Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Systematic Review Article

The Use of Nanocarriers to Enhance the Anti-neuroinflammatory Potential of Dietary Flavonoids in Animal Models of Neurodegenerative Diseases: A Systematic Review

Author(s): Gopalsamy Rajiv Gandhi*, Varghese Edwin Hillary, Kumaraswamy Athesh, Maria Letícia Carvalho da Cruz Ramos, Gabriela Peres de Oliveira Krauss, Gnanasekaran Jothi, Gurunagarajan Sridharan, Rengaraju Sivasubramanian, Govindasamy Hariharan, Alan Bruno Silva Vasconcelos, Monalisa Martins Montalvão, Stanislaus Antony Ceasar, Valdete Kaliane da Silva Calisto and Ricardo Queiroz Gurgel

Volume 24, Issue 13, 2024

Published on: 07 September, 2023

Page: [1293 - 1305] Pages: 13

DOI: 10.2174/1389557523666230907093441

Price: $65

Abstract

Background: Neurodegenerative diseases (NDs) have become a common and growing cause of mortality and morbidity worldwide, especially in older adults. The natural flavonoids found in fruits and vegetables have been shown to have therapeutic effects against many diseases, including NDs; however, in general, flavonoids have limited bioavailability to the target cells. One promising strategy to increase bioavailability is to entrap them in nanocarriers.

Objective: This article aims to review the potential role of nanocarriers in enhancing the antineuroinflammatory efficacy of flavonoids in experimentally induced ND.

Methods: A literature search was conducted in the scientific databases using the keywords “neurodegenerative”, “anti-neuroinflammatory”, “dietary flavonoids,” “nanoparticles”, and “therapeutic mechanisms”.

Results: A total of 289 articles were initially identified, of which 45 articles reported on flavonoids. After completion of the selection process, five articles that met the criteria of the review were selected for analysis. Preclinical studies identified in this review showed that nanoencapsulated flavonoids attenuated cognitive impairment and seizure, improved behavioral patterns, and reduced levels of astrocytes. Importantly, they exhibited strong antioxidant properties, increasing the levels of antioxidant enzymes and reducing oxidative stress (OS) biomarkers. Moreover, nanocarrier-complexed flavonoids decreased the levels of the pro-inflammatory cytokines, interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nod-like receptor protein 3 inflammasome activation (NLRP3). They also had remarkable effects on important ND-related neurotransmitters, improved cognitive function via cholinergic neurotransmission, and increased prefrontal cortical and hippocampal norepinephrine (NE) and 5-hydroxytryptamine (5-HT).

Conclusion: Nanoencapsulated flavonoids should, therefore, be considered a novel therapeutic approach for the treatment of NDs.

« Previous
Graphical Abstract

[1]
Zhu, Y.; Afolabi, L.O.; Wan, X.; Shim, J.S.; Chen, L. TRIM family proteins: Roles in proteostasis and neurodegenerative diseases. Open Biol., 2022, 12(8), 220098.
[http://dx.doi.org/10.1098/rsob.220098] [PMID: 35946309]
[2]
Tian, Y.; Meng, L.; Zhang, Z. What is strain in neurodegenerative diseases? Cell. Mol. Life Sci., 2020, 77(4), 665-676.
[http://dx.doi.org/10.1007/s00018-019-03298-9] [PMID: 31531680]
[3]
Rani, K.; Mukherjee, R.; Singh, E.; Kumar, S.; Sharma, V.; Vishwakarma, P.; Bharti, P.S.; Nikolajeff, F.; Dinda, A.K.; Goyal, V.; Kumar, S. Neuronal exosomes in saliva of Parkinson’s disease patients: A pilot study. Parkinsonism Relat. Disord., 2019, 67, 21-23.
[http://dx.doi.org/10.1016/j.parkreldis.2019.09.008] [PMID: 31621600]
[4]
Wolters, F.J.; Chibnik, L.B.; Waziry, R.; Anderson, R.; Berr, C.; Beiser, A.; Bis, J.C.; Blacker, D.; Bos, D.; Brayne, C.; Dartigues, J.F.; Darweesh, S.K.L.; Davis-Plourde, K.L.; de Wolf, F.; Debette, S.; Dufouil, C.; Fornage, M.; Goudsmit, J.; Grasset, L.; Gudnason, V.; Hadjichrysanthou, C.; Helmer, C.; Ikram, M.A.; Ikram, M.K.; Joas, E.; Kern, S.; Kuller, L.H.; Launer, L.; Lopez, O.L.; Matthews, F.E.; McRae-McKee, K.; Meirelles, O.; Mosley, T.H., Jr; Pase, M.P.; Psaty, B.M.; Satizabal, C.L.; Seshadri, S.; Skoog, I.; Stephan, B.C.M.; Wetterberg, H.; Wong, M.M.; Zettergren, A.; Hofman, A. Twenty-seven-year time trends in dementia incidence in Europe and the United States: The Alzheimer Cohorts Consortium. Neurology, 2020, 95(5), e519-e531.
[http://dx.doi.org/10.1212/WNL.0000000000010022] [PMID: 32611641]
[5]
Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A.; Mallikarjuana, N.N.; Manohar, S.; Liang, H.F.; Kulkarni, A.R.; Sung, H.W.; Sairam, M.; Aminabhavi, T.M. Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J. Control. Release, 2005, 108(2-3), 193-214.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.024] [PMID: 16246446]
[6]
Wolz, M.; Löhle, M.; Strecker, K.; Schwanebeck, U.; Schneider, C.; Reichmann, H.; Grählert, X.; Schwarz, J.; Storch, A. Levetiracetam for levodopa-induced dyskinesia in Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. J. Neural Transm., 2010, 117(11), 1279-1286.
[http://dx.doi.org/10.1007/s00702-010-0472-x] [PMID: 20803300]
[7]
El-Saber Batiha, G.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules., 2020, 10(2), 202.
[http://dx.doi.org/10.3390/biom10020202] [PMID: 32019140]
[8]
El-Saber, B.G.; Beshbishy, M.A.; Adeyemi, S.O.; Nadwa, H.E.; Rashwan, K.M.E.; Alkazmi, L.M.; Elkelish, A.A.; Igarashi, I. Phytochemical screening and antiprotozoal effects of the methanolic Berberis Vulgaris and acetonic Rhus coriaria extracts. Molecules., 2020, 25(3), 550.
[http://dx.doi.org/10.3390/molecules25030550] [PMID: 32012795]
[9]
Kaur, M.; Michael, J.A.; Hoy, K.E.; Fitzgibbon, B.M.; Ross, M.S.; Iseger, T.A.; Arns, M.; Hudaib, A.R.; Fitzgerald, P.B. Investigating high- and low-frequency neuro-cardiac-guided TMS for probing the frontal vagal pathway. Brain Stimul., 2020, 13(3), 931-938.
[http://dx.doi.org/10.1016/j.brs.2020.03.002] [PMID: 32205066]
[10]
Yan, C.; Hu, X.; Guan, P.; Hou, T.; Chen, P.; Wan, D.; Zhang, X.; Wang, J.; Wang, C. Highly biocompatible graphene quantum dots: Green synthesis, toxicity comparison and fluorescence imaging. J. Mater. Sci., 2020, 55(3), 1198-1215.
[http://dx.doi.org/10.1007/s10853-019-04079-2]
[11]
Bonsack, F.; Sukumari-Ramesh, S. Entinostat improves acute neurological outcomes and attenuates hematoma volume after Intracerebral Hemorrhage. Brain Res., 2021, 1752, 147222.
[http://dx.doi.org/10.1016/j.brainres.2020.147222] [PMID: 33358731]
[12]
Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[13]
Batiha, G.E.S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[14]
Wang, H. Modeling neurological diseases with human brain organoids. Front. Synaptic Neurosci., 2018, 10, 15.
[http://dx.doi.org/10.3389/fnsyn.2018.00015] [PMID: 29937727]
[15]
Salehi, B.; Fokou, P.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals., 2019, 12(1), 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[16]
Hernández-Aquino, E.; Muriel, P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J. Gastroenterol., 2018, 24(16), 1679-1707.
[http://dx.doi.org/10.3748/wjg.v24.i16.1679] [PMID: 29713125]
[17]
Evans, J.A.; Mendonca, P.; Soliman, K.F.A. Neuroprotective effects and therapeutic potential of the citrus flavonoid hesperetin in neurodegenerative diseases. Nutrients, 2022, 14(11), 2228.
[http://dx.doi.org/10.3390/un14112228] [PMID: 35684025]
[18]
Nelson, A.J.; Sniderman, A.D.; Ditmarsch, M.; Dicklin, M.R.; Nicholls, S.J.; Davidson, M.H.; Kastelein, J.J.P. Cholesteryl ester transfer protein inhibition reduces major adverse cardiovascular events by lowering apolipoprotein B levels. Int. J. Mol. Sci., 2022, 23(16), 9417.
[http://dx.doi.org/10.3390/ijms23169417] [PMID: 36012684]
[19]
Drouet, S.; Tungmunnithum, D.; Lainé, É.; Hano, C. Gene expression analysis and metabolite profiling of silymarin biosynthesis during milk thistle (Silybum marianum (L.) Gaertn.) fruit ripening. Int. J. Mol. Sci., 2020, 21(13), 4730.
[http://dx.doi.org/10.3390/ijms21134730] [PMID: 32630801]
[20]
Ashraf, O.; Patel, N.V.; Hanft, S.; Danish, S.F. Laser-induced thermal therapy in Neuro-oncology: A review. World Neurosurg., 2018, 112, 166-177.
[http://dx.doi.org/10.1016/j.wneu.2018.01.123] [PMID: 29410102]
[21]
Pinheiro, R.G.R.; Coutinho, A.J.; Pinheiro, M.; Neves, A.R. Nanoparticles for targeted brain drug delivery: What do we know? Int. J. Mol. Sci., 2021, 22(21), 11654.
[http://dx.doi.org/10.3390/ijms222111654] [PMID: 34769082]
[22]
Zhang, Y.; Chen, X.; Gueydan, C.; Han, J. Plasma membrane changes during programmed cell deaths. Cell Res., 2018, 28(1), 9-21.
[http://dx.doi.org/10.1038/cr.2017.133] [PMID: 29076500]
[23]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D. P referred reporting items for systematic reviews and metaanalyses: the PRISMA statement. PloS Med., 2009, 6(7), e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[24]
Rishitha, N.; Muthuraman, A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci., 2018, 199, 80-87.
[http://dx.doi.org/10.1016/j.lfs.2018.03.010] [PMID: 29522770]
[25]
Hashemian, M.; Ghasemi-Kasman, M.; Ghasemi, S.; Akbari, A.; Moalem-Banhangi, M.; Zare, L.; Ahmadian, S.R. Fabrication and evaluation of novel quercetin-conjugated Fe3O4–β-cyclodextrin nanoparticles for potential use in epilepsy disorder. Int. J. Nanomedicine, 2019, 14, 6481-6495.
[http://dx.doi.org/10.2147/IJN.S218317] [PMID: 31496698]
[26]
Khalaj, R.; Hajizadeh Moghaddam, A.; Zare, M. Hesperetin and it nanocrystals ameliorate social behavior deficits and oxido-inflammatory stress in rat model of autism. Int. J. Dev. Neurosci., 2018, 69(1), 80-87.
[http://dx.doi.org/10.1016/j.ijdevneu.2018.06.009] [PMID: 29966739]
[27]
Ashraf, A.; Mahmoud, P.A.; Reda, H.; Mansour, S.; Helal, M.H.; Michel, H.E.; Nasr, M. Silymarin and silymarin nanoparticles guard against chronic unpredictable mild stress induced depressivelike behavior in mice: involvement of neurogenesis and NLRP3 inflammasome. J. Psychopharmacol., 2019, 33(5), 615-631.
[http://dx.doi.org/10.1177/0269881119836221] [PMID: 30896354]
[28]
Gaba, B.; Khan, T.; Haider, M.F.; Alam, T.; Baboota, S.; Parvez, S.; Ali, J. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s Disease Model. Bio. Med. Res. Int., 2019, 2019, 1-20.
[http://dx.doi.org/10.1155/2019/2382563] [PMID: 31111044]
[29]
Chamundeeswari, M.; Jeslin, J.; Verma, M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett., 2019, 17(2), 849-865.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[30]
Gordon, R.; Woodruff, T.M. Neuroinflammation as a therapeutic target in neurodegenerative diseases; Elsevier Inc., 2017.
[http://dx.doi.org/10.1016/B978-0-12-805120-7.00003-8]
[31]
Jung, Y.J.; Tweedie, D.; Scerba, M.T.; Greig, N.H. Neuroinflammation as a factor of neurodegenerative disease: Thalidomide analogs as treatments. Front. Cell Dev. Biol., 2019, 7, 313.
[http://dx.doi.org/10.3389/fcell.2019.00313] [PMID: 31867326]
[32]
Landgraf, A.D.; Alsegiani, A.S.; Alaqel, S.; Thanna, S.; Shah, Z.A.; Sucheck, S.J. Neuroprotective and anti-neuroinflammatory properties of ebselen derivatives and their potential to inhibit neurodegeneration. ACS Chem. Neurosci., 2020, 11(19), 3008-3016.
[http://dx.doi.org/10.1021/acschemneuro.0c00328] [PMID: 32840996]
[33]
Chen, W.W.; Zhang, X.; Huang, W.J. Role of neuroinflammation in neurodegenerative diseases (Review) Mol. Med. Rep., 2016, 13(4), 3391-3396.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[34]
Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers. Dement., 2013, 9(1), 63-75.e2.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007] [PMID: 23305823]
[35]
Rasool, M.; Malik, A.; Qureshi, M.S.; Manan, A.; Pushparaj, P.N.; Asif, M.; Qazi, M.H.; Qazi, A.M.; Kamal, M.A.; Gan, S.H.; Sheikh, I.A. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/979730] [PMID: 24864161]
[36]
Di Paolo, M.; Papi, L.; Gori, F.; Turillazzi, E. Natural products in neurodegenerative diseases: A great promise but an ethical challenge. Int. J. Mol. Sci., 2019, 20(20), 5170.
[http://dx.doi.org/10.3390/ijms20205170] [PMID: 31635296]
[37]
Cooper, E.L.; Ma, M.J. Alzheimer Disease: Clues from traditional and complementary medicine. J. Tradit. Complement. Med., 2017, 7(4), 380-385.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.003] [PMID: 29034183]
[38]
Maher, P. The potential of flavonoids for the treatment for the neurodegenerative diseaseas. Int. J. Mol. Sci., 2019, 20(12), 3056.
[http://dx.doi.org/10.3390/ijms20123056] [PMID: 31234550]
[39]
Khan, A.; Ikram, M.; Hahm, J.R.; Kim, M.O. Antioxidant and anti-inflammatory effects of citrus flavonoid hesperetin: Special focus on neurological disorders. Antioxidants, 2020, 9(7), 609.
[http://dx.doi.org/10.3390/antiox9070609] [PMID: 32664395]
[40]
El-Ghazaly, M.A.; Fadel, N.; Rashed, E.; El-Batal, A.; Kenawy, S.A. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can. J. Physiol. Pharmacol., 2017, 95(2), 101-110.
[http://dx.doi.org/10.1139/cjpp-2016-0183] [PMID: 27936913]
[41]
Nasr, M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv., 2016, 23(4), 1444-1452.
[http://dx.doi.org/10.3109/10717544.2015.1092619] [PMID: 26401600]
[42]
Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol., 2013, 19, 29-43.
[http://dx.doi.org/10.1016/j.ifset.2013.03.002]
[43]
Jung, U.J.; Jeon, M.T.; Choi, M.S.; Kim, S.R. Silibinin attenuates MPP⁺-induced neurotoxicity in the substantia nigra in vivo. J. Med. Food, 2014, 17(5), 599-605.
[http://dx.doi.org/10.1089/jmf.2013.2926] [PMID: 24660866]
[44]
Marrazzo, G.; Bosco, P.; La Delia, F.; Scapagnini, G.; Di Giacomo, C.; Malaguarnera, M.; Galvano, F.; Nicolosi, A.; Li Volti, G. Neuroprotective effect of silibinin in diabetic mice. Neurosci. Lett., 2011, 504(3), 252-256.
[http://dx.doi.org/10.1016/j.neulet.2011.09.041] [PMID: 21970972]
[45]
Shangguan, M.; Lu, Y.; Qi, J.; Han, J.; Tian, Z.; Xie, Y.; Hu, F.; Yuan, H.; Wu, W. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin. J. Biomater. Appl., 2014, 28(6), 887-896.
[http://dx.doi.org/10.1177/0885328213485141] [PMID: 24008629]
[46]
Tian, C.; Asghar, S.; Wu, Y.; Chen, Z.; Jin, X.; Yin, L.; Huang, L.; Ping, Q.; Xiao, Y. Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers. Int. J. Nanomed., 2017, 12, 7897-7911.
[http://dx.doi.org/10.2147/IJN.S145988] [PMID: 29138557]
[47]
Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; Harper, S.; Friedman, J.M.; Nosanchuk, J.D.; Friedman, A.J. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine, 2015, 11(1), 195-206.
[http://dx.doi.org/10.1016/j.nano.2014.09.004] [PMID: 25240595]
[48]
Lindberg, M.H.; Andersen, M.C.; Jørgensen, V.L.; Skibsted, L.H. Radical scavenging by dietary flavonoids. A kinetic study of antioxidant efficiencies. Eur. Food Res. Technol., 2000, 211(4), 240-246.
[http://dx.doi.org/10.1007/s002170000189]
[49]
Yu, J.; Wang, L.; Walzem, R.L.; Miller, E.G.; Pike, L.M.; Patil, B.S. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J. Agric. Food Chem., 2005, 53(6), 2009-2014.
[http://dx.doi.org/10.1021/jf0484632] [PMID: 15769128]
[50]
Kumar, M.; Misra, A.; Babbar, A.K.; Mishra, A.K.; Mishra, P.; Pathak, K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int. J. Pharm., 2008, 358(1-2), 285-291.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.029] [PMID: 18455333]
[51]
Psimadas, D.; Georgoulias, P.; Valotassiou, V.; Loudos, G. Molecular nanomedicine towards cancer: ¹¹¹In-labeled nanoparticles. J. Pharm. Sci., 2012, 101(7), 2271-2280.
[http://dx.doi.org/10.1002/jps.23146] [PMID: 22488174]
[52]
Du, L.; Zhang, Y.; Chen, Y.; Zhu, J.; Yang, Y.; Zhang, H.L. Role of microglia in neurological disorders and their potentials as a therapeutic target. Mol. Neurobiol., 2017, 54(10), 7567-7584.
[http://dx.doi.org/10.1007/s12035-016-0245-0] [PMID: 27830532]
[53]
Yee, A.X.; Hsu, Y.T.; Chen, L. A metaplasticity view of the interaction between homeostatic and Hebbian plasticity., Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1715), 20160155.
[http://dx.doi.org/10.1098/rstb.2016.0155] [PMID: 28093549]
[54]
Rothaug, M.; Becker-Pauly, C.; Rose-John, S. The role of interleukin-6 signaling in nervous tissue. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(6), 1218-1227.
[http://dx.doi.org/10.1016/j.bbamcr.2016.03.018] [PMID: 27016501]
[55]
Zhang, Y.; Liu, L.; Peng, Y.L.; Liu, Y.Z.; Wu, T.Y.; Shen, X.L.; Zhou, J.R.; Sun, D.Y.; Huang, A.J.; Wang, X.; Wang, Y.X.; Jiang, C.L. Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci. Ther., 2014, 20(2), 119-124.
[http://dx.doi.org/10.1111/cns.12170] [PMID: 24279434]
[56]
Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B.G.; Fitzgerald, K.A.; Hornung, V.; Latz, E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, 183(2), 787-791.
[http://dx.doi.org/10.4049/jimmunol.0901363] [PMID: 19570822]
[57]
Eren, İ.; Nazıroğlu, M.; Demirdaş, A. Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem. Res., 2007, 32(7), 1188-1195.
[http://dx.doi.org/10.1007/s11064-007-9289-x] [PMID: 17401662]
[58]
Xu, L.; Ge, J.; Huo, X.; Zhang, Y.; Lau, A.T.Y.; Xu, X. Differential proteomic expression of human placenta and fetal development following e-waste lead and cadmium exposure in utero. Sci. Total Environ., 2016, 550, 1163-1170.
[http://dx.doi.org/10.1016/j.scitotenv.2015.11.084] [PMID: 26895036]
[59]
Gersner, R.; Ekstein, D.; Dhamne, S.C.; Schachter, S.C.; Rotenberg, A. Huperzine A prophylaxis against pentylenetetrazoleinduced seizures in rats is associated with increased cortical inhibition. Epilepsy Res., 2015, 117, 97-103.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.08.012] [PMID: 26432930]
[60]
Visweswari, G.; Prasad, K.S.; Chetan, P.S.; Lokanatha, V.; Rajendra, W. Evaluation of the anticonvulsant effect of Centella asiatica (gotu kola) in pentylenetetrazol-induced seizures with respect to cholinergic neurotransmission. Epilepsy Behav., 2010, 17(3), 332-335.
[http://dx.doi.org/10.1016/j.yebeh.2010.01.002] [PMID: 20144879]
[61]
Garg, A.; Sharma, G.S.; Goyal, A.K.; Ghosh, G.; Si, S.C.; Rath, G. Recent advances in topical carriers of anti-fungal agents. Heliyon., 2020, 6(8), e04663.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04663] [PMID: 32904164]
[62]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: Current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[63]
Martins, S.; Sarmento, B.; Ferreira, D.C.; Souto, E.B. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int. J. Nanomed., 2007, 2(4), 595-607.
[PMID: 18203427]
[64]
Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci., 2020, 7, 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy