurons of the rat trigeminal ganglion, innervating the periosteum, masseter muscle and facial skin. Arch. Oral Biol., 2018, 96, 66-73.
[http://dx.doi.org/10.1016/j.archoralbio.2018.08.012] [PMID: 30195141]
[74]
Lindquist, K.A.; Belugin, S.; Hovhannisyan, A.H.; Corey, T.M.; Salmon, A.; Akopian, A.N. Identification of trigeminal sensory neuronal types innervating masseter muscle. eNeuro., 2021, 8(5), 0176-21.2021.
[http://dx.doi.org/10.1523/ENEURO.0176-21.2021]
[75]
Jordt, S.E.; Bautista, D.M.; Chuang, H.; David, D. McKemy, Peter, M. Z., Edward, D. H., Ian, D. M., David, J. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature, 2004, 427(6971), 260-265.
[http://dx.doi.org/10.1038/nature02282] [PMID: 14712238]
[76]
Souza, M. de A.D.; Nassini, R.; Geppetti, P.; De Logu, F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin. Ther. Targets, 2020, 24(10), 997-1008.
[http://dx.doi.org/10.1080/14728222.2020.1815191] [PMID: 32838583]
[77]
Takizawa, M.; Harada, K.; Nakamura, K.; Tsuboi, T. Transient receptor potential ankyrin 1 channels are involved in spontaneous peptide hormone release from astrocytes. Biochem. Biophys. Res. Commun., 2018, 501(4), 988-995.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.097] [PMID: 29777700]
[78]
Zeng, D.; Chen, C.; Zhou, W. Xuesu, Ma, Xi, P., Yue, Z., Weikang, Z., Fenglin, L. TRPA1 deficiency alleviates inflammation of atopic dermatitis by reducing macrophage infiltration. Life Sci., 2021, 266, 118906-6.
[http://dx.doi.org/10.1016/j.lfs.2020.118906] [PMID: 33338502]
[79]
Osterloh, M.; Böhm, M.; Kalbe, B.; Osterloh, S.; Hatt, H. Identification and functional characterization of TRPA1 in human myoblasts. Pflugers Arch., 2016, 468(2), 321-333.
[http://dx.doi.org/10.1007/s00424-015-1729-x] [PMID: 26328519]
[80]
Asgar, J.; Zhang, Y.; Saloman, J.L.; Wang, S.; Chung, M.K.; Ro, J.Y. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience, 2015, 310, 206-215.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.042] [PMID: 26393428]
[81]
Mihara, H.; Boudaka, A.; Tominaga, M.; Sugiyama, T. Transient receptor potential vanilloid 4 regulation of adenosine triphosphate release by the adenosine triphosphate transporter vesicular nucleotide transporter, a novel therapeutic target for gastrointestinal baroreception and chronic inflammation. Digestion, 2020, 101(1), 6-11.
[http://dx.doi.org/10.1159/000504021] [PMID: 31770754]
[82]
Rodrigues, P.; Ruviaro, N.A.; Trevisan, G. TRPV4 role in neuropathic pain mechanisms in rodents. Antioxidants, 2022, 12(1), 24-4.
[http://dx.doi.org/10.3390/antiox12010024] [PMID: 36670886]
[83]
Ryskamp, D.A.; Jo, A.O.; Frye, A.M. Felix, Vazquez-Chona, Nanna, M., Wallace, B.T., David, K. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia. J. Neurosci., 2014, 34(47), 15689-15700.
[http://dx.doi.org/10.1523/JNEUROSCI.2540-14.2014] [PMID: 25411497]
[84]
Balemans, D.; Boeckxstaens, G.E.; Talavera, K.; Wouters, M.M. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(6), G635-G648.
[http://dx.doi.org/10.1152/ajpgi.00401.2016] [PMID: 28385695]
[85]
Chen, L.; Liu, C.; Liu, L. Changes in osmolality modulate voltage-gated calcium channels in trigeminal ganglion neurons. Brain Res., 2008, 1208, 56-66.
[http://dx.doi.org/10.1016/j.brainres.2008.02.048] [PMID: 18378217]
[86]
Zhang, Y.; Wang, Y.H.; Ge, H.Y.; Arendt-Nielsen, L.; Wang, R.; Yue, S.W. A transient receptor potential vanilloid 4 contributes to mechanical allodynia following chronic compression of dorsal root ganglion in rats. Neurosci. Lett., 2008, 432(3), 222-227.
[http://dx.doi.org/10.1016/j.neulet.2007.12.028] [PMID: 18206306]
[87]
Phan, M.N.; Leddy, H.A.; Votta, B.J.; Sanjay, K.; Dana, S. Levy, David, B.L., Suk, H.L., Wolfgang, L., Farshid, G. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum., 2009, 60(10), 3028-3037.
[http://dx.doi.org/10.1002/art.24799] [PMID: 19790068]
[88]
Nishida, T.; Kubota, S. Roles of CCN2 as a mechano-sensing regulator of chondrocyte differentiation. Jpn. Dent. Sci. Rev., 2020, 56(1), 119-126.
[http://dx.doi.org/10.1016/j.jdsr.2020.07.001] [PMID: 33088364]
[89]
Chen, Y.; Fang, Q.; Wang, Z.; Jennifer, Y.Z.; Amanda, S.M.; Russell, P.H.; Wolfgang, B.L. Transient receptor potential vanilloid 4 ion channel functions as a pruriceptor in epidermal keratinocytes to evoke histaminergic itch. J. Biol. Chem., 2016, 291(19), 10252-10262.
[http://dx.doi.org/10.1074/jbc.M116.716464] [PMID: 26961876]
[90]
Kwon, M.; Baek, S.H.; Park, C.K.; Chung, G.; Oh, S.B. Single-cell RT-PCR and immunocytochemical detection of mechanosensitive transient receptor potential channels in acutely isolated rat odontoblasts. Arch. Oral Biol., 2014, 59(12), 1266-1271.
[http://dx.doi.org/10.1016/j.archoralbio.2014.07.016] [PMID: 25150531]
[91]
Solé-Magdalena, A.; Martínez-Alonso, M.; Coronado, C.A.; Junquera, L.M.; Cobo, J.; Vega, J.A. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels. Ann. Anat., 2018, 215, 20-29.
[http://dx.doi.org/10.1016/j.aanat.2017.09.006] [PMID: 28954208]
[92]
Benfenati, V.; Amiry-Moghaddam, M.; Caprini, M.; Mylonakou, M.N.; Rapisarda, C.; Ottersen, O.P.; Ferroni, S. Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience, 2007, 148(4), 876-892.
[http://dx.doi.org/10.1016/j.neuroscience.2007.06.039] [PMID: 17719182]
[93]
Kanju, P.; Liedtke, W. Pleiotropic function of TRPV4 ion channels in the central nervous system. Exp. Physiol., 2016, 101(12), 1472-1476.
[http://dx.doi.org/10.1113/EP085790] [PMID: 27701788]
[94]
Konno, M.; Shirakawa, H.; Iida, S.; Shinya, S.; Ikkei, M.; Takahito, M.; Keiko, K.; Takayuki, N.; Koji, S.; Shuji, K. Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia, 2012, 60(5), 761-770.
[http://dx.doi.org/10.1002/glia.22306] [PMID: 22331560]
[95]
White, J.P.M.; Cibelli, M.; Urban, L.; Nilius, B. McGeown. J.G., Nagy, I. TRPV4: Molecular conductor of a diverse orchestra. Physiol. Rev., 2016, 96(3), 911-973.
[http://dx.doi.org/10.1152/physrev.00016.2015] [PMID: 27252279]
[96]
Denadai-Souza, A.; Martin, L.; de Paula, M.A.V.; Maria, C. Werneck, de A., Marcelo, N. M., Nathalie, V., Nicolas, C. Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis Rheum., 2012, 64(6), 1848-1858.
[http://dx.doi.org/10.1002/art.34345] [PMID: 22184014]
[97]
Pritschow, B.W.; Lange, T.; Kasch, J.; Kunert-Keil, C.; Liedtke, W.; Brinkmeier, H. Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca2+ influx and muscle fatigue. Pflugers Arch., 2011, 461(1), 115-122.
[http://dx.doi.org/10.1007/s00424-010-0883-4] [PMID: 20924600]
[98]
Ota, H.; Katanosaka, K.; Murase, S.; Kashio, M.; Tominaga, M.; Mizumura, K. TRPV1 and TRPV4 play pivotal roles in delayed onset muscle soreness. PLoS One, 2013, 8(6), e65751.
[http://dx.doi.org/10.1371/journal.pone.0065751] [PMID: 23799042]
[99]
Brum, E.S.; Fialho, M.F.P.; Fischer, S.P.M.; Diane, D.H.; Débora, F.G.; Rahisa, S.; Ricardo, A. Machado-de-Ávila, Cristiane, L., Dalla, C., Félix, A. A. S., Sara, M. O. Relevance of mitochondrial dysfunction in the reserpine-induced experimental fibromyalgia model. Mol. Neurobiol., 2020, 57(10), 4202-4217.
[http://dx.doi.org/10.1007/s12035-020-01996-1] [PMID: 32685997]
[100]
Macfarlane, T.V.; Blinkhorn, A.S.; Davies, R.M.; Ryan, P.; Worthington, H.V.; Macfarlane, G.J. Orofacial pain: Just another chronic pain? Results from a population-based survey. Pain, 2002, 99(3), 453-458.
[http://dx.doi.org/10.1016/S0304-3959(02)00181-1] [PMID: 12406520]
[101]
Schiffman, E.; Ohrbach, R.; Truelove, E.; John, L.; Gary, A.; Jean-Paul, G.; Thomas, L.; Peter, S.; Yoly, G.; Frank, L.; Ambra, M.; Sharon, L. B., Werner, C. Mark, D., Dominik, E., Charly, G., Louis, J. G., Jennifer, A H., Lars, H., Rigmor, J., Mike, T. J., Antoon, De Laat., Reny de Leeuw., William, M., Marylee, van der Meulen., Greg, M. M., Donald, R. N., Sandro, P., Arne, P., Paul, P., Barry, S., Corine, M. V. Joanna, Z., Samuel, F. D. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the international RDC/TMD consortium network and orofacial pain special interest group. J. Oral Facial Pain Headache, 2014, 28(1), 6-27.
[http://dx.doi.org/10.11607/jop.1151] [PMID: 24482784]
[102]
Lövgren, A.; Häggman-Henrikson, B.; Visscher, C.M.; Lobbezoo, F.; Marklund, S.; Wänman, A. Temporomandibular pain and jaw dysfunction at different ages covering the lifespan: A population based study. Eur. J. Pain, 2016, 20(4), 532-540.
[http://dx.doi.org/10.1002/ejp.755] [PMID: 26311138]
[103]
Taheri, J.B.; Anbari, F.; Sani, S.K.; Mirmoezi, S.M.; Khalighi, H.R. A 10-year overview of chronic orofacial pain in patients at an oral medicine center in Iran. J. Dent. Anesth. Pain Med., 2022, 22(4), 289-294.
[http://dx.doi.org/10.17245/jdapm.2022.22.4.289] [PMID: 35991358]
[104]
Shueb, S.S.; Nixdorf, D.R.; John, M.T.; Alonso, B.F.; Durham, J. What is the impact of acute and chronic orofacial pain on quality of life? J. Dent., 2015, 43(10), 1203-1210.
[http://dx.doi.org/10.1016/j.jdent.2015.06.001] [PMID: 26073033]
[105]
Oghli, I.; List, T.; Su, N.; Häggman-Henrikson, B. The impact of oro‐facial pain conditions on oral health‐related quality of life: A systematic review. J. Oral Rehabil., 2020, 47(8), 1052-1064.
[http://dx.doi.org/10.1111/joor.12994] [PMID: 32415993]
[106]
Sarlani, E.; Grace, E.G.; Reynolds, M.A.; Greenspan, J.D. Evidence for up-regulated central nociceptive processing in patients with masticatory myofascial pain. J. Orofac. Pain, 2004, 18(1), 41-55.
[PMID: 15029872]
[107]
Ferrillo, M.; Giudice, A.; Marotta, N.; Francesco, F. Daniela, Di V., Antonio, A., Pietro F., Alessandro, de, S. Pain management and rehabilitation for central sensitization in temporomandibular disorders: A comprehensive review. Int. J. Mol. Sci., 2022, 23(20), 12164-4.
[http://dx.doi.org/10.3390/ijms232012164] [PMID: 36293017]
[108]
Matsuka, Y. Orofacial pain: Molecular mechanisms, diagnosis, and treatment 2021. Int. J. Mol. Sci., 2022, 23(9), 4826-6.
[http://dx.doi.org/10.3390/ijms23094826] [PMID: 35563219]
[109]
Körtési, T.; Tuka, B.; Nyári, A.; Vécsei, L.; Tajti, J. The effect of orofacial complete Freund’s adjuvant treatment on the expression of migraine-related molecules. J. Headache Pain, 2019, 20(1), 43-3.
[http://dx.doi.org/10.1186/s10194-019-0999-7] [PMID: 31035923]
[110]
Okamoto, K.; Hasegawa, M.; Piriyaprasath, K.; Kakihara, Y.; Saeki, M.; Yamamura, K. Preclinical models of deep craniofacial nociception and temporomandibular disorder pain. Jpn. Dent. Sci. Rev., 2021, 57, 231-241.
[http://dx.doi.org/10.1016/j.jdsr.2021.10.002] [PMID: 34815817]
[111]
Bagüés, A.; Martín-Fontelles, M.I.; Esteban-Hernández, J.; Sánchez-Robles, E.M. Characterization of the nociceptive effect of carrageenan: Masseter versus gastrocnemius. Muscle Nerve, 2017, 56(4), 804-813.
[http://dx.doi.org/10.1002/mus.25538] [PMID: 28026014]
[112]
McCarson, K.E.; Fehrenbacher, J.C. Models of inflammation: Carrageenan‐ or complete freund’s adjuvant (CFA)–Induced edema and hypersensitivity in the rat. Curr. Protoc., 2021, 1(7), e202.
[http://dx.doi.org/10.1002/cpz1.202] [PMID: 34314105]
[113]
Martínez-García, M.A.; Migueláñez-Medrán, B.C.; Goicoechea, C. Animal models in the study and treatment of orofacial pain. J. Clin. Exp. Dent., 2019, 11(4), e382.
[http://dx.doi.org/10.4317/jced.55429] [PMID: 31110619]
[114]
Chung, M.K.; Park, J.; Asgar, J.; Ro, J.Y. Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats. Mol. Pain, 2016, 12, 1744806916668526.
[http://dx.doi.org/10.1177/1744806916668526] [PMID: 27702909]
[115]
Chen, J.; Qin, H.J.; Yang, F.; Liu, J.; Guan, T.; Qu, F.M.; Zhang, G.H.; Shi, J.R.; Xie, X.C.; Yang, C.L.; Wu, K.H.; Li, Y.Q.; Lu, L. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se. Phys. Rev. Lett., 2010, 105(17), 176602-2.
[http://dx.doi.org/10.1103/PhysRevLett.105.176602] [PMID: 21231064]
[116]
Häggman-Henrikson, B.; Liv, P.; Ilgunas, A.; Corine, M.V.; Frank, L.; Justin, D.; Anna, L. Increasing gender differences in the prevalence and chronification of orofacial pain in the population. Pain, 2020, 161(8), 1768-1775.
[http://dx.doi.org/10.1097/j.pain.0000000000001872] [PMID: 32701837]
[117]
Hartmann, A.; Seeberger, R.; Bittner, M.; Rolke, R.; Welte-Jzyk, C.; Daubländer, M. Profiling intraoral neuropathic disturbances following lingual nerve injury and in burning mouth syndrome. BMC Oral Health, 2017, 17(1), 68.
[http://dx.doi.org/10.1186/s12903-017-0360-y] [PMID: 28330489]
[118]
Gazerani, P.; Andersen, O.K.; Arendt-Nielsen, L. Site-specific, dose-dependent, and sex-related responses to the experimental pain model induced by intradermal injection of capsaicin to the foreheads and forearms of healthy humans. J. Orofac. Pain, 2007, 21(4), 289-302.
[PMID: 18018990]
[119]
Hody, S.; Croisier, J.L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric muscle contractions: Risks and benefits. Front. Physiol., 2019, 10, 536.
[http://dx.doi.org/10.3389/fphys.2019.00536] [PMID: 31130877]
[120]
Mense, S. Muscle pain. Dtsch. Arztebl. Int., 2008, 105(12), 214-219.
[http://dx.doi.org/10.3238/artzebl.2008.0214] [PMID: 19629211]
[121]
Fernandes, E.S.; Fernandes, M.A.; Keeble, J.E. The functions of TRPA1 and TRPV1: Moving away from sensory nerves. Br. J. Pharmacol., 2012, 166(2), 510-521.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01851.x] [PMID: 22233379]
[122]
O’Neill, J.; Brock, C.; Olesen, A.E.; Andresen, T.; Nilsson, M.; Dickenson, A.H. Unravelling the mystery of capsaicin: A tool to understand and treat pain. Pharmacol. Rev., 2012, 64(4), 939-971.
[http://dx.doi.org/10.1124/pr.112.006163] [PMID: 23023032]
[123]
Chung, M.K.; Campbell, J. Use of capsaicin to treat pain: Mechanistic and therapeutic considerations. Pharmaceuticals, 2016, 9(4), 66.
[http://dx.doi.org/10.3390/ph9040066] [PMID: 27809268]
[124]
Retamoso, L.T.; Silveira, M.E.P.; Lima, F.D.; Guilherme, L.B.; Guilherme, B.; Leandro, R.R.; Pietro, M.C.; Cristina, W.N.; Ana, C.M.B.; Ana, F.F.; Mauro, S.O. 7, Michele, R. F., Luiz, F. F. R. Increased xanthine oxidase-related ROS production and TRPV1 synthesis preceding DOMS post-eccentric exercise in rats. Life Sci., 2016, 152, 52-59.
[http://dx.doi.org/10.1016/j.lfs.2016.03.029] [PMID: 26987748]
[125]
Abdelhamid, R.E.; Kovacs, K.J.; Pasley, J.D.; Nunez, M.G.; Larson, A.A. Forced swim-induced musculoskeletal hyperalgesia is mediated by CRF2 receptors but not by TRPV1 receptors. Neuropharmacology, 2013, 72, 29-37.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.016] [PMID: 23624287]
[126]
Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284.
[http://dx.doi.org/10.1016/j.cell.2009.09.028] [PMID: 19837031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy