Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Review Article

Advances and Future Challenges in Aircraft Fuselage Section Crashworthiness: A Critical Review

Author(s): Saiaf Bin Rayhan*, Yu Chunjin, Md. Mazedur Rahman and Xue Pu*

Volume 16, Issue 5, 2023

Published on: 04 October, 2023

Page: [309 - 320] Pages: 12

DOI: 10.2174/2212797616666230905161308

Price: $65

Abstract

Background: Crashworthiness studies the safety qualification of a vehicle (both airborne and road transports) to protect its occupants during an impact. Before an aircraft can receive transport certification, it must meet a number of crashworthiness requirements, such as the structure's deformation pattern, absorbed kinetic energy profile, and acceleration responses experienced by the components and human body models. Therefore, in recent times, crashworthiness has emerged as a crucial field of study during the early design stages of aircraft, along with other key parameters like weight reduction, load factor, fatigue life estimation, etc.

Objective: The main objective of the present article is to undertake an in-depth analysis of the developments in crashworthiness related to the civil aircraft fuselage section. Furthermore, it aims to identify and address the future challenges that must be overcome to ensure the utmost safety of the occupants.

Methods: Based on the research objectives, the available literature is categorized into three major groups: (i) finite element code validation; (ii) improvement of the crashworthiness criteria; and (iii) impact on different surface models. A methodology to solve fuselage section crashworthiness is briefly described. A review of the research articles discussing general purpose energy absorbers for crashworthy design without any implementation to the fuselage structure is out of the scope of this article.

Results: Experimental testing of fuselage section crashworthiness is expensive and non-repeatable. Furthermore, the intricate structure of the fuselage, with its numerous components, makes it nearly impossible to devise crashworthy design solutions through classical hand calculations alone. As a result, commercial software codes play a crucial role in the development of fuselage section crashworthiness, offering valuable assistance in overcoming these limitations.

Conclusion: Future challenges of crashworthy design involve exploring novel materials and devices to mitigate injury during controlled crash conditions. An intriguing area of study would be the analysis of lattice components, as they have the potential to enhance crashworthiness. Furthermore, as newly designed fuselage sections emerge, it will be crucial to investigate and establish the necessary requirements to ensure compliance with crashworthiness certification standards.

Next »
[1]
Mucino VH. CRASH Encyclopedia of Vibration. 2001; pp. 302-14.
[2]
Ardoino PL. Car crash and safety testing Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection 1997; 189-205.
[http://dx.doi.org/10.1007/978-94-011-5796-4_8]
[3]
Ulrich Seiffert. Integrated automotive safety handbook. (2nd ed.), Warrendale, Pa, USA: SAE International 2014.
[4]
Marcus JH. Dummy and injury criteria for aircraft crashworthiness. FAA 1996; (Apr): 1-6.
[5]
Schwinn DB. Coupling of static and dynamic fuselage design. Aircr Eng 2016; 88(1): 1-15.
[http://dx.doi.org/10.1108/AEAT-12-2013-0231]
[6]
Paz Mendez J, Díaz Garcia J, Romera Rodriguez LE, Teixeira-Dias F. Crashworthiness study on hybrid energy absorbers as vertical struts in civil aircraft fuselage designs. Int J Crashworthiness 2020; 25(4): 430-46.
[http://dx.doi.org/10.1080/13588265.2019.1605723]
[7]
Xianfei Z, Yunwen F, Xiaofeng X, Qiang Q. Evaluate the crashworthiness response of an aircraft fuselage section with luggage contained in the cargo hold. Int J Crashworthiness 2017; 22(4): 347-64.
[http://dx.doi.org/10.1080/13588265.2016.1258957]
[8]
Byar A. Crashworthiness Study of a Boeing 737 Fuselage Section 2003.
[9]
Hillmann J, Konig C, Wang X. 10 Years of Crash Simulation at Volkswagon Second International LS-DYNA3D Conference San Francisco, California 1994.
[10]
Fasanella EL, Widmayer E, Robinson MP. Structural analysis of the controlled impact demonstration of a jet transport airplane. J Aircr 1987; 24(4): 274-80.
[http://dx.doi.org/10.2514/3.45437]
[11]
Abromowitz A, Smith T, Vu T. Vertical Drop Test of a Narrow- Body Transport Fuselage Section with a Conformable Auxiliary Fuel Tank Onboard FAA. Washington, USA: Federal Aviation Administration 2000.
[12]
Abramowitz A, Smith TG, Vu T, Zvanya JR. Vertical Drop Test of a Narrow-Body Transport Fuselage Section with Overhead Stowage Bins SAE Technical Paper Series 2002.
[http://dx.doi.org/10.4271/2002-01-2995]
[13]
Fasanella EL, Jackson KE, Jones YT, Frings G, Vu T. Crash Simulation of a Boeing 737 Fuselage Section Vertical Drop Test. 2004. Available from: ntrs.nasa.gov
[14]
Jackson KE, Fasanella EL. Crash Simulation of a Vertical Drop Test of a B737 Fuselage Section with Overhead Bins and Luggage ntrs.nasa.gov
[15]
Jackson KE, Fasanella EL. Crash simulation of a vertical drop test of a commuter-class aircraft. Int J Crashworthiness 2005; 10(2): 173-82.
[http://dx.doi.org/10.1533/ijcr.2005.0336]
[16]
Jackson KE, Fasanella EL. Test-Analysis Correlation of a Crash Simulation of a Vertical Drop Test of a Commuter-Category Aircraft. Available from: ntrs.nasa.gov
[17]
Kumakura I, Minegishi M, Iwasaki K, Shoji H, Yoshimoto N, Terada H, et al. Vertical Drop Test of a Transport Fuselage Section SAE Technical Paper Series 2002.
[http://dx.doi.org/10.4271/2002-01-2997]
[18]
Kumakura I, Minegishi M, Iwasaki K, Shoji H, Miyaki H, Yoshimoto N, et al. Summary of vertical drop tests of YS-11 transport fuselage sections SAE Technical Paper Series 2003.
[19]
Liu X, Guo J, Bai C, Sun X, Mou R. Drop test and crash simulation of a civil airplane fuselage section. Chin J Aeronauti 2015; 28(2): 447-56.
[http://dx.doi.org/10.1016/j.cja.2015.01.007]
[20]
Jackson KE, Fasanella EL. Crash testing and simulation of a Cessna 172 Aircraft: Hard landing onto concrete. 2016. Available from: ntrs.nasa.gov
[21]
Jackson KE, Fasanella EL, Littell JD, Annett MS, Stimson CM. Simulating the impact response of three full-scale crash tests of cessna 172 Aircraft. 2017. Available from: ntrs.nasa.gov
[22]
Di Palma L, Di Caprio F, Chiariello A, et al. Vertical drop test of composite fuselage section of a regional aircraft. AIAA J 2020; 58(1): 474-87.
[http://dx.doi.org/10.2514/1.J058517]
[23]
Perfetto D, De Luca A, Lamanna G, et al. Drop test simulation and validation of a full composite fuselage section of a regional aircraft. Procedia Struct Integr 2018; 12: 380-91.
[http://dx.doi.org/10.1016/j.prostr.2018.11.079]
[24]
Caputo F, Lamanna G, Perfetto D, Chiariello A, Di Caprio F, Di Palma L. Experimental and numerical crashworthiness study of a full-scale composite fuselage section. AIAA J 2021; 59(2): 700-18.
[http://dx.doi.org/10.2514/1.J059216]
[25]
Lee K, Jung JW, Hong JW. Advanced aircraft analysis of an F-4 Phantom on a reinforced concrete building. Nucl Eng Des 2014; 273: 505-28.
[http://dx.doi.org/10.1016/j.nucengdes.2014.02.032]
[26]
Duan Z, Zhang L, Wen L, et al. Experimental research on impact loading characteristics by full-scale airplane impacting on concrete target. Nucl Eng Des 2018; 328: 292-300.
[http://dx.doi.org/10.1016/j.nucengdes.2018.01.021]
[27]
Xue P, Ding L, Qiao F, Yu X. Crashworthiness study of a civil aircraft fuselage section. Lat Am J Solids Struct 2014; 11(9): 1615-27.
[http://dx.doi.org/10.1590/S1679-78252014000900007]
[28]
Mou HL, Zou TC, Feng ZY, Xie J. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens. Lat Am J Solids Struct 2016; 13(6): 1186-202.
[http://dx.doi.org/10.1590/1679-78252446]
[29]
Ren Y, Xiang J, Zheng J, Luo Z. Crashworthiness analysis of aircraft fuselage with sine-wave beam structure. Chin J Aeronauti 2016; 29(2): 403-10.
[http://dx.doi.org/10.1016/j.cja.2016.02.002]
[30]
Meng FX, Zhou Q, Yang JL. Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage. Int J Crashworthiness 2009; 14(1): 83-97.
[http://dx.doi.org/10.1080/13588260802517360]
[31]
Xue P, Wang L, Qiao CF. Crashworthiness study on fuselage section and struts under cabin floor. Int J Prot Struct 2011; 2(4): 515-25.
[http://dx.doi.org/10.1260/2041-4196.2.4.515]
[32]
Heimbs S, Strobl F, Middendorf P. Integration of a composite crash absorber in aircraft fuselage vertical struts. Int J Vehicle Struct Syst 2011; 3(2)
[http://dx.doi.org/10.4273/ijvss.3.2.03]
[33]
Paz J, Romera L, Díaz J. Crashworthiness optimization of aircraft hybrid energy absorbers enclosing honeycomb and foam structures. AIAA J 2017; 55(2): 652-61.
[http://dx.doi.org/10.2514/1.J055245]
[34]
Paz J, Díaz J, Romera L. Crashworthiness analysis and enhancement of aircraft structures under vertical impact scenarios. J Aircr 2020; 57(1): 3-12.
[http://dx.doi.org/10.2514/1.C035435]
[35]
Ren Y, Zhang H, Xiang J. A novel aircraft energy absorption strut system with corrugated composite plate to improve crashworthiness. Int J Crashworthiness 2018; 23(1): 1-10.
[http://dx.doi.org/10.1080/13588265.2017.1301082]
[36]
Ren Y, Xiang J. Improvement of aircraft crashworthy performance using inversion failure strut system. Aircr Eng Aerosp Technol 2017; 89(2): 330-7.
[http://dx.doi.org/10.1108/AEAT-09-2015-0205]
[37]
Zou T, Mou H, Feng Z. Research on effects of oblique struts on crashworthiness of composite fuselage sections. J Aircr 2012; 49(6): 2059-63.
[http://dx.doi.org/10.2514/1.C031867]
[38]
Delsart D, Portemont G, Waimer M. Crash testing of a CFRP commercial aircraft sub-cargo fuselage section. Procedia Struct Integr 2016; 2: 2198-205.
[http://dx.doi.org/10.1016/j.prostr.2016.06.275]
[39]
Marulo F, Guida M, Di Caprio F, Ignarra M, Lamboglia A, Gambino B. Fuselage crashworthiness lower lobe dynamic test. Procedia Eng 2016; 167: 120-8.
[http://dx.doi.org/10.1016/j.proeng.2016.11.678]
[40]
Feng Z, Mou H, Zou T, Ren J. Research on effects of composite skin on crashworthiness of composite fuselage section. Int J Crashworthiness 2013; 18(5): 459-64.
[http://dx.doi.org/10.1080/13588265.2013.805291]
[41]
Waimer M, Kohlgrüber D, Keck R, Voggenreiter H. Contribution to an improved crash design for a composite transport aircraft fuselage-Development of a kinematics model and an experimental component test setup. CEAS Aeronaut J 2013; 4(3): 265-75.
[http://dx.doi.org/10.1007/s13272-013-0070-3]
[42]
Riccio A, Saputo S, Sellitto A, Di Caprio F. A numerical assessment on the influences of material toughness on the crashworthiness of a composite fuselage barrel. Appl Sci 2020; 10(6): 2019.
[http://dx.doi.org/10.3390/app10062019]
[43]
Schatrow P, Waimer M. Investigation of a crash concept for CFRP transport aircraft based on tension absorption. Int J Crashworthiness 2014; 19(5): 524-39.
[http://dx.doi.org/10.1080/13588265.2014.917498]
[44]
Schatrow P, Waimer M. Crash concept for composite transport aircraft using mainly tensile and compressive absorption mechanisms. CEAS Aeronaut J 2016; 7(3): 471-82.
[http://dx.doi.org/10.1007/s13272-016-0203-6]
[45]
An W, Wang S, Han X. Crashworthiness optimization design of regional airliner’s fuselage section through topometry optimization. AIAA J 2021; 59(11): 4754-63.
[http://dx.doi.org/10.2514/1.J060049]
[46]
Wang T, An J, He H, Wen X, Xi X. A novel 3D impact energy absorption structure with negative Poisson’s ratio and its application in aircraft crashworthiness. Compos Struct 2021; 262: 113663.
[http://dx.doi.org/10.1016/j.compstruct.2021.113663]
[47]
Li QM, Mines RAW, Birch RS. The crush behaviour of Rohacell-51WF structural foam. Int J Solids Struct 2000; 37(43): 6321-41.
[http://dx.doi.org/10.1016/S0020-7683(99)00277-2]
[48]
Jackson KE, Fasanella EL, Lyle KH. ntrs.nasa.gov 2003.
[49]
Zheng J, Xiang J, Luo Z, Ren Y. Crashworthiness design of transport aircraft subfloor using polymer foams. Int J Crashworthiness 2011; 16(4): 375-83.
[http://dx.doi.org/10.1080/13588265.2011.593979]
[50]
Ren Y, Xiang J. Energy absorption structures design of civil aircraft to improve crashworthiness. Aeronaut J 2014; 118(1202): 383-98.
[http://dx.doi.org/10.1017/S0001924000009180]
[51]
Rayhan SB, Pu X. Crashworthiness study of a newly developed civil aircraft fuselage section with auxiliary fuel tank reinforced with composite foam. Aerospace 2023; 10(3): 314-4.
[http://dx.doi.org/10.3390/aerospace10030314]
[52]
Tay YY, Flores P, Lankarani H. Crashworthiness analysis of an aircraft fuselage section with an auxiliary fuel tank using a hybrid multibody/plastic hinge approach. Int J Crashworthiness 2020; 25(1): 95-105.
[http://dx.doi.org/10.1080/13588265.2018.1524547]
[53]
Maia LG, De Oliveira PHIA. A Review of Finite Element Simulation of Aircraft Crashworthiness SAE Technical Paper Series 2005.
[http://dx.doi.org/10.4271/2005-01-4012]
[54]
Anghileri M, Castelletti L-ML, Tirelli M. Fluid–structure interaction of water filled tanks during the impact with the ground. Int J Impact Eng 2005; 31(3): 235-54.
[http://dx.doi.org/10.1016/j.ijimpeng.2003.12.005]
[55]
Heimbs S. Computational methods for bird strike simulations: A review. Comput Struc 2011; 89(23-24): 2093-112.
[http://dx.doi.org/10.1016/j.compstruc.2011.08.007]
[56]
Lai H. Applicability of a design assessment and management for the current ammunition depots in Taiwan. Appl Sci 2020; 10(3): 1041.
[http://dx.doi.org/10.3390/app10031041]
[57]
Abaqus Analysis User’s Manual. Vélizy-Villacoublay, France: Simulia 2016.
[58]
Hedayati R, Sadighi M. Bird Strike. (1st ed.), Woodhead Publishing 2015.
[59]
Fasanella EL, Jackson KE, Sparks CE, Sareen AK. Water impact test and simulation of a composite energy absorbing fuselage section. J Am Helicopter Soc 2005; 50(2): 150-64.
[http://dx.doi.org/10.4050/1.3092852]
[60]
Jackson KE, Fuchs YT. Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section into Water. 2008. Available from: ntrs.nasa.gov
[61]
Shoji H. Hydrodynamic impact estimation of transport fuselage structure with vertical drop water impact tests. 49th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
[62]
Hua C, Fang C, Cheng J. Simulation of fluid-solid interaction on water ditching of an airplane by ale method. J Hydrodynamics. Ser B 2011; 23(5): 637-42.
[63]
Tay YY, Bhonge PS, Lankarani HM. Crash simulations of aircraft fuselage section in water impact and comparison with solid surface impact. Int J Crashworthiness 2015; 20(5): 464-82.
[http://dx.doi.org/10.1080/13588265.2015.1033972]
[64]
Siemann MH, Langrand B. Coupled fluid-structure computational methods for aircraft ditching simulations: Comparison of ALE-FE and SPH-FE approaches. Comput Struc 2017; 188: 95-108.
[http://dx.doi.org/10.1016/j.compstruc.2017.04.004]
[65]
Müller M, Woidt M, Haupt M, Horst P. Challenges of Fully-Coupled High-Fidelity Ditching Simulations. Aerospace 2019; 6(2): 10.
[http://dx.doi.org/10.3390/aerospace6020010]
[66]
Xiao T, Qin N, Lu Z, Sun X, Tong M, Wang Z. Development of a smoothed particle hydrodynamics method and its application to aircraft ditching simulations. Aerosp Sci Technol 2017; 66: 28-43.
[http://dx.doi.org/10.1016/j.ast.2017.02.022]
[67]
Bisagni C, Pigazzini MS. Modelling strategies for numerical simulation of aircraft ditching. Int J Crashworthiness 2018; 23(4): 377-94.
[http://dx.doi.org/10.1080/13588265.2017.1328957]
[68]
Fasanella EL, Jackson KE, Lyle KH, Sparks CE, Sareen AK. Multi-terrain impact tests and simulations of an energy absorbing fuselage section. J Am Helicopter Soc 2007; 52(2)
[69]
Kellas S, Jackson KE. Multiterrain vertical drop tests of a composite fuselage section. J Am Helicopter Soc 2010; 55(4): 042002.
[http://dx.doi.org/10.4050/JAHS.55.042002]
[70]
Ren Y, Xiang J, Meng S, Yan Y, Zhuang N. Crashworthiness of civil aircraft subject to soft soil and concrete impact surface. Procedia Eng 2014; 80: 193-201.
[http://dx.doi.org/10.1016/j.proeng.2014.09.074]
[71]
Ren Y, Xiang J, Meng S, Yan Y, Zhuang N. General structures harmonization working group report birdstrike FAR/JAR §25571(e)(1), 25631, 25775(b)(c) 2003.
[72]
Bhonge P. A methodology for aircraft seat certification by dynamic finite element analysis [Ph.D. Dissertation]. [Wichita State University]; 2008. The thesis is an open access article as found: https://soar.wichita.edu/bitstream/handle/10057/2069/d08012.pdf?sequence=3&isAllowed=y
[73]
What is Explicit Dynamics in Ansys?Mecheadcom 2019.
[74]
Gokhale NS, et al. Practical Finite Element Analysis. Pune, India: Finite to Infinite 2008.
[75]
LS-DYNA ® Keyword user’s manual volume ii material models Livermore software technology corporation 2014.
[76]
ANSYS LS-DYNA User’s Guide. Canonsburg, Pennsylvania, USA: ANSYS, Inc. 2014.
[77]
ANSYS 2022 R1 Autodyn User’s Manual. Canonsburg, Pennsylvania, USA: ANSYS, Inc. 2022.
[78]
Ansys 2022 R1 Explicit Dynamics Analysis Guide. Canonsburg, Pennsylvania, USA: ANSYS, Inc. 2022.
[79]
Abaqus User Subroutines Reference Manual Vélizy-Villacoublay, France: Simulia 2016.
[80]
Dytran User’s Manual. 2021.
[81]
Introduction to Explicit Analysis using RADIOSS – A Study Guide. Troy, Michigan, USA: Altair Engineering Inc. 2021.
[82]
Tutorial and material calibration examples for PAM-CRASH, PAM-FORM and PAM-OPT. Stuttgart. Germany: University of Stuttgart 2013.
[83]
Occupant safety simulation Munich, Germany: Siemens. 2018.
[84]
Cristillo D, Di Caprio F, Pezzella C, et al. On numerical models for cube drop test of bladder fuel tank for aeronautical applications. J Composit Sci 2022; 6(3): 99.
[http://dx.doi.org/10.3390/jcs6030099]
[85]
Luo C, Liu H, Yang J, Liu K. Simulation and analysis of crashworthiness of fuel tank for helicopters. Chin J Aeronauti 2007; 20(3): 230-5.
[http://dx.doi.org/10.1016/S1000-9361(07)60037-5]
[86]
Yang X, Zhang Z, Yang J, Sun Y. Fluid–structure interaction analysis of the drop impact test for helicopter fuel tank. Springerplus 2016; 5(1): 1573.
[http://dx.doi.org/10.1186/s40064-016-3040-5] [PMID: 27652146]
[87]
Fasanella E, Jackson K. Best Practices Simulation for Crash Modeling. 2002. Available from: ntrs.nasa.gov
[88]
Aslam MA, Rayhan SB. ke Z, Yu WJ. Ballistic gelatin Lagrange Mooney-Rivlin material model as a substitute of bird in finite element bird strike case studies. Lat Am J Solids Struct 2020; 17(6): e298.
[http://dx.doi.org/10.1590/1679-78256215]
[89]
Riccio A, Saputo S, Sellitto A, Russo A, Di Caprio F, Di Palma L. An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles. Aerospace 2019; 6(6): 72.
[http://dx.doi.org/10.3390/aerospace6060072]
[90]
Yonghu W, Dongwei S, Fujii Y, Takita A, Arak R, Wei H. Experimental and numerical study of water impact investigations for aircraft crashworthiness application analysis. 11th World Congress on Structural and Multidisciplinary Optimisation.
[91]
Belytschko T, Ong JSJ, Kennedy JM, Liu WK. Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 1984; 43(3): 251-76.
[http://dx.doi.org/10.1016/0045-7825(84)90067-7]
[92]
Adams A, Lankarani HM. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness. Int J Crashworthiness 2003; 8(4): 401-13.
[http://dx.doi.org/10.1533/ijcr.2003.0234]
[93]
Yu ZF, Gu HS, Wang H, Yi PY. Crash simulation of the fuselage section with central wing box for a regional jet. Int J Crashworthiness 2013; 18(1): 19-28.
[http://dx.doi.org/10.1080/13588265.2012.730213]
[94]
Rayhan SB, Pu X, Huilong X. Modeling of fuel in aircraft crashworthiness study with auxiliary fuel tank. Int J Impact Eng 2023; 173: 104449.
[http://dx.doi.org/10.1016/j.ijimpeng.2022.104449]
[95]
Prus C, Vinuesa R, Schlatter P, Tembrás E, Mestres E, Berro Ramírez JP. Impact simulation and optimisation of elastic fuel tanks reinforced with exoskeleton for aerospace applications. Int J Crashworthiness 2017; 22(3): 271-93.
[http://dx.doi.org/10.1080/13588265.2016.1248806]
[96]
Kim DH, Kim S-W. Numerical investigation of impact-induced damage of auxiliary composite fuel tanks on Korean Utility Helicopter. Compos, Part B Eng 2019; 165: 301-11.
[http://dx.doi.org/10.1016/j.compositesb.2018.11.117]
[97]
Kim SC, Kim HG. ALE numerical simulation of the crash impact test of an external auxiliary fuel tank. Int J Crashworthiness 2019; 24(6): 593-605.
[http://dx.doi.org/10.1080/13588265.2018.1495594]
[98]
Mou H, Du Y, Zou T. Effects of different roll angles on civil aircraft fuselage crashworthiness. Adv Aircraft Spacecraft Sci 2015; 2(4): 391-401.
[http://dx.doi.org/10.12989/aas.2015.2.4.391]
[99]
Rayhan SB, Pu X. A Case Study on the Effect of Uncertain Impacts of a Civil Aircraft Fuselage Section with Auxiliary Fuel Tank. ASME 2021 International Mechanical Engineering Congress and Exposition.
[http://dx.doi.org/10.1115/IMECE2021-71009]
[100]
Pan C, Han Y, Lu J. Design and Optimization of Lattice Structures: A Review. Appl Sci 2020; 10(18): 6374.
[http://dx.doi.org/10.3390/app10186374]
[101]
Vasiliev VV, Barynin VA, Razin AF. Anisogrid composite lattice structures-development and aerospace applications. Compos Struct 2012; 94(3): 1117-27.
[http://dx.doi.org/10.1016/j.compstruct.2011.10.023]
[102]
Hühne C. Advanced Lattice Structures for Composite Airframes. Braunschweig, Germany: German Aerospace Centre 2013.
[103]
Dubovikov E, Fomin V, Kondakov I, Shanygin A, Vedernikov D. Development of rational hybrid fuselage structure for prospective civil aircraft. Proc Inst Mech Eng Part G J Aerosp Eng 2018; 232(14): 2673-80.
[http://dx.doi.org/10.1177/0954410018785501]
[104]
Tao W, Leu MC. Design of lattice structure for additive manufacturing. IEEE Xplore 2016; pp. 325-32.
[http://dx.doi.org/10.1109/ISFA.2016.7790182]
[105]
Mukhopadhyay V, Welstead J, Quinlan J, Guynn MD. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts. AIAA Modeling and Simulation Technologies Conference. Washington, D.C.: AIAA 2016.
[http://dx.doi.org/10.2514/6.2016-4419]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy