Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Involvement of CHRNA6 in the Immune Response in Lung Squamous Cell Carcinoma and its Potential as a Drug Target for the Disease

Author(s): Fengyu Zhang, Meidi Zhang, Xin Yuan, Yulian Tao and Ju Wang*

Volume 29, Issue 26, 2023

Published on: 14 September, 2023

Page: [2091 - 2100] Pages: 10

DOI: 10.2174/1381612829666230901143203

Price: $65

Abstract

Background: Lung squamous cell carcinoma (LUSC) is a subtype of lung cancer with a poor prognosis and limited treatment options. Previous studies show that some components of the cholinergic pathway may play important roles in the tumorigenesis of lung cancer, including LUSC.

Objective: The purpose of this study is to investigate the involvement of cholinergic genes in immune infiltration in LUSC, and identify the key genes in the pathway and analyze their potential as targets for LUSC treatment and novel drugs.

Methods: We first screened the cholinergic genes associated with immune infiltration in LUSC based on transcriptomic samples and explored the correlation between the key genes and immune infiltrating cells and immune pathways. Then, we assessed the effect of immunotherapeutic response in the high and low-expression groups of key genes in vitro. And finally, we screened potential drugs for the treatment of LUSC.

Results: We found that the expression of CHRNA6, the gene encoding the α6 subunit of nicotinic acetylcholine receptors (nAChR), was significantly correlated with the proportion of immune infiltrating cells in LUSC, and the high expression level of the gene was associated with poor prognosis of the disease. Also, the proportion of Tregs, M1 macrophages, and resting mast cells was correlated with the expression of CHRNA6. In addition, LUSC patients with higher CHRNA6 expression levels had better immunotherapy responses. Furthermore, we found that the drugs, i.e., adavosertib, varbulin and pyrazoloacridine, had a strong affinity with CHRNA6, with adavosertib binding most stably with the protein.

Conclusion: CHRNA6 may be associated with immune infiltration in LUSC and affects patient prognosis and immunotherapeutic response by regulating immune cells and immune pathways. In addition, adavosertib may be a potential drug for the treatment of LUSC.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Pan Y, Han H, Labbe KE, Zhang H, Wong KK. Recent advances in preclinical models for lung squamous cell carcinoma. Oncogene 2021; 40(16): 2817-29.
[http://dx.doi.org/10.1038/s41388-021-01723-7] [PMID: 33707749]
[3]
Travis WD, Brambilla E, Nicholson AG, et al. The 2015 world health organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 2015; 10: 1243-60.
[4]
Lazarus KA, Hadi F, Zambon E, et al. BCL11A interacts with SOX2 to control the expression of epigenetic regulators in lung squamous carcinoma. Nat Commun 2018; 9(1): 3327.
[http://dx.doi.org/10.1038/s41467-018-05790-5] [PMID: 30127402]
[5]
Yuan G, Flores NM, Hausmann S, et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature 2021; 590(7846): 504-8.
[http://dx.doi.org/10.1038/s41586-020-03170-y] [PMID: 33536620]
[6]
Yang M, Lin C, Wang Y, Chen K, Zhang H, Li W. Identification of a cytokine-dominated immunosuppressive class in squamous cell lung carcinoma with implications for immunotherapy resistance. Genome Med 2022; 14(1): 72.
[http://dx.doi.org/10.1186/s13073-022-01079-x] [PMID: 35799269]
[7]
Wang C, Yu Q, Song T, et al. The heterogeneous immune landscape between lung adenocarcinoma and squamous carcinoma revealed by single-cell RNA sequencing. Signal Transduct Target Ther 2022; 7(1): 289.
[http://dx.doi.org/10.1038/s41392-022-01130-8] [PMID: 36008393]
[8]
Spindel ER. Cholinergic targets in lung cancer. Curr Pharm Des 2016; 22(14): 2152-9.
[http://dx.doi.org/10.2174/1381612822666160127114237] [PMID: 26818857]
[9]
Song P, Sekhon HS, Fu XW, et al. Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res 2008; 68(12): 4693-700.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0183] [PMID: 18559515]
[10]
Nie M, Chen N, Pang H, et al. Targeting acetylcholine signaling modulates persistent drug tolerance in EGFR-mutant lung cancer and impedes tumor relapse. J Clin Invest 2022; 132(20): e160152.
[http://dx.doi.org/10.1172/JCI160152] [PMID: 36048538]
[11]
Dubash S, Inglese M, Mauri F, et al. Spatial heterogeneity of radiolabeled choline positron emission tomography in tumors of patients with non-small cell lung cancer: First-in-patient evaluation of [(18)F]fluoromethyl-(1,2-(2)H(4))-choline. Theranostics 2020; 10: 8677-90.
[http://dx.doi.org/10.7150/thno.47298] [PMID: 32754271]
[12]
Russo P, Catassi A, Cesario A, Servent D. Development of novel therapeutic strategies for lung cancer: Targeting the cholinergic system. Curr Med Chem 2006; 13(29): 3493-512.
[http://dx.doi.org/10.2174/092986706779026192] [PMID: 17168719]
[13]
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther 2021; 221: 107753.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107753] [PMID: 33259885]
[14]
Hutchings C, Phillips JA, Djamgoz MBA. Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochim Biophys Acta Rev Cancer 2020; 1874(2): 188411.
[http://dx.doi.org/10.1016/j.bbcan.2020.188411] [PMID: 32828885]
[15]
Horvath L, Thienpont B, Zhao L, Wolf D, Pircher A. Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC) - novel approaches and future outlook. Mol Cancer 2020; 19(1): 141.
[http://dx.doi.org/10.1186/s12943-020-01260-z] [PMID: 32917214]
[16]
Hoft NR, Corley RP, McQueen MB, et al. Genetic association of the CHRNA6 and CHRNB3 genes with tobacco dependence in a nationally representative sample. Neuropsychopharmacol 2009; 34: 698-706.
[http://dx.doi.org/10.1038/npp.2008.122]
[17]
Zhang X, Zhang R, Liu P, et al. ATP8B1 knockdown activated the choline metabolism pathway and induced high-level intracellular REDOX homeostasis in lung squamous cell carcinoma. Cancers (Basel) 2022; 14(3): 835.
[http://dx.doi.org/10.3390/cancers14030835] [PMID: 35159102]
[18]
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res 2021; 49(D1): D545-51.
[http://dx.doi.org/10.1093/nar/gkaa970] [PMID: 33125081]
[19]
Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res 2020; 48(D1): D498-503.
[PMID: 31691815]
[20]
Martens M, Ammar A, Riutta A, et al. WikiPathways: Connecting communities. Nucleic Acids Res 2021; 49(D1): D613-21.
[http://dx.doi.org/10.1093/nar/gkaa1024] [PMID: 33211851]
[21]
Rodchenkov I, Babur O, Luna A, et al. Pathway Commons 2019 Update: Integration, analysis and exploration of pathway data. Nucleic Acids Res 2020; 48(D1): D489-97.
[PMID: 31647099]
[22]
Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 2013; 4(1): 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[23]
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015; 12(5): 453-7.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[24]
Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017; 18(1): 248-62.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[25]
Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 2018; 24(10): 1550-8.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[26]
Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov 2020; 10(12): 1808-25.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0522] [PMID: 33139244]
[27]
Tang B, Zhu J, Zhao Z, et al. Diagnosis and prognosis models for hepatocellular carcinoma patient’s management based on tumor mutation burden. J Adv Res 2021; 33: 153-65.
[http://dx.doi.org/10.1016/j.jare.2021.01.018] [PMID: 34603786]
[28]
Liu Z, Li M, Jiang Z, Wang X. A Comprehensive immunologic portrait of triple-negative breast cancer. Transl Oncol 2018; 11(2): 311-29.
[http://dx.doi.org/10.1016/j.tranon.2018.01.011] [PMID: 29413765]
[29]
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596(7873): 583-9.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[30]
Halder N, Lal G. Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front Immunol 2021; 12: 660342.
[http://dx.doi.org/10.3389/fimmu.2021.660342] [PMID: 33936095]
[31]
Glunde K, Bhujwalla ZM. Choline kinase alpha in cancer prognosis and treatment. Lancet Oncol 2007; 8(10): 855-7.
[http://dx.doi.org/10.1016/S1470-2045(07)70289-9] [PMID: 17913651]
[32]
Grando SA. Connections of nicotine to cancer. Nat Rev Cancer 2014; 14(6): 419-29.
[http://dx.doi.org/10.1038/nrc3725] [PMID: 24827506]
[33]
Loeb LA, Ernster VL, Warner KE, Abbotts J, Laszlo J. Smoking and lung cancer: An overview. Cancer Res 1984; 44(12 Pt 1): 5940-58.
[PMID: 6388830]
[34]
Ma W, Zhao F, Yu X, et al. Immune-related lncRNAs as predictors of survival in breast cancer: a prognostic signature. J Transl Med 2020; 18(1): 442.
[http://dx.doi.org/10.1186/s12967-020-02522-6] [PMID: 33225954]
[35]
Wen L, Han H, Liu Q, et al. Significant association of the CHRNB3-CHRNA6 gene cluster with nicotine dependence in the Chinese Han population. Sci Rep 2017; 7(1): 9745.
[http://dx.doi.org/10.1038/s41598-017-09492-8] [PMID: 28851948]
[36]
Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017; 27(1): 109-18.
[http://dx.doi.org/10.1038/cr.2016.151] [PMID: 27995907]
[37]
Salamon P, Mekori YA, Shefler I. Lung cancer-derived extracellular vesicles: a possible mediator of mast cell activation in the tumor microenvironment. Cancer Immunol Immunother 2020; 69(3): 373-81.
[http://dx.doi.org/10.1007/s00262-019-02459-w] [PMID: 31897659]
[38]
Wang J, Meng F, Song W, et al. Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment. Int J Nanomedicine 2018; 13: 4029-43.
[http://dx.doi.org/10.2147/IJN.S163956] [PMID: 30022825]
[39]
Zhao R, Wan Q, Wang Y, et al. M1-like TAMs are required for the efficacy of PD-L1/PD-1 blockades in gastric cancer. OncoImmunology 2021; 10(1)1862520
[http://dx.doi.org/10.1080/2162402X.2020.1862520] [PMID: 33457080]
[40]
Sebolt JS, Scavone SV, Pinter CD, Hamelehle KL, Von Hoff DD, Jackson RC. Pyrazoloacridines, a new class of anticancer agents with selectivity against solid tumors in vitro. Cancer Res 1987; 47(16): 4299-304.
[PMID: 2440564]
[41]
Lallo A, Frese KK, Morrow CJ, et al. The combination of the PARP inhibitor Olaparib and the WEE1 inhibitor AZD1775 as a new therapeutic option for small cell lung cancer. Clin Cancer Res 2018; 24(20): 5153-64.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2805] [PMID: 29941481]
[42]
Kasibhatla S, Baichwal V, Cai SX, et al. MPC-6827: A small- molecule inhibitor of microtubule formation that is not a substrate for multidrug resistance pumps. Cancer Res 2007; 67(12): 5865-71.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0127] [PMID: 17575155]
[43]
Lheureux S, Cristea MC, Bruce JP, et al. Adavosertib plus gemcitabine for platinum-resistant or platinum-refractory recurrent ovarian cancer: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2021; 397(10271): 281-92.
[http://dx.doi.org/10.1016/S0140-6736(20)32554-X] [PMID: 33485453]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy