Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

An Overview of Metallic Nanoparticles: Classification, Synthesis, Applications, and their Patents

Author(s): Sarika Dhir, Shailendra Bhatt, Mahima Chauhan, Vandana Garg, Rohit Dutt and Ravinder Verma*

Volume 18, Issue 4, 2024

Published on: 18 September, 2023

Page: [415 - 432] Pages: 18

DOI: 10.2174/1872210517666230901114421

Price: $65

conference banner
Abstract

Background: Nanotechnology has gained enormous attention in pharmaceutical research. Nanotechnology is used in the development of nanoparticles with sizes ranging from 1-100 nm, with several extraordinary features. Metallic nanoparticles (MNPs) are used in various areas, such as molecular biology, biosensors, bio imaging, biomedical devices, diagnosis, pharmaceuticals, etc., for their specific applications.

Methodology: For this study, we have performed a systematic search and screening of the literature and identified the articles and patents focusing on various physical, chemical, and biological methods for the synthesis of metal nanoparticles and their pharmaceutical applications.

Results: A total of 174 references have been included in this present review, of which 23 references for recent patents were included. Then, 29 papers were shortlisted to describe the advantages, disadvantages, and physical and chemical methods for their synthesis, and 28 articles were selected to provide the data for biological methods for the formulation of metal NPs from bacteria, algae, fungi, and plants with their extensive synthetic procedures. Moreover, 27 articles outlined various clinical applications of metal NPs due to their antimicrobial and anticancer activities and their use in drug delivery.

Conclusion: Several reviews are available on the synthesis of metal nanoparticles and their pharmaceutical applications. However, this review provides updated research data along with the various methods employed for their development. It also summarizes their various advantages and clinical applications (anticancer, antimicrobial drug delivery, and many others) for various phytoconstituents. The overview of earlier patents by several scientists in the arena of metallic nanoparticle preparation and formulation is also presented. This review will be helpful in increasing the current knowledge and will also inspire to innovation of nanoparticles for the precise and targeted delivery of phytoconstituents for the treatment of several diseases.

[1]
Kaushik D, Pandey P, Chopra H, et al. Multifunctional patented nanotherapeutics for cancer intervention: 2010- onwards. Recent Patents Anticancer Drug Discov 2023; 18(1): 38-52.
[http://dx.doi.org/10.2174/1574892817666220322085942] [PMID: 35319390]
[2]
Tewari AK, Upadhyay SC, Kumar M, et al. Insights on development aspects of polymeric nanocarriers: The translation from bench to clinic. Polymers 2022; 14(17): 3545.
[http://dx.doi.org/10.3390/polym14173545] [PMID: 36080620]
[3]
Titus D, Samuel EJJ, Roopan SM. Nanoparticle characterization techniques. In: Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier 2019; pp. 303-19.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00012-5]
[4]
Purohit D, Manchanda D, Makhija M, et al. An overview of the recent developments and patents in the field of pharmaceutical nanotechnology. Recent Pat Nanotechnol 2021; 15(1): 15-34.
[http://dx.doi.org/10.2174/1872210514666200909154409] [PMID: 32912128]
[5]
You H, Yang S, Ding B, Yang H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 2013; 42(7): 2880-904.
[http://dx.doi.org/10.1039/C2CS35319A] [PMID: 23152097]
[6]
Singh V, Redhu R, Verma R, Mittal V, Kaushik D. Anti-acne treatment using nanotechnology based on novel drug delivery system and patents on acne formulations: A review. Recent Pat Nanotechnol 2021; 15(4): 331-50.
[http://dx.doi.org/10.2174/1872210514999201209214011] [PMID: 33302844]
[7]
Kaushik D, Verma R, Mittal V, et al. Exploring the role of self-nanoemulsifying systems in drug delivery: Challenges, issues, applications and recent advances. Curr Drug Deliv 2023; 20(9): 1241-61.
[http://dx.doi.org/10.2174/1567201819666220519125003] [PMID: 35598245]
[8]
Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 2020; 13(3): 223-45.
[http://dx.doi.org/10.1080/17518253.2020.1802517]
[9]
Habibullah G, Viktorova J, Ruml T. Current strategies for noble metal nanoparticle synthesis. Nanoscale Res Lett 2021; 16(1): 47.
[http://dx.doi.org/10.1186/s11671-021-03480-8] [PMID: 33721118]
[10]
Kiranmai M. Biological and non-biological synthesis of metallic nanoparticles: Scope for current pharmaceutical research. Indian J Pharm Sci 2017; 79: 501-12.
[11]
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem 2011; 13(10): 2638-50.
[http://dx.doi.org/10.1039/c1gc15386b]
[12]
Singh V, Yadav P, Mishra V. Recent advances on classification, properties, synthesis, and characterization of nanomaterials. In: Green Synthesis of Nanomaterials for Bioenergy Applications. Wiley 2020; pp. 83-97.
[http://dx.doi.org/10.1002/9781119576785.ch3]
[13]
Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. Mater Sci Eng 2017; 263: 032019.
[14]
Shah P, Gavrin A. Synthesis of nanoparticles using high-pressure sputtering for magnetic domain imaging. J Magn Magn Mater 2006; 301(1): 118-23.
[http://dx.doi.org/10.1016/j.jmmm.2005.06.023]
[15]
Park SI, Quan YJ, Kim SH, et al. A review on fabrication processes for electrochromic devices. Int J Precision Eng Manu-Green Technol 2016; 3(4): 397-421.
[http://dx.doi.org/10.1007/s40684-016-0049-8]
[16]
Wender H, Migowski P, Feil AF, Teixeira SR, Dupont J. Sputtering deposition of nanoparticles onto liquid substrates: Recent advances and future trends. Coord Chem Rev 2013; 257(17-18): 2468-83.
[http://dx.doi.org/10.1016/j.ccr.2013.01.013]
[17]
Konrad A, Herr U, Tidecks R, Kummer F, Samwer K. Luminescence of bulk and nanocrystalline cubic yttria. J Appl Phys 2001; 90(7): 3516-23.
[http://dx.doi.org/10.1063/1.1388022]
[18]
Rajput N. Methods of preparation of nanoparticles-a review. Int J Adv Eng Technol 2015; 7: 1806.
[19]
Sportelli M, Izzi M, Volpe A, et al. The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics 2018; 7(3): 67.
[http://dx.doi.org/10.3390/antibiotics7030067] [PMID: 30060553]
[20]
Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 2009; 11(20): 3805-21.
[http://dx.doi.org/10.1039/b900654k] [PMID: 19440607]
[21]
Salavati-Niasari M, Davar F, Mir N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 2008; 27(17): 3514-8.
[http://dx.doi.org/10.1016/j.poly.2008.08.020]
[22]
Guo Y, Fu X, Peng Z. Controllable synthesis of MoS2 nanostructures from monolayer flakes, few-layer pyramids to multilayer blocks by catalyst-assisted thermal evaporation. J Mater Sci 2018; 53(11): 8098-107.
[http://dx.doi.org/10.1007/s10853-018-2103-0]
[23]
Dikusar AI, Globa PG, Belevskii SS, Sidel’nikova SP. On limiting rate of dimensional electrodeposition at meso- and nanomaterial manufacturing by template synthesis. Surg Eng Appl Electrochem 2009; 45(3): 171-9.
[http://dx.doi.org/10.3103/S1068375509030016]
[24]
Sayago I, Hontañón E, Aleixandre M. Preparation of tin oxide nanostructures by chemical vapor deposition. In: Tin Oxide Materials. Elsevier 2020; pp. 247-80.
[http://dx.doi.org/10.1016/B978-0-12-815924-8.00009-8]
[25]
Lee SY, Yamada M, Miyake M. Synthesis of carbon nanotubes over gold nanoparticle supported catalysts. Carbon 2005; 43(13): 2654-63.
[http://dx.doi.org/10.1016/j.carbon.2005.05.045]
[26]
Sun L, Yuan G, Gao L, et al. Chemical vapour deposition. Nature Rev Methods Primers 2021; 1(1): 5.
[http://dx.doi.org/10.1038/s43586-020-00005-y]
[27]
Banerjee AN, Krishna R, Das B. Size controlled deposition of Cu and Si nano-clusters by an ultra-high vacuum sputtering gas aggregation technique. Appl Phys, A Mater Sci Process 2007; 90(2): 299-303.
[http://dx.doi.org/10.1007/s00339-007-4271-7]
[28]
Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 2019; 53: 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[29]
Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005; 105(4): 1025-102.
[http://dx.doi.org/10.1021/cr030063a] [PMID: 15826010]
[30]
Tavakoli A, Sohrabi M, Kargari A. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 2007; 61(3): 151-70.
[http://dx.doi.org/10.2478/s11696-007-0014-7]
[31]
Vaseghi Z, Nematollahzade A. Nanomaterials: Types, synthesis, and characterization. In: Green Synthesis of Nanomaterials for Bioenergy Applications. Wiley 2020; pp. 23-82.
[32]
Abid N, Khan AM, Shujait S, et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 2022; 300: 102597.
[http://dx.doi.org/10.1016/j.cis.2021.102597] [PMID: 34979471]
[33]
Rane AV, Kanny K, Abitha VK, Thomas S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of Inorganic Nanomaterials. Woodhead Publishing 2018.
[http://dx.doi.org/10.1016/B978-0-08-101975-7.00005-1]
[34]
Li J, Wu Q, Wu J. Synthesis of nanoparticles via solvothermal and hydrothermal methods. In: Handbook of Nanoparticles. Cham: Springer 2016.
[http://dx.doi.org/10.1007/978-3-319-15338-4_17]
[35]
Ramesh S. Sol-gel synthesis and characterization of nanoparticles. J Nanosci 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/929321]
[36]
Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 2004; 104(9): 3893-946.
[http://dx.doi.org/10.1021/cr030027b] [PMID: 15352782]
[37]
Ranoszek-Soliwoda K. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J Nanopart Res 2017; 19: 273.
[38]
Alqadi MK, Abo Noqtah OA, Alzoubi FY, Alzouby J, Aljarrah K. pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater Sci Pol 2014; 32(1): 107-11.
[http://dx.doi.org/10.2478/s13536-013-0166-9]
[39]
Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances 2014; 4(8): 3974-83.
[http://dx.doi.org/10.1039/C3RA44507K]
[40]
Mukunthan KS, Balaji S. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int J Green Nanotechnol 2012; 4(2): 71-9.
[http://dx.doi.org/10.1080/19430892.2012.676900]
[41]
Suresh K, Prabagaran SR, Sengupta S, Shivaji S. Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 2004; 54(4): 1369-75.
[http://dx.doi.org/10.1099/ijs.0.03047-0] [PMID: 15280316]
[42]
Zomorodian K, Pourshahid S, Sadatsharifi A, et al. Biosynthesis and characterization of silver nanoparticles by Aspergillus species. BioMed Res Int 2016; 2016: 1-6.
[http://dx.doi.org/10.1155/2016/5435397] [PMID: 27652264]
[43]
Azizi S, Ahmad M, Mahdavi M. Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites. BioResources 2013; 8(2)
[44]
Narayanan KB, Sakthivel N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 2008; 62(30): 4588-90.
[http://dx.doi.org/10.1016/j.matlet.2008.08.044]
[45]
Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 2004; 275(2): 496-502.
[http://dx.doi.org/10.1016/j.jcis.2004.03.003] [PMID: 15178278]
[46]
Dhuper S, Panda D, Nayak PL. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano Trends: J Nanotech App 2012; 13: 16-22.
[47]
Faramarzi MA, Sadighi A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 2013; 189-190: 1-20.
[http://dx.doi.org/10.1016/j.cis.2012.12.001] [PMID: 23332127]
[48]
Iravani S. Bacteria in nanoparticle synthesis: Current status and future prospects. Int Sch Res Notices 2014; 2014: 1-18.
[http://dx.doi.org/10.1155/2014/359316] [PMID: 27355054]
[49]
Srivastava SK, Constanti M. Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res 2012; 14(4): 831.
[http://dx.doi.org/10.1007/s11051-012-0831-7]
[50]
Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 2014; 4(2): 121-6.
[http://dx.doi.org/10.1007/s13205-013-0130-8] [PMID: 28324441]
[51]
Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 1980; 141(2): 876-87.
[http://dx.doi.org/10.1128/jb.141.2.876-887.1980] [PMID: 6767692]
[52]
Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG. Bacteria as workers in the living factory: Metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 2001; 19(1): 15-20.
[http://dx.doi.org/10.1016/S0167-7799(00)01514-6] [PMID: 11146098]
[53]
Rad M, Taran M, Alavi M. Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach. Nano Biomed Eng 2018; 10(1): 25-33.
[http://dx.doi.org/10.5101/nbe.v10i1.p25-33]
[54]
Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F. Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: Characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J Biotechnol 2018; 270: 1-11.
[http://dx.doi.org/10.1016/j.jbiotec.2018.01.021] [PMID: 29407416]
[55]
Korbekandi H, Iravani S, Abbasi S. Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol 2012; 87(7): 932-7.
[http://dx.doi.org/10.1002/jctb.3702]
[56]
Banu AN, Balasubramanian C. Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res 2014; 113(10): 3843-51.
[http://dx.doi.org/10.1007/s00436-014-4052-0] [PMID: 25085201]
[57]
Ovais M, Khalil A, Ayaz M, Ahmad I, Nethi S, Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: A mechanistic approach. Int J Mol Sci 2018; 19(12): 4100.
[http://dx.doi.org/10.3390/ijms19124100] [PMID: 30567324]
[58]
Elbeshehy EKF, Elazzazy AM, Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 2015; 6: 453.
[http://dx.doi.org/10.3389/fmicb.2015.00453] [PMID: 26029190]
[59]
Baltazar-Encarnación E, Escárcega-González CE, Vasto-Anzaldo XG, Cantú-Cárdenas ME, Morones-Ramírez JR. Silver nanoparticles synthesized through green methods using Escherichia coli top 10 (Ec-Ts) growth culture medium exhibit antimicrobial properties against nongrowing bacterial strains. J Nanomater 2019; 2019: 1-8.
[http://dx.doi.org/10.1155/2019/4637325]
[60]
Jafari M, Rokhbakhsh-Zamin F, Shakibaie M, et al. Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2. Biocatal Agric Biotechnol 2018; 15: 245-53.
[http://dx.doi.org/10.1016/j.bcab.2018.06.014]
[61]
Prema P, Iniya PA, Immanuel G. Microbial mediated synthesis, characterization, antibacterial and synergistic effect of gold nanoparticles using Klebsiella pneumoniae (MTCC-4030). RSC Advances 2016; 6(6): 4601-7.
[http://dx.doi.org/10.1039/C5RA23982F]
[62]
Hassan SELD, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM. New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiation Res Appl Sci 2018; 11(3): 262-70.
[http://dx.doi.org/10.1016/j.jrras.2018.05.003]
[63]
Lv Q, Zhang B, Xing X, et al. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. J Hazard Mater 2018; 347: 141-9.
[http://dx.doi.org/10.1016/j.jhazmat.2017.12.070] [PMID: 29304452]
[64]
Camas M, Sazak Camas A, Kyeremeh K. Extracellular synthesis and characterization of gold nanoparticles using Mycobacterium sp. BRS2A-AR2 isolated from the aerial roots of the Ghanaian mangrove plant, Rhizophora racemosa. Indian J Microbiol 2018; 58(2): 214-21.
[http://dx.doi.org/10.1007/s12088-018-0710-8] [PMID: 29651181]
[65]
Jayaseelan C, Rahuman AA, Roopan SM, et al. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2013; 107: 82-9.
[http://dx.doi.org/10.1016/j.saa.2012.12.083] [PMID: 23416912]
[66]
Rajabairavi N, Raju CS, Karthikeyan C, et al. Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum. Recent Trends Mater Sci Appl 2017; pp. 245-54.
[67]
Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett 2001; 1(10): 515-9.
[http://dx.doi.org/10.1021/nl0155274]
[68]
Pantidos N, Horsfall LE. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 2014; 5(5): 1.
[http://dx.doi.org/10.4172/2157-7439.1000233]
[69]
Senapati S. Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 2005; 1(514): 517-20.
[http://dx.doi.org/10.1002/smll.200400053]
[70]
Riddin TL, Gericke M, Whiteley CG. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 2006; 17(14): 3482-9.
[http://dx.doi.org/10.1088/0957-4484/17/14/021] [PMID: 19661593]
[71]
Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 2014; 166: 235-42.
[http://dx.doi.org/10.1016/j.biortech.2014.04.085] [PMID: 24914997]
[72]
Zhang X, He X, Wang K, Yang X. Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J Biomed Nanotechnol 2011; 7(2): 245-54.
[http://dx.doi.org/10.1166/jbn.2011.1285] [PMID: 21702362]
[73]
Jalal M, Ansari M, Alzohairy M, et al. Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials 2018; 8(8): 586.
[http://dx.doi.org/10.3390/nano8080586] [PMID: 30071582]
[74]
Mohmed A, Hassan S, Fouda A, Elgamal M, Salem S. Extracellular biosynthesis of silver nanoparticles using Aspergillus sp. and evaluation of their antibacterial and cytotoxicity. J Appl Life Sci Int 2017; 11(2): 1-12.
[http://dx.doi.org/10.9734/JALSI/2017/33491]
[75]
Elamawi RM, Al-Harbi RE, Hendi AA. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 2018; 28(1): 28.
[http://dx.doi.org/10.1186/s41938-018-0028-1]
[76]
Abdel-Azeem A, Nada AA, O’donovan A, Thakur VK, Elkelish A. Mycogenic silver nanoparticles from endophytic Trichoderma atroviride with antimicrobial activity. J Renew Mater 2020; 8: 171.
[http://dx.doi.org/10.32604/jrm.2020.08960]
[77]
Roy S, Mukherjee T, Chakraborty S, Das TK. Biosynthesis, characterisation & antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Dig J Nanomater Biostruct 2013; 8: 197-205.
[78]
M MH. Joshi CG, Danagoudar A, Poyya J, Kudva AK, Bl D. Biogenic synthesis of gold nanoparticles by marine endophytic fungus-Cladosporium cladosporioides isolated from seaweed and evaluation of their antioxidant and antimicrobial properties. Process Biochem 2017; 63: 137-44.
[http://dx.doi.org/10.1016/j.procbio.2017.09.008]
[79]
El Domany EB, Essam TM, Ahmed AE, Farghali AA. Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus. J Appl Pharm Sci 2018; 8: 119-28.
[80]
Kar PK, Murmu S, Saha S, Tandon V, Acharya K. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 2014; 9(1): e84693.
[http://dx.doi.org/10.1371/journal.pone.0084693] [PMID: 24465424]
[81]
Neethu S, Midhun SJ, Sunil MA, Soumya S, Radhakrishnan EK, Jyothis M. Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium. J Photochem Photobiol B 2018; 180: 175-85.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.005] [PMID: 29453129]
[82]
Mohamed AA, Fouda A, Abdel-Rahman MA, et al. Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal Agric Biotechnol 2019; 19: 101103.
[http://dx.doi.org/10.1016/j.bcab.2019.101103]
[83]
Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Devi Rajeswari V. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano 2018; 3: 48-55.
[http://dx.doi.org/10.1016/j.onano.2018.06.001]
[84]
Akther T. Vabeiryureilai Mathipi, Davoodbasha M, Srinivasan H. Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Environ Sci Pollut Res Int 2019; 26(13): 13649-57.
[http://dx.doi.org/10.1007/s11356-019-04718-w] [PMID: 30919178]
[85]
Suryavanshi P, Pandit R, Gade A, Derita M, Zachino S, Rai M. Colletotrichum sp.- mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. Lebensm Wiss Technol 2017; 81: 188-94.
[http://dx.doi.org/10.1016/j.lwt.2017.03.038]
[86]
Bilal M, Rasheed T, Sosa-Hernández J, Raza A, Nabeel F, Iqbal H. Biosorption: An interplay between marine algae and potentially toxic elements-a review. Mar Drugs 2018; 16(2): 65.
[http://dx.doi.org/10.3390/md16020065] [PMID: 29463058]
[87]
Ponnuchamy K, Jacob JA. Metal nanoparticles from marine seaweeds - a review. Nanotechnol Rev 2016; 5(6): 589-600.
[http://dx.doi.org/10.1515/ntrev-2016-0010]
[88]
Mata YN, Torres E, Blázquez ML, Ballester A, González F, Muñoz JA. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 2009; 166(2-3): 612-8.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.064] [PMID: 19124199]
[89]
Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 2006; 69(5): 485-92.
[http://dx.doi.org/10.1007/s00253-005-0179-3] [PMID: 16317546]
[90]
Parial D, Patra HK, Dasgupta AKR, Pal R. Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol 2012; 47(1): 22-9.
[http://dx.doi.org/10.1080/09670262.2011.653406]
[91]
Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG. Gold nanoparticles produced in a microalga. J Nanopart Res 2011; 13(12): 6439-45.
[http://dx.doi.org/10.1007/s11051-011-0397-9]
[92]
Maceda AF, Ouano JJS, Que MCO, Basilia BA, Potestas MJ, Alguno AC. Controlling the absorption of gold nanoparticles via green synthesis using Sargassum crassifolium extract. Key Eng Mater 2018; 765: 44-8.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.765.44]
[93]
Fatima R, Priya M, Indurthi L, Radhakrishnan V, Sudhakaran R. Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb Pathog 2020; 138: 103780.
[http://dx.doi.org/10.1016/j.micpath.2019.103780] [PMID: 31622663]
[94]
Konishi Y. Microbial synthesis of gold nanoparticles by metal reducing bacterium. Trans Mater Res Soc Jpn 2004; 29: 2341-3.
[95]
Venkatpurwar V, Pokharkar V. Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity. Mater Lett 2011; 65(6): 999-1002.
[http://dx.doi.org/10.1016/j.matlet.2010.12.057]
[96]
Manikandakrishnan M, Palanisamy S, Vinosha M, et al. Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications. J Drug Deliv Sci Technol 2019; 54: 101345.
[http://dx.doi.org/10.1016/j.jddst.2019.101345]
[97]
Annamalai J, Nallamuthu T. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 2015; 5(5): 603-7.
[http://dx.doi.org/10.1007/s13204-014-0353-y]
[98]
González-Ballesteros N, Prado-López S, Rodríguez-González JB, Lastra M, Rodríguez-Argüelles MC. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids Surf B Biointerfaces 2017; 153: 190-8.
[http://dx.doi.org/10.1016/j.colsurfb.2017.02.020] [PMID: 28242372]
[99]
Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 2017; 10: S3029-39.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.044]
[100]
Nagarajan S, Arumugam Kuppusamy K. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J Nanobiotechnology 2013; 11(1): 39.
[http://dx.doi.org/10.1186/1477-3155-11-39] [PMID: 24298944]
[101]
Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotechnol 2014; 174(8): 2777-90.
[http://dx.doi.org/10.1007/s12010-014-1225-3] [PMID: 25380639]
[102]
Arya A, Gupta K, Chundawat TS, Vaya D. Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg Chem Appl 2018; 2018: 1-9.
[http://dx.doi.org/10.1155/2018/7879403] [PMID: 30420873]
[103]
Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J Nanobiotechnology 2018; 16(1): 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[104]
Lee KX, Shameli K, Yew YP, et al. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine 2020; 15: 275-300.
[http://dx.doi.org/10.2147/IJN.S233789] [PMID: 32021180]
[105]
Gopinath V, Priyadarshini S, Loke MF, et al. Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab J Chem 2017; 10(8): 1107-17.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.011]
[106]
Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology 2018; 16(1): 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[107]
Valsalam S, Agastian P, Esmail GA, Ghilan AKM, Al-Dhabi NA, Arasu MV. Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J Photochem Photobiol B 2019; 201: 111670.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111670] [PMID: 31706087]
[108]
Ikram M, Javed B, Raja NI, Mashwani ZR. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int J Nanomedicine 2021; 16: 249-68.
[http://dx.doi.org/10.2147/IJN.S295053] [PMID: 33469285]
[109]
Narayanan KB, Park HH. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 2014; 140(2): 185-92.
[http://dx.doi.org/10.1007/s10658-014-0399-4]
[110]
Islam NU, Khan I, Rauf A, Muhammad N, Shahid M, Shah MR. Antinociceptive, muscle relaxant and sedative activities of gold nanoparticles generated by methanolic extract of Euphorbia milii. BMC Complement Altern Med 2015; 15(1): 160.
[http://dx.doi.org/10.1186/s12906-015-0691-7] [PMID: 26021441]
[111]
Islam NU, Jalil K, Shahid M, et al. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem 2019; 12(8): 2914-25.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.025]
[112]
Das J, Velusamy P. Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L. J Taiwan Inst Chem Eng 2014; 45(5): 2280-5.
[http://dx.doi.org/10.1016/j.jtice.2014.04.005]
[113]
Lingaraju K, Raja Naika H, Manjunath K, et al. Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl Nanosci 2016; 6(5): 703-10.
[http://dx.doi.org/10.1007/s13204-015-0487-6]
[114]
Santhoshkumar T, Rahuman AA, Jayaseelan C, et al. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 2014; 7(12): 968-76.
[http://dx.doi.org/10.1016/S1995-7645(14)60171-1] [PMID: 25479626]
[115]
Naseem T, Farrukh MA. Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015; 2015: 1-7.
[http://dx.doi.org/10.1155/2015/912342]
[116]
Naika HR, Lingaraju K, Manjunath K, et al. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 2015; 9(1): 7-12.
[http://dx.doi.org/10.1016/j.jtusci.2014.04.006]
[117]
Saratale RG, Shin HS, Kumar G, Benelli G, Kim DS, Saratale GD. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol 2018; 46(1): 211-22.
[http://dx.doi.org/10.1080/21691401.2017.1337031] [PMID: 28612655]
[118]
Madivoli ES, Kareru PG, Gachanja AN, et al. Facile synthesis of silver nanoparticles using Lantana trifolia aqueous extracts and their antibacterial activity. J Inorg Organomet Polym Mater 2020; 30(8): 2842-50.
[http://dx.doi.org/10.1007/s10904-019-01432-5]
[119]
An H, Song Z, Li P, Wang G, Ma B, Wang X. Development of biofabricated gold nanoparticles for the treatment of alleviated arthritis pain. Appl Nanosci 2020; 10(2): 617-22.
[http://dx.doi.org/10.1007/s13204-019-01135-w]
[120]
Madivoli ES, Kareru PG, Maina EG, Nyabola AO, Wanakai SI, Nyang’au JO. Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN Appl Sci 2019; 1(5): 500.
[http://dx.doi.org/10.1007/s42452-019-0511-7]
[121]
Singh A, Joshi NC, Ramola M. Magnesium oxide nanoparticles (MgONps): Green synthesis, characterizations and antimicrobial activity. Res J Pharm Technol 2019; 12(10): 4644-6.
[http://dx.doi.org/10.5958/0974-360X.2019.00799.6]
[122]
Ali SW, Rajendran S, Joshi M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 2011; 83(2): 438-46.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.004]
[123]
Das M, Chatterjee S. Green synthesis of metal/metal oxide nanoparticles toward biomedical applications: Boon or bane. In: Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier 2019; pp. 265-301.
[124]
Huang X, Qian W, El-Sayed IH, El-Sayed MA. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 2007; 39(9): 747-53.
[http://dx.doi.org/10.1002/lsm.20577] [PMID: 17960762]
[125]
Dos Santos CA, Seckler MM, Ingle AP, et al. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. J Pharm Sci 2014; 103(7): 1931-44.
[http://dx.doi.org/10.1002/jps.24001] [PMID: 24824033]
[126]
Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine 2010; 6(1): 103-9.
[http://dx.doi.org/10.1016/j.nano.2009.04.006] [PMID: 19447203]
[127]
Tanaka K. Nanotechnology towards the 21st Century. Thin Solid Films 1999; 341(1-2): 120-5.
[http://dx.doi.org/10.1016/S0040-6090(98)01508-9]
[128]
Singh AK, Talat M, Singh DP, Srivastava ON. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 2010; 12(5): 1667-75.
[http://dx.doi.org/10.1007/s11051-009-9835-3]
[129]
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1): 177-82.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[130]
MubarakAli D. Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 2011; 85(2): 360-5.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.009] [PMID: 21466948]
[131]
Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int J Nanomedicine 2012; 7: 6003-9.
[http://dx.doi.org/10.2147/IJN.S35347] [PMID: 23233805]
[132]
Zain NM, Stapley AGF, Shama G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym 2014; 112: 195-202.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.081] [PMID: 25129735]
[133]
Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 2010; 101(22): 8772-6.
[http://dx.doi.org/10.1016/j.biortech.2010.06.065] [PMID: 20619641]
[134]
Saravanakumar K, Shanmugam S, Varukattu NB. MubarakAli D, Kathiresan K, Wang MH. Biosynthesis and characterization of copper oxide nanoparticles from 844 indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol B 2019; 1(190): 103-19.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.017] [PMID: 30508758]
[135]
Kouhkan M, Ahangar P, Babaganjeh LA, Allahyari-Devin M. Biosynthesis of copper oxide nanoparticles using Lactobacillus casei subsp. casei and its anticancer and antibacterial activities. Curr Nanosci 2020; 16(1): 101-11.
[http://dx.doi.org/10.2174/1573413715666190318155801]
[136]
Khan R, Fulekar MH. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31. J Colloid Interface Sci 2016; 475: 184-91.
[http://dx.doi.org/10.1016/j.jcis.2016.05.001] [PMID: 27175828]
[137]
Nagajyothi PC, Muthuraman P, Sreekanth TVM, Kim DH, Shim J. Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 2017; 10(2): 215-25.
[http://dx.doi.org/10.1016/j.arabjc.2016.01.011]
[138]
Park S, Lee YK, Jung M, et al. Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol 2007; 19(S1): 59-65.
[http://dx.doi.org/10.1080/08958370701493282] [PMID: 17886052]
[139]
Raghunandan D, Ravishankar B, Sharanbasava G, et al. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol 2011; 2(1-6): 57-65.
[http://dx.doi.org/10.1007/s12645-011-0014-8] [PMID: 26069485]
[140]
Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-based vaccines against respiratory viruses. Front Immunol 2019; 10: 22.
[http://dx.doi.org/10.3389/fimmu.2019.00022] [PMID: 30733717]
[141]
Justin PJS, Finub JS, Narayanan A. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B Biointerfaces 2012; 91: 212-4.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.001] [PMID: 22119564]
[142]
Valodkar M, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S. Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells. Mater Chem Phys 2011; 128(1-2): 83-9.
[http://dx.doi.org/10.1016/j.matchemphys.2011.02.039]
[143]
Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS. Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2010; 2(5): 763-70.
[http://dx.doi.org/10.1039/c0nr00046a] [PMID: 20648322]
[144]
Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 2010; 62(3): 346-61.
[http://dx.doi.org/10.1016/j.addr.2009.11.007] [PMID: 19914317]
[145]
Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 2011; 10(5): 822-31.
[http://dx.doi.org/10.1039/c1pp05014a] [PMID: 21455532]
[146]
Chen YH, Tsai CY, Huang PY, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 2007; 4(5): 713-22.
[http://dx.doi.org/10.1021/mp060132k] [PMID: 17708653]
[147]
Asadishad B, Vossoughi M, Alemzadeh I. Folate-receptor-targeted delivery of doxorubicin using polyethylene glycol-functionalized gold nanoparticles. Ind Eng Chem Res 2010; 49(4): 1958-63.
[http://dx.doi.org/10.1021/ie9011479]
[148]
Jordan A, Scholz R, Maier-Hauff K, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 2006; 78(1): 7-14.
[http://dx.doi.org/10.1007/s11060-005-9059-z] [PMID: 16314937]
[149]
Pan Y, Leifert A, Ruau D, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009; 5(18): 2067-76.
[http://dx.doi.org/10.1002/smll.200900466] [PMID: 19642089]
[150]
Shirata M, Hirai H. Method for producing metallic nanoparticles and dispersion. US 7,651,782 B2, 2010.
[151]
Lu U, Ming NG, Yang S. Solid-state synthesis of iron oxide nanoparticles. US 7,892.520 B2, 2011.
[152]
Harutyunyan A, Grigorian L, Tokune T. Method for synthesis of metal nanoparticles. US 8,088,485 B2, 2012.
[153]
Zhang Z, Schwartzberg A, Olson T. Gold nanostructures and method of use. US 8,137,759 B2, 2012.
[154]
Kurihara M, Sakamoto M. Coated silver nanoparticles and manufacturing method. US 9,496,068 B2, 2016.
[155]
Zinn A, Paul P. Nanoparticles composition and methods of making the same. US 9,378,861 B2, 2016.
[156]
Alharbi N, Khaled M, Hodhod EL, Kadaikunnan M, Alobaidi A. Biosynthesis of Metal nanoparticles. US10,590,438 B1, 2020.
[157]
Retamal M, Nara A. Use of Botrytis cinerea for obtaining gold nanoparticles. US 9,567,610B2, 2017.
[158]
Weiguo J, Minghe X, Xiang Liu Z, Pu Hua. Method for synthesising gold nanoparticles. US2012/0046482 A1, 2012.
[159]
Zhang J, Cheartzberg A, Oshiro T, et al. Novel gold nanoparticles aggregates and their applications. US2016/0153977 A1, 2016.
[160]
Harris T, Kim A. Thermal treatment of Acne with treatment of Acne with coated metal nanoparticles. US 9,446,126 B2, 2016.
[161]
Viorel Pop C. Transport and delivery of glutathione into human cells using gold nanoparticles. US20110111002A1, 2011.
[162]
Kotcherlakota R, Mukherjee S, Ranjan Patra C, Gopal V. Gold nanoparticle based formulation for use in cancer therapy. US 10,806,715 B2, 2020.
[163]
Shah M, Hoyer M, Klein C, Baldassare J. Zinc nanoparticles for treatment of infections and cancer. WO2011022350A, 2011.
[164]
Okamoto K, Murai J, Akamatsu K. Method of producing silver nanoparticles. US20200353539 A1, 2020.
[165]
Ramalingam R, Lohedan H. Method of preparing biogenic silver nanoparticles. US10,828,328,B1, 2020.
[166]
Almiman F. Method of synthesising silver nanoparticles using mint extract. US10,500,645 B1, 2019.
[167]
Bedworth P, Zinn A. Articles containing copper nanoparticles and methods for production and use thereof. US 9,797,032 B2, 2017.
[168]
Gao X, Kong L. Treatment of cancer with selenium nanoparticles. US 2011/0262564 A1, 2011.
[169]
Cruze D, Webster T. Biosynthesis of Selenium nanoparticles having antimicrobial activity. US2022/0175827 A1, 2022.
[170]
Awad A, Hendi A, Ortashi K, Alnamlah R. Synthesis of zinc oxide nanoparticles by using cymbopogon proximus extract. US10,358,356 B1, 2019.
[171]
Andre V, Brotzman R. Cosmetic formulations comprising Zinc oxide nanoparticles. US 7,182,938 B2, 2007.
[172]
Reitz H, Buckley J, Kumar S, Fortunak K. Metal vanadium oxide particles. US 6,749,966B2, 2004.
[173]
Windt W, Vercauteren T, Verstraete W. Method for producing metal nanoparticles. US 8,455,226 B2, 2013.
[174]
Wang C, Geng Q, Fan L, Li JX, Ma L, Li C. Phase engineering oriented defect-rich amorphous/crystalline RuO2 nanoporous particles for boosting oxygen evolution reaction in acid media. Nano Res Energy 2023; 2: e9120070.
[http://dx.doi.org/10.26599/NRE.2023.9120070]
[175]
Yang J, Hou W, Pan R, Zhou M, Zhang S, Zhang Y. The interfacial electronic engineering in polyhedral MOF derived Co-doped NiSe2 composite for upgrading rate and longevity performance of aqueous energy storage. J Alloys Compd 2022; 897: 163187.
[http://dx.doi.org/10.1016/j.jallcom.2021.163187]
[176]
Bekele T, Alamnie G. Treatment of antibiotic-resistant bacteria by nanoparticles: Current approaches and prospects. Ann Adv Chem 2022; 6: 001-9.
[http://dx.doi.org/10.29328/journal.aac.1001025]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy