Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Characterization of Central and Nasal Orbital Adipose Stem Cells and their Neural Differentiation Footprints

Author(s): Fatemeh Sanie-Jahromi, M. Hossein Nowroozzadeh, Mina Shaabanian, Behzad Khademi*, Naser Owji* and Davood Mehrabani

Volume 19, Issue 8, 2024

Published on: 12 September, 2023

Page: [1111 - 1119] Pages: 9

DOI: 10.2174/1574888X19666230905114246

Price: $65

conference banner
Abstract

Background: The unique potential of stem cells to restore vision and regenerate damaged ocular cells has led to the increased attraction of researchers and ophthalmologists to ocular regenerative medicine in recent decades. In addition, advantages such as easy access to ocular tissues, non-invasive follow-up, and ocular immunologic privilege have enhanced the desire to develop ocular regenerative medicine.

Objective: This study aimed to characterize central and nasal orbital adipose stem cells (OASCs) and their neural differentiation potential.

Methods: The central and nasal orbital adipose tissues extracted during an upper blepharoplasty surgery were explant-cultured in Dulbecco’s Modified Eagle Medium (DMEM)/F12 supplemented with 10% fetal bovine serum (FBS). Cells from passage 3 were characterized morphologically by osteogenic and adipogenic differentiation potential and by flow cytometry for expression of mesenchymal (CD73, CD90, and CD105) and hematopoietic (CD34 and CD45) markers. The potential of OASCs for the expression of NGF, PI3K, and MAPK and to induce neurogenesis was assessed by real-time PCR.

Results: OASCs were spindle-shaped and positive for adipogenic and osteogenic induction. They were also positive for mesenchymal and negative for hematopoietic markers. They were positive for NGF expression in the absence of any significant alteration in the expression of PI3K and MAPK genes. Nasal OASCs had higher expression of CD90, higher potential for adipogenesis, a higher level of NGF expression under serum-free supplementation, and more potential for neuron-like morphology.

Conclusion: We suggested the explant method of culture as an easy and suitable method for the expansion of OASCs. Our findings denote mesenchymal properties of both central and nasal OASCs, while mesenchymal and neural characteristics were expressed stronger in nasal OASCs when compared to central ones. These findings can be added to the literature when cell transplantation is targeted in the treatment of neuro-retinal degenerative disorders.

Graphical Abstract

[1]
Miotti G, Parodi PC, Zeppieri M. Stem cell therapy in ocular pathologies in the past 20 years. World J Stem Cells 2021; 13(5): 366-85.
[http://dx.doi.org/10.4252/wjsc.v13.i5.366] [PMID: 34136071]
[2]
Caras IW, Collins LR, Creasey AA. A stem cell journey in ophthalmology: From the bench to the clinic. Stem Cells Transl Med 2021; 10(12): 1581-7.
[http://dx.doi.org/10.1002/sctm.21-0239] [PMID: 34515419]
[3]
Posarelli M, Romano D, Tucci D, et al. Ocular-surface regeneration therapies for eye disorders: The state of the art. BioTech 2023; 12(2): 48.
[http://dx.doi.org/10.3390/biotech12020048] [PMID: 37366796]
[4]
Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: History, progress, and challenges. Annu Rev Chem Biomol Eng 2011; 2(1): 403-30.
[http://dx.doi.org/10.1146/annurev-chembioeng-061010-114257] [PMID: 22432625]
[5]
Steindler DA, Okun MS, Scheffler B. Stem cell pathologies and neurological disease. Mod Pathol 2012; 25(2): 157-62.
[http://dx.doi.org/10.1038/modpathol.2011.165] [PMID: 22056951]
[6]
Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells 2019; 8(8): 784.
[http://dx.doi.org/10.3390/cells8080784] [PMID: 31357692]
[7]
Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: Basic biological properties and clinical applications. Stem Cells Int 2012; 2012: 461718.
[http://dx.doi.org/10.1155/2012/461718]
[8]
Charbord P. Bone marrow mesenchymal stem cells: Historical overview and concepts. Hum Gene Ther 2010; 21(9): 1045-56.
[http://dx.doi.org/10.1089/hum.2010.115] [PMID: 20565251]
[9]
Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103(5): 1669-75.
[http://dx.doi.org/10.1182/blood-2003-05-1670] [PMID: 14576065]
[10]
Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 2004; 22(7): 1330-7.
[http://dx.doi.org/10.1634/stemcells.2004-0013] [PMID: 15579650]
[11]
Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1): 115-25.
[http://dx.doi.org/10.3892/ijmm.2015.2413] [PMID: 26719857]
[12]
Mailey B, Hosseini A, Baker J, Young A, Alfonso Z, Hicok K. Adipose-derived stem cells: Methods for isolation and applications for clinical use. Methods Mol Biol 2014; 1210: 161-81.
[http://dx.doi.org/10.1007/978-1-4939-1435-7_13]
[13]
Trevor LV, Riches-Suman K, Mahajan AL, Thornton MJ. Adipose tissue: A source of stem cells with potential for regenerative therapies for wound healing. J Clin Med 2020; 9(7): 2161.
[http://dx.doi.org/10.3390/jcm9072161] [PMID: 32650555]
[14]
Korn BS, Kikkawa DO, Hicok KC. Identification and characterization of adult stem cells from human orbital adipose tissue. Ophthal Plast Reconstr Surg 2009; 25(1): 27-32.
[http://dx.doi.org/10.1097/IOP.0b013e3181912292] [PMID: 19273919]
[15]
Billon N, Iannarelli P, Monteiro MC, et al. The generation of adipocytes by the neural crest. Development 2007; 134(12): 2283-92.
[http://dx.doi.org/10.1242/dev.002642] [PMID: 17507398]
[16]
Johnston MC, Noden DM, Hazelton RD, Coulombre JL, Coulombre AJ. Origins of avian ocular and periocular tissues. Exp Eye Res 1979; 29(1): 27-43.
[http://dx.doi.org/10.1016/0014-4835(79)90164-7] [PMID: 510425]
[17]
Mawrie D, Bhattacharjee K, Sharma A, et al. Human orbital adipose tissue-derived mesenchymal stem cells possess neuroectodermal differentiation and repair ability. Cell Tissue Res 2019; 378(3): 531-42.
[http://dx.doi.org/10.1007/s00441-019-03072-0] [PMID: 31377878]
[18]
Price PJ, Brewer GJ. Serum-free media for neural cell cultures. In: Fedoroff S, Richardson A, Eds. Springer Protocols Handbooks, Protocols for neural cell culture. New York: Springer, Humana Press 2001; pp. 255-64.
[http://dx.doi.org/10.1385/1-59259-207-4:255]
[19]
Gordon J, Amini S. General overview of neuronal cell culture. Methods Mol Biol 2021; 1078: 1-8.
[http://dx.doi.org/10.1007/978-1-0716-1437-2_1]
[20]
Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: Immunomodulatory properties and clinical progress. Stem Cell Res Ther 2020; 11(1): 345.
[http://dx.doi.org/10.1186/s13287-020-01855-9] [PMID: 32771052]
[21]
Blenkinsop TA, Corneo B, Temple S, Stern JH. Ophthalmologic stem cell transplantation therapies. Regen Med 2012; 7(S6): 32-9.
[http://dx.doi.org/10.2217/rme.12.77] [PMID: 23210809]
[22]
Samoila O, Samoila L. Stem cells in the path of light, from corneal to retinal reconstruction. Biomedicines 2021; 9(8): 873.
[http://dx.doi.org/10.3390/biomedicines9080873] [PMID: 34440077]
[23]
Dhamodaran K, Subramani M, Ponnalagu M, Shetty R, Das D. Ocular stem cells: A status update! Stem Cell Res Ther 2014; 5(2): 56.
[http://dx.doi.org/10.1186/scrt445] [PMID: 25158127]
[24]
Billon N, Monteiro MC, Dani C. Developmental origin of adipocytes: New insights into a pending question. Biol Cell 2008; 100(10): 563-75.
[http://dx.doi.org/10.1042/BC20080011] [PMID: 18793119]
[25]
Chen SY, Mahabole M, Horesh E, Wester S, Goldberg JL, Tseng SCG. Isolation and characterization of mesenchymal progenitor cells from human orbital adipose tissue. Invest Ophthalmol Vis Sci 2014; 55(8): 4842-52.
[http://dx.doi.org/10.1167/iovs.14-14441] [PMID: 24994870]
[26]
Priya N, Sarcar S, Majumdar AS, SundarRaj S. Explant culture: A simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. J Tissue Eng Regen Med 2014; 8(9): 706-16.
[http://dx.doi.org/10.1002/term.1569] [PMID: 22837175]
[27]
Maleki M, Ghanbarvand F, Behvarz MR, Ejtemaei M, Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells 2014; 7(2): 118-26.
[http://dx.doi.org/10.15283/ijsc.2014.7.2.118] [PMID: 25473449]
[28]
Moraes DA, Sibov TT, Pavon LF, et al. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res Ther 2016; 7(1): 97.
[http://dx.doi.org/10.1186/s13287-016-0359-3] [PMID: 27465541]
[29]
Rege TA, Hagood JS. Thy‐1 as a regulator of cell‐cell and cell‐matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 2006; 20(8): 1045-54.
[http://dx.doi.org/10.1096/fj.05-5460rev] [PMID: 16770003]
[30]
Barboni E, Gormley AM, Pliego Rivero FB, Vidal M, Morris RJ. Activation of T lymphocytes by cross-linking of glycophospholipid-anchored Thy-1 mobilizes separate pools of intracellular second messengers to those induced by the antigen-receptor/CD3 complex. Immunology 1991; 72(4): 457-63.
[PMID: 1674734]
[31]
Morris RJ, Tiveron MC, Xue GP. The relation of the expression and function of the neuronal glycoprotein Thy-1 to axonal growth. Biochem Soc Trans 1992; 20(2): 401-5.
[http://dx.doi.org/10.1042/bst0200401] [PMID: 1356856]
[32]
Jeng CJ, McCarroll SA, Martin TFJ, et al. Thy-1 is a component common to multiple populations of synaptic vesicles. J Cell Biol 1998; 140(3): 685-98.
[http://dx.doi.org/10.1083/jcb.140.3.685] [PMID: 9456327]
[33]
Hueber A-O, Bernard A-M, Battari CLE, et al. Thymocytes in Thy-1−/− mice show augmented TCR signaling and impaired differentiation. Curr Biol 1997; 7(9): 705-8.
[http://dx.doi.org/10.1016/S0960-9822(06)00300-9] [PMID: 9285719]
[34]
Lung HL, Bangarusamy DK, Xie D, et al. THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 2005; 24(43): 6525-32.
[http://dx.doi.org/10.1038/sj.onc.1208812] [PMID: 16007174]
[35]
Abeysinghe H, Pollock SJ, Guckert NL, et al. The role of the THY1 gene in human ovarian cancer suppression based on transfection studies. Cancer Genet Cytogenet 2004; 149(1): 1-10.
[http://dx.doi.org/10.1016/S0165-4608(03)00234-6] [PMID: 15104276]
[36]
Barker TH, Grenett HE, MacEwen MW, et al. Thy-1 regulates fibroblast focal adhesions, cytoskeletal organization and migration through modulation of p190 RhoGAP and Rho GTPase activity. Exp Cell Res 2004; 295(2): 488-96.
[http://dx.doi.org/10.1016/j.yexcr.2004.01.026] [PMID: 15093746]
[37]
Zhou Y, Hagood JS, Murphy-Ullrich JE. Thy-1 expression regulates the ability of rat lung fibroblasts to activate transforming growth factor-β in response to fibrogenic stimuli. Am J Pathol 2004; 165(2): 659-69.
[http://dx.doi.org/10.1016/S0002-9440(10)63330-5] [PMID: 15277239]
[38]
Hagood JS, Prabhakaran P, Kumbla P, et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol 2005; 167(2): 365-79.
[http://dx.doi.org/10.1016/S0002-9440(10)62982-3] [PMID: 16049324]
[39]
Phipps RP, Penney DP, Keng P, et al. Characterization of two major populations of lung fibroblasts: distinguishing morphology and discordant display of Thy 1 and class II MHC. Am J Respir Cell Mol Biol 1989; 1(1): 65-74.
[http://dx.doi.org/10.1165/ajrcmb/1.1.65] [PMID: 2576218]
[40]
Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 2001; 24(1): 1217-81.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.1217] [PMID: 11520933]
[41]
Li B, Ning B, Yang F, Guo C. Nerve growth factor promotes retinal neurovascular unit repair: A review. Curr Eye Res 2022; 47(8): 1095-105.
[http://dx.doi.org/10.1080/02713683.2022.2055084] [PMID: 35499266]
[42]
Fudalej E, Justyniarska M, Kasarełło K, Dziedziak J, Szaflik JP, Cudnoch-Jędrzejewska A. Neuroprotective factors of the retina and their role in promoting survival of retinal ganglion cells: A review. Ophthalmic Res 2021; 64(3): 345-55.
[http://dx.doi.org/10.1159/000514441] [PMID: 33454713]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy