Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

Intracerebroventricular Injection of MHY1485 Blocked the Beneficial Effect of Adiponectin on Aversive Memory in the STZ Model of Dementia

Author(s): Samira Rashtiani, Iran Goudarzi, Adele Jafari and Kambiz Rohampour*

Volume 23, Issue 3, 2023

Published on: 11 September, 2023

Page: [167 - 174] Pages: 8

DOI: 10.2174/1871524923666230908092530

Price: $65

Abstract

Background: The most prominent adipokine, adiponectin (APN), has an adverse relationship with the malfunction of adipose tissue. Obesity causes a decrease in plasma APN levels, which eventually results in insulin resistance and diabetes. In this study, we assessed how the effects of APN on memory are influenced by the insulin receptor substrate-1 (IRS-1) and the mammalian target of rapamycin (mTOR) pathways.

Methods: Streptozotocin (STZ) 3 mg/kg intracerebroventricular injections on days 1 and 3 following cannulation were used to create an animal model of Alzheimer's disease. The acquisition phase was preceded by injections of MHY and adiponectin. For the passive avoidance task, the stepthrough latency and total duration in the dark compartment were recorded and evaluated, and the preference index was calculated for the novel object identification test. IRS-1 protein expression in the hippocampus was assessed by western blotting.

Results: STZ reduced the step-through latency (STL), which rose significantly (P≤0.001) in the APN+STZ group. The memory-improving effects of APN were reversed when MHY was administered first (P≤0.001). The STZ and APN+STZ+MHY groups both had a substantial decline in the preference index (P≤0.01). Compared to the control group, the STZ group's expression of the IRS- 1 protein was dramatically reduced (P≤0.0001). In contrast to the APN+STZ group, the MHYtreated group likewise showed decreased IRS-1 protein expression (P≤0.0001), but APN+STZ was able to enhance IRS-1 expression rate (P≤0.0001).

Conclusion: In a rat model of AD, we found that adiponectin improved aversive and cognitive memory, which is at least partially mediated by the mTOR signaling cascade.

Graphical Abstract

[1]
Cai, H.; Cong, W.; Ji, S.; Rothman, S.; Maudsley, S.; Martin, B. Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr. Alzheimer Res., 2012, 9(1), 5-17.
[http://dx.doi.org/10.2174/156720512799015064] [PMID: 22329649]
[2]
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 2016, 12(4), 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[3]
Craft, S. Insulin resistance syndrome and Alzheimer’s disease: Age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiol. Aging, 2005, 26(1), 65-69.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.021] [PMID: 16266773]
[4]
Zhao, W.Q.; Alkon, D.L. Role of insulin and insulin receptor in learning and memory. Mol. Cell. Endocrinol., 2001, 177(1-2), 125-134.
[http://dx.doi.org/10.1016/S0303-7207(01)00455-5] [PMID: 11377828]
[5]
Mukherjee, B.; Hossain, C.M.; Mondal, L.; Paul, P.; Ghosh, M.K. Obesity and insulin resistance: an abridged molecular correlation. Lipid Insights, 2013, 6LPI, S10805.
[http://dx.doi.org/10.4137/LPI.S10805] [PMID: 25278764]
[6]
Qiu, W.Q.; Walsh, D.M.; Ye, Z.; Vekrellis, K.; Zhang, J.; Podlisny, M.B.; Rosner, M.R.; Safavi, A.; Hersh, L.B.; Selkoe, D.J. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J. Biol. Chem., 1998, 273(49), 32730-32738.
[http://dx.doi.org/10.1074/jbc.273.49.32730] [PMID: 9830016]
[7]
Caselli, C. Role of adiponectin system in insulin resistance. Mol. Genet. Metab., 2014, 113(3), 155-160.
[http://dx.doi.org/10.1016/j.ymgme.2014.09.003] [PMID: 25242063]
[8]
Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest., 2006, 116(7), 1784-1792.
[http://dx.doi.org/10.1172/JCI29126] [PMID: 16823476]
[9]
Cheng, K.K.Y.; Lam, K.S.L.; Wang, B.; Xu, A. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Pract. Res. Clin. Endocrinol. Metab., 2014, 28(1), 3-13.
[http://dx.doi.org/10.1016/j.beem.2013.06.006] [PMID: 24417941]
[10]
Melnik, B.C.; John, S.; Carrera-Bastos, P.; Cordain, L. The impact of cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr. Metab. (Lond.), 2012, 9(1), 74.
[http://dx.doi.org/10.1186/1743-7075-9-74] [PMID: 22891897]
[11]
Zoncu, R.; Efeyan, A.; Sabatini, D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol., 2011, 12(1), 21-35.
[http://dx.doi.org/10.1038/nrm3025] [PMID: 21157483]
[12]
Sulaimanov, N.; Klose, M.; Busch, H.; Boerries, M. Understanding the MTOR signaling pathway via mathematical modeling. Wiley Interdiscip. Rev. Syst. Biol. Med., 2017, 9(4), e1379.
[http://dx.doi.org/10.1002/wsbm.1379] [PMID: 28186392]
[13]
Raab-Graham, K.F.; Niere, F. MTOR referees memory and disease through MRNA repression and competition. FEBS Lett., 2017, 591(11), 1540-1554.
[http://dx.doi.org/10.1002/1873-3468.12675] [PMID: 28493559]
[14]
Machado-Neto, J.A.; Fenerich, B.A.; Rodrigues Alves, A.P.N.; Fernandes, J.C.; Scopim-Ribeiro, R.; Coelho-Silva, J.L.; Traina, F. Insulin Substrate Receptor (IRS) proteins in normal and malignant hematopoiesis. Clinics (São Paulo), 2018, 73(Suppl. 1), e566s.
[http://dx.doi.org/10.6061/clinics/2018/e566s] [PMID: 30328953]
[15]
White, M.F.; Maron, R.; Kahn, C.R. Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature, 1985, 318(6042), 183-186.
[http://dx.doi.org/10.1038/318183a0] [PMID: 2414672]
[16]
Sun, X.J.; Pons, S.; Wang, L.M.; Zhang, Y.; Yenush, L.; Burks, D.; Myers, M.G., Jr; Glasheen, E.; Copeland, N.G.; Jenkins, N.A.; Pierce, J.H.; White, M.F. The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin and cytokine action. Mol. Endocrinol., 1997, 11(2), 251-262.
[http://dx.doi.org/10.1210/mend.11.2.9885] [PMID: 9013772]
[17]
Maiese, K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen. Res., 2016, 11(3), 372-385.
[http://dx.doi.org/10.4103/1673-5374.179032] [PMID: 27127460]
[18]
Samuel, V.T.; Shulman, G.I. Mechanisms for insulin resistance: common threads and missing links. Cell, 2012, 148(5), 852-871.
[http://dx.doi.org/10.1016/j.cell.2012.02.017] [PMID: 22385956]
[19]
Paxinos, G.; Watson, C. The rat brain in stereotaxic coordinates; Academic Press: London, 2007.
[20]
Zamani, M.; Rohampour, K.; Zeraati, M.; Hosseinmardi, N.; Kazemian, M.M. Pre-training Catechin gavage prevents memory impairment induced by intracerebroventricular streptozotocin in rats. Neurosciences, 2015, 20(3), 225-229.
[http://dx.doi.org/10.17712/nsj.2015.3.20140440] [PMID: 26166589]
[21]
Havel, P.J. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr. Opin. Lipidol., 2002, 13(1), 51-59.
[http://dx.doi.org/10.1097/00041433-200202000-00008] [PMID: 11790963]
[22]
Havel, P.J. Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance. Proc. Nutr. Soc., 2000, 59(3), 359-371.
[http://dx.doi.org/10.1017/S0029665100000410] [PMID: 10997652]
[23]
Zoccali, C.; Mallamaci, F.; Tripepi, G.; Benedetto, F.A.; Cutrupi, S.; Parlongo, S.; Malatino, L.S.; Bonanno, G.; Seminara, G.; Rapisarda, F.; Fatuzzo, P.; Buemi, M.; Nicocia, G.; Tanaka, S.; Ouchi, N.; Kihara, S.; Funahashi, T.; Matsuzawa, Y. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J. Am. Soc. Nephrol., 2002, 13(1), 134-141.
[http://dx.doi.org/10.1681/ASN.V131134] [PMID: 11752030]
[24]
Ouchi, N.; Kihara, S.; Arita, Y.; Maeda, K.; Kuriyama, H.; Okamoto, Y.; Hotta, K.; Nishida, M.; Takahashi, M.; Nakamura, T.; Yamashita, S.; Funahashi, T.; Matsuzawa, Y. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation, 1999, 100(25), 2473-2476.
[http://dx.doi.org/10.1161/01.CIR.100.25.2473] [PMID: 10604883]
[25]
Hotta, K.; Funahashi, T.; Arita, Y.; Takahashi, M.; Matsuda, M.; Okamoto, Y.; Iwahashi, H.; Kuriyama, H.; Ouchi, N.; Maeda, K.; Nishida, M.; Kihara, S.; Sakai, N.; Nakajima, T.; Hasegawa, K.; Muraguchi, M.; Ohmoto, Y.; Nakamura, T.; Yamashita, S.; Hanafusa, T.; Matsuzawa, Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol., 2000, 20(6), 1595-1599.
[http://dx.doi.org/10.1161/01.ATV.20.6.1595] [PMID: 10845877]
[26]
Letra, L.; Santana, I. The influence of adipose tissue on brain development, cognition, and risk of neurodegenerative disorders. Adv. Neurobiol., 2017, 19, 151-161.
[http://dx.doi.org/10.1007/978-3-319-63260-5_6] [PMID: 28933064]
[27]
Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem., 1995, 270(45), 26746-26749.
[http://dx.doi.org/10.1074/jbc.270.45.26746] [PMID: 7592907]
[28]
Thundyil, J.; Pavlovski, D.; Sobey, C.G.; Arumugam, T.V. Adiponectin receptor signalling in the brain. Br. J. Pharmacol., 2012, 165(2), 313-327.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01560.x] [PMID: 21718299]
[29]
Rivero, O.; Selten, M.M.; Sich, S.; Popp, S.; Bacmeister, L.; Amendola, E.; Negwer, M.; Schubert, D.; Proft, F.; Kiser, D.; Schmitt, A.G.; Gross, C.; Kolk, S.M.; Strekalova, T.; van den Hove, D.; Resink, T.J.; Nadif Kasri, N.; Lesch, K.P. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl. Psychiatry, 2015, 5(10), e655.
[http://dx.doi.org/10.1038/tp.2015.152] [PMID: 26460479]
[30]
Mazrooie, R.; Rohampour, K.; Zamani, M.; Hosseinmardi, N.; Zeraati, M. Intracerebroventricular administration of adiponectin attenuates streptozotocin-induced memory impairment in rats. Physiol. Int., 2017, 104(2), 150-157.
[http://dx.doi.org/10.1556/2060.104.2017.1.4] [PMID: 28395518]
[31]
Pousti, F.; Ahmadi, R.; Mirahmadi, F.; Hosseinmardi, N.; Rohampour, K. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus. Neurosci. Lett., 2018, 662, 227-232.
[http://dx.doi.org/10.1016/j.neulet.2017.10.042] [PMID: 29079430]
[32]
Duan, Z.; Tu, C.; Liu, Q.; Li, S.; Li, Y.; Xie, P.; Li, Z. Adiponectin receptor agonist AdipoRon attenuates calcification of osteoarthritis chondrocytes by promoting autophagy. J. Cell. Biochem., 2020, 121(5-6), 3333-3344.
[http://dx.doi.org/10.1002/jcb.29605] [PMID: 31898335]
[33]
Cui, X.J.; Lin, X.; Zhong, J.Y.; Li, S.; He, J.Y.; Ni, Y.Q.; Zhan, J.K.; Liu, Y.S. Adiponectin attenuates the premature senescence of vascular smooth muscle cells induced by high glucose through mTOR signaling pathway. Aging Med. (Milton), 2020, 3(3), 178-187.
[http://dx.doi.org/10.1002/agm2.12106] [PMID: 33103038]
[34]
Ramzan, A.A.; Bitler, B.G.; Hicks, D.; Barner, K.; Qamar, L.; Behbakht, K.; Powell, T.; Jansson, T.; Wilson, H. Adiponectin receptor agonist AdipoRon induces apoptotic cell death and suppresses proliferation in human ovarian cancer cells. Mol. Cell. Biochem., 2019, 461(1-2), 37-46.
[http://dx.doi.org/10.1007/s11010-019-03586-9] [PMID: 31292831]
[35]
Liu, L.J.; Xu, M.; Zhu, J.; Li, N.; Zhao, X.Z.; Gao, H.M. Adiponectin alleviates liver injury in sepsis rats through AMPK/MTOR pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(20), 10745-10752.
[PMID: 33155235]
[36]
Rashtiani, S.; Goudarzi, I.; Jafari, A.; Rohampour, K. Adenosine monophosphate activated protein kinase (AMPK) is essential for the memory improving effect of adiponectin. Neurosci. Lett., 2021, •••, 749135721.
[http://dx.doi.org/10.1016/j.neulet.2021.135721] [PMID: 33582189]
[37]
Dasgupta, Y.; Golovine, K.; Nieborowska-Skorska, M.; Luo, L.; Matlawska-Wasowska, K.; Mullighan, C.G.; Skorski, T. Drugging DNA repair to target T-ALL cells. Leuk. Lymphoma, 2018, 59(7), 1746-1749.
[http://dx.doi.org/10.1080/10428194.2017.1397662] [PMID: 29115896]
[38]
Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell, 2012, 149(2), 274-293.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[39]
Graber, T.E.; McCamphill, P.K.; Sossin, W.S. A recollection of mTOR signaling in learning and memory. Learn. Mem., 2013, 20(10), 518-530.
[http://dx.doi.org/10.1101/lm.027664.112] [PMID: 24042848]
[40]
Wang, C.; Mao, X.; Wang, L.; Liu, M.; Wetzel, M.D.; Guan, K.L.; Dong, L.Q.; Liu, F. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. J. Biol. Chem., 2007, 282(11), 7991-7996.
[http://dx.doi.org/10.1074/jbc.M700098200] [PMID: 17244624]
[41]
Ueno, M.; Carvalheira, J.B.C.; Tambascia, R.C.; Bezerra, R.M.N.; Amaral, M.E.; Carneiro, E.M.; Folli, F.; Franchini, K.G.; Saad, M.J.A. Regulation of insulin signalling by hyperinsulinaemia: role of IRS-1/2 serine phosphorylation and the mTOR/p70 S6K pathway. Diabetologia, 2005, 48(3), 506-518.
[http://dx.doi.org/10.1007/s00125-004-1662-6] [PMID: 15692808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy