Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

conference banner
Abstract

Introduction: Brain tumors have high morbidity and mortality rates, accounting for 1.4% of all cancers. Gliomas are the most common primary brain tumors in adults. Currently, several therapeutic approaches are used; however, they are associated with side effects that affect patients’quality of life. Therefore, further studies are needed to develop novel therapeutic protocols with a more favorable side effect profile. In this context, cannabinoid compounds may serve as potential alternatives.

Objective: This study aimed to review the key enzymatic targets involved in glioma pathophysiology and evaluate the potential interaction of these targets with four cannabinoid derivatives through molecular docking simulations.

Methods: Molecular docking simulations were performed using four cannabinoid compounds and six molecular targets associated with glioma pathophysiology.

Results: Encouraging interactions between the selected enzymes and glioma-related targets were observed, suggesting their potential activity through these pathways. In particular, cannabigerol showed promising interactions with epidermal growth factor receptors and phosphatidylinositol 3- kinase, while Δ-9-tetrahydrocannabinol showed remarkable interactions with telomerase reverse transcriptase.

Conclusion: The evaluated compounds exhibited favorable interactions with the analyzed enzymatic targets, thus representing potential candidates for further in vitro and in vivo studies.

Graphical Abstract

[1]
McBain, C.; Lawrie, T. A.; Rogozińska, E.; Kernohan, A.; Robinson, T.; Jefferies, S. Treatment options for progression or recurrence of glioblastoma: A network meta-analysis. Cochrane Database Syst Rev, 2021, 5(1), CD013579.
[http://dx.doi.org/10.1002/14651858.CD013579.pub2]
[2]
Pangal, D.J.; Baertsch, H.; Kellman, E.M.; Cardinal, T.; Brunswick, A.; Rutkowski, M.; Strickland, B.; Chow, F.; Attenello, F.; Zada, G. Complementary and alternative medicine for the treatment of gliomas: Scoping review of clinical studies, patient outcomes, and toxicity profiles. World Neurosurg., 2021, 151, e682-e692.
[http://dx.doi.org/10.1016/j.wneu.2021.04.096] [PMID: 33940275]
[3]
Choi, J.H.; Ro, J.Y. The 2020 WHO classification of tumors of soft tissue: Selected changes and new entities. Adv. Anat. Pathol., 2020, 28(1), 44-58.
[4]
Louis, D. N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W. K.; Ohgaki, H.; Wiestler, O. D.; Kleihues, P.; Ellison, D. W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1]
[5]
Geneen, L.J.; Moore, R.A.; Clarke, C.; Martin, D.; Colvin, L.A.; Smith, B.H. Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst Rev, 2017, 4(4), CD011279.
[http://dx.doi.org/10.1002/14651858.CD011279.pub3]
[6]
Yang, K.; Wu, Z.; Zhang, H.; Zhang, N.; Wu, W.; Wang, Z.; Dai, Z.; Zhang, X.; Zhang, L.; Peng, Y. Glioma targeted therapy: Insight into future of molecular approaches. Mol. Cancer, 2022, 21(1), 39.
[http://dx.doi.org/10.1186/s12943-022-01513-z]
[7]
Torres, S.; Lorente, M.; Rodríguez-Fornés, F.; Hernández-Tiedra, S.; Salazar, M.; García-Taboada, E.; Barcia, J.; Guzmán, M.; Velasco, G. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther., 2011, 10(1), 90-103.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0688] [PMID: 21220494]
[8]
Rohle, D.; Popovici-Muller, J.; Palaskas, N.; Turcan, S.; Grommes, C.; Campos, C.; Tsoi, J.; Clark, O.; Oldrini, B.; Komisopoulou, E. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science, 2013, 340(6132), 626-630b.
[http://dx.doi.org/10.1126/science.1236062]
[9]
Erices, J.I.; Torres, Á.; Niechi, I.; Bernales, I.; Quezada, C. Current natural therapies in the treatment against glioblastoma. Phytother Res., 2018, 32(11), 2191-2201.
[http://dx.doi.org/10.1002/ptr.6170]
[10]
Rodriguez-Almaraz, J.E.; Butowski, N. Therapeutic and supportive effects of cannabinoids in patients with brain tumors (CBD Oil and Cannabis). Curr. Treat. Options Oncol., 2023, 24(1), 30-44.
[http://dx.doi.org/10.1007/s11864-022-01047-y] [PMID: 36633803]
[11]
Peeri, H.; Koltai, H. Cannabis biomolecule effects on cancer cells and cancer stem cells: Cytotoxic, anti-proliferative, and anti-migratory activities. Biomolecules., 2022, 12(4), 491.
[http://dx.doi.org/10.3390/biom12040491]
[12]
Belgers, V.; Röttgering, J.G.; Douw, L.; Klein, M.; Ket, J.C.F.; van de Ven, P.M.; Würdinger, T.; van Linde, M.E.; Niers, J.M.; Weber, M. Cannabinoids to improve health-related quality of life in patients with neurological or oncological disease: A meta-analysis. Cannabis Cannabinoid Res., 2022, 8(1), 41-55.
[http://dx.doi.org/10.1089/can.2021.0187] [PMID: 35861789]
[13]
Scotti, L.; da Silva, P.R.; de Andrade, J.C.; de Sousa, N.F.; Ribeiro, P.A.C.; Pires, O.H.F.; Remígio, B.M.C.R.; Alves, D.N.; de Andrade, H.H.N.; Dias, A.L.; da Silva, S.S.M.G.; de Oliveira, G.A.M.F.; de Castro, R.D.; Scotti, M.T.; Bezerra, F.C.F.; de Almeida, R.N. Computational studies applied to linalool and citronellal derivatives against Alzheimer’s and Parkinson’s Disorders: A review with experimental approach. Curr. Neuropharmacol., 2023, 21(4), 842-866.
[http://dx.doi.org/10.2174/1570159X21666230221123059] [PMID: 36809939]
[14]
Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; Friedman, H.; Friedman, A.; Reardon, D.; Herndon, J.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B.; Bigner, D.D. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med., 2009, 360(8), 765-773.
[http://dx.doi.org/10.1056/NEJMoa0808710] [PMID: 19228619]
[15]
Grochans, S.; Cybulska, A. M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of glioblastoma multiforme-literature review. Cancers., 2022, 14(10), 2412.
[http://dx.doi.org/10.3390/cancers14102412]
[16]
Kyriakou, I.; Yarandi, N.; Polycarpou, E. Efficacy of cannabinoids against glioblastoma multiforme: A systematic review. Phytomedicine., 2021, 88, 153533.
[http://dx.doi.org/10.1016/j.phymed.2021.153533]
[17]
Luís, Â.; Marcelino, H.; Rosa, C.; Domingues, F.; Pereira, L.; Cascalheira, J. F. The effects of cannabinoids on glioblastoma growth: A systematic review with meta-analysis of animal model studies. Eur. J. Pharmacol., 2020, 876, 173055.
[http://dx.doi.org/10.1016/j.ejphar.2020.173055]
[18]
Cope, E.C.; Gould, E. Adult neurogenesis, glia, and the extracellular matrix. Cell. Stem. Cell, 2019, 24(5), 690-705.
[http://dx.doi.org/10.1016/j.stem.2019.03.023]
[19]
Hanani, M.; Verkhratsky, A. Satellite glial cells and astrocytes, a comparative review. Neurochem. Res., 2021, 46(10), 2525-2537.
[http://dx.doi.org/10.1007/s11064-021-03255-8] [PMID: 33523395]
[20]
Costas-Insua, C.; Guzmán, M. Endocannabinoid signaling in glioma. Glia, 2023, 71(1), 127-138.
[http://dx.doi.org/10.1002/glia.24173] [PMID: 35322459]
[21]
Salles, D.; Laviola, G. Pilocytic astrocytoma: A review of general, clinical, and molecular characteristics. J. Child. Neurol., 2020, 35(12), 852-858.
[http://dx.doi.org/10.1177/0883073820937225]
[22]
Hirtz, A.; Rech, F. Astrocytoma: A hormone-sensitive tumor? Int. J. Mol. Sci., 2020, 21(23), 9114.
[http://dx.doi.org/10.3390/ijms21239114]
[23]
Doherty, G.J.; de Paula, B.H.R. Cannabinoids in glioblastoma multiforme-hype or hope? Br. J. Cancer, 2021, 124(8), 1341-1343.
[http://dx.doi.org/10.1038/s41416-021-01265-5]
[24]
Gritsch, S.; Batchelor, T.T.; Gonzalez, C.L.N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer, 2022, 128(1), 47-58.
[http://dx.doi.org/10.1002/cncr.33918]
[25]
Kano, H.; Lunsford, L.D. Leksell radiosurgery for ependymomas and oligodendrogliomas. Prog. Neurol. Surg., 2019, 34, 200-206.
[http://dx.doi.org/10.1159/000493065] [PMID: 31096227]
[26]
Rudà, R.; Touat, M.; Soffietti, R. Is chemotherapy alone an option as initial treatment for low-grade oligodendrogliomas? Curr. Opin. Neurol., 2020, 33(6), 707-715.
[http://dx.doi.org/10.1097/WCO.0000000000000866]
[27]
Baliga, S.; Gandola, L.; Timmermann, B.; Gail, H.; Padovani, L.; Janssens, G.O.; Yock, T.I. Brain tumors: Medulloblastoma, ATRT, ependymoma. Pediatr. Blood Cancer, 2021, 68(S2), e28395.
[http://dx.doi.org/10.1002/pbc.28395] [PMID: 32386126]
[28]
Jünger, S.T.; Timmermann, B.; Pietsch, T. Pediatric ependymoma: An overview of a complex disease. Childs Nerv. Syst., 2021, 37(8), 2451-2463.
[29]
Stuckert, A.; Bertrand, K.C.; Wang, P.; Smith, A.; Mack, S.C. Weighing ependymoma as an epigenetic disease. J. Neurooncol., 2020, 150(1), 57-61.
[http://dx.doi.org/10.1007/s11060-020-03562-0]
[30]
Bernstock, J.D.; Hoffman, S.E.; Kappel, A.D.; Valdes, P.A.; Essayed, W.I.; Klinger, N.V.; Kang, K.D.; Totsch, S.K.; Olsen, H.E.; Schlappi, C.W. Immunotherapy Approaches for the Treatment of Diffuse Midline Gliomas. OncoImmunology; Taylor and Francis Ltd., 2022.
[http://dx.doi.org/10.1080/2162402X.2022.2124058]
[31]
Janjua, M.B.; Ban, V.S.; El Ahmadieh, T.Y.; Hwang, S.W.; Samdani, A.F.; Price, A.V.; Weprin, B.E.; Batjer, H. Diffuse intrinsic pontine gliomas: Diagnostic approach and treatment strategies. J. Clin. Neurosci., 2020, 72, 15-19.
[http://dx.doi.org/10.1016/j.jocn.2019.12.001]
[32]
Srikanthan, D.; Taccone, M.S.; Van Ommeren, R.; Ishida, J.; Krumholtz, S.L.; Rutka, J.T. Diffuse intrinsic pontine glioma: Current insights and future directions. Chin. Neurosurg. J., 2021, 7(1), 6.
[http://dx.doi.org/10.1186/s41016-020-00218-w]
[33]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155]
[34]
Gell, A.L.; Groysbeck, N.; Becker, C.F.W.; Conibear, A.C. A comparative study of synthetic and semisynthetic approaches for ligating the epidermal growth factor to a bivalent scaffold. J. Pept. Sci., 2017, 23(12), 871-879.
[http://dx.doi.org/10.1002/psc.3051] [PMID: 29105901]
[35]
Purba, E.R.; Saita, E.I.; Maruyama, I.N. Activation of the EGF receptor by ligand binding and oncogenic mutations: The "Rotation Model". Cells, 2017, 6(2), 13.
[http://dx.doi.org/10.3390/cells6020013]
[36]
Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem., 2020, 20(10), 815-834.
[http://dx.doi.org/10.2174/1568026620666200303123102] [PMID: 32124699]
[37]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017, 9(5), 52.
[http://dx.doi.org/10.3390/cancers9050052]
[38]
Kasenda, B.; König, D.; Manni, M.; Ritschard, R.; Duthaler, U.; Bartoszek, E.; Bärenwaldt, A.; Deuster, S.; Hutter, G.; Cordier, D.; Mariani, L.; Hench, J.; Frank, S.; Krähenbühl, S.; Zippelius, A.; Rochlitz, C.; Mamot, C.; Wicki, A.; Läubli, H. Targeting immunoliposomes to EGFR-positive glioblastoma. ESMO Open., 2022, 7(1), 100365.
[http://dx.doi.org/10.1016/j.esmoop.2021.100365] [PMID: 34998092]
[39]
Maire, C.L.; Ligon, K.L. Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro. Oncol., 2014, 16(S8), viii1-viii6.
[http://dx.doi.org/10.1093/neuonc/nou294]
[40]
Saadeh, F.S.; Mahfouz, R.; Assi, H.I. EGFR as a clinical marker in glioblastomas and other gliomas. Int. J. Biol. Markers, 2018, 33(1), 22-32.
[http://dx.doi.org/10.5301/ijbm.5000301]
[41]
Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta. Pharm. Sin. B, 2015, 5(5), 390-401.
[http://dx.doi.org/10.1016/j.apsb.2015.07.001]
[42]
Morgillo, F.; Corte, C.M.D.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open., 2016, 1(3), e000060.
[http://dx.doi.org/10.1136/esmoopen-2016-000060]
[43]
Padfield, E.; Ellis, H.P.; Kurian, K.M. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front. Oncol., 2015, 5, 5.
[http://dx.doi.org/10.3389/fonc.2015.00005] [PMID: 25688333]
[44]
Elbaz, M.; Nasser, M.W.; Ravi, J.; Wani, N.A.; Ahirwar, D.K.; Zhao, H.; Oghumu, S.; Satoskar, A.R.; Shilo, K.; Carson, W.E., III; Ganju, R.K. Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: Novel anti-tumor mechanisms of Cannabidiol in breast cancer. Mol. Oncol., 2015, 9(4), 906-919.
[http://dx.doi.org/10.1016/j.molonc.2014.12.010] [PMID: 25660577]
[45]
Lamtha, T.; Tabtimmai, L.; Songtawee, N.; Tansakul, N.; Choowongkomon, K. Structural analysis of cannabinoids against EGFR-TK leads a novel target against EGFR-driven cell lines. Curr. Res. Pharmacol. Drug Discov., 2022, 3, 100132.
[http://dx.doi.org/10.1016/j.crphar.2022.100132] [PMID: 36568260]
[46]
Janku, F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat. Rev., 2017, 59, 93-101.
[http://dx.doi.org/10.1016/j.ctrv.2017.07.005]
[47]
Cui, W.; Cai, Y.; Zhou, X. Advances in subunits of PI3K class I in cancer. Pathology, 2014, 46(3), 169-176.
[http://dx.doi.org/10.1097/PAT.0000000000000066] [PMID: 24614719]
[48]
Gulluni, F.; De Santis, M.C.; Margaria, J.P.; Martini, M.; Hirsch, E. Class II PI3K functions in cell biology and disease. Trends. Cell. Biol., 2019, 29(4), 339-359.
[http://dx.doi.org/10.1016/j.tcb.2019.01.001]
[49]
Nascimbeni, A.C.; Codogno, P.; Morel, E. Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. FEBS. J., 2017, 284, 1267-1278.
[http://dx.doi.org/10.1111/febs.13987]
[50]
Liu, X.; Xu, Y.; Zhou, Q.; Chen, M.; Zhang, Y.; Liang, H.; Zhao, J.; Zhong, W.; Wang, M. PI3K in cancer: Its structure, activation modes and role in shaping tumor microenvironment. Future Oncol., 2018, 14(7), 665-674.
[http://dx.doi.org/10.2217/fon-2017-0588]
[51]
Dehkordi, R.Z.; Baharanchi, H.F.S.; Bekhradi, R. Effect of lavender inhalation on the symptoms of primary dysmenorrhea and the amount of menstrual bleeding: A randomized clinical trial. Complement. Ther. Med., 2014, 22(2), 212-219.
[http://dx.doi.org/10.1016/j.ctim.2013.12.011] [PMID: 24731891]
[52]
Behrooz, A.B.; Talaie, Z.; Jusheghani, F.; Łos, M. J.; Klonisch, T.; Ghavami, S. Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. Int. J. Mol. Sci., 2022, 23(3), 1353.
[http://dx.doi.org/10.3390/ijms23031353]
[53]
Burris, H.A., III Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother. Pharmacol., 2013, 71(4), 829-842.
[http://dx.doi.org/10.1007/s00280-012-2043-3] [PMID: 23377372]
[54]
Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/MTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget., 2016, 7(22), 33440-33450.
[55]
Becher, O.J.; Millard, N.E.; Modak, S.; Kushner, B.H.; Haque, S.; Spasojevic, I.; Trippett, T.M.; Gilheeney, S.W.; Khakoo, Y.; Lyden, D.C.; De Braganca, K.C.; Kolesar, J.M.; Huse, J.T.; Kramer, K.; Cheung, N.K.V.; Dunkel, I.J. A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS One, 2017, 12(6), e0178593.
[http://dx.doi.org/10.1371/journal.pone.0178593] [PMID: 28582410]
[56]
Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci., 2020, 10, 31.
[http://dx.doi.org/10.1186/s13578-020-00396-1]
[57]
Masui, K.; Cavenee, W.K.; Mischel, P.S. MTORC2 in the center of cancer metabolic reprogramming. In: Trends in Endocrinology and Metabolism; Elsevier Inc., 2014; pp. 364-373.
[http://dx.doi.org/10.1016/j.tem.2014.04.002]
[58]
Jhanwar-Uniyal, M.; Gillick, J. L.; Neil, J.; Tobias, M.; Thwing, Z. E.; Murali, R. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: A tale of two complexes. Adv. Biol. Regul., 2015, 57, 64-74.
[http://dx.doi.org/10.1016/j.jbior.2014.09.004]
[59]
Mittal, R.; Chaudhry, N.; Mukherjee, T.K. Targeting breast cancer cell signaling molecules PI3K and Akt by phytochemicals Cannabidiol, Nimbin and Acetogenin: An in silico approach. J. Biomed., 2018, 3, 60-63.
[http://dx.doi.org/10.7150/jbm.25815]
[60]
Song, G.; Lu, H.; Chen, F.; Wang, Y.; Fan, W.; Shao, W.; Lu, H.; Lin, B. Tetrahydrocurcumin-induced autophagy via suppression of PI3K/Akt/mTOR in non-small cell lung carcinoma cells. Mol. Med. Rep., 2018, 17(4), 5964-5969.
[http://dx.doi.org/10.3892/mmr.2018.8600] [PMID: 29436654]
[61]
Dai, S.; Zhou, Z.; Chen, Z.; Xu, G.; Chen, Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and small molecule inhibitors. Cells, 2019, 8(6), 614.
[http://dx.doi.org/10.3390/cells8060614] [PMID: 31216761]
[62]
Mossahebi-Mohammadi, M.; Quan, M.; Zhang, J. S.; Li, X. FGF signaling pathway: A key regulator of stem cell pluripotency. Front Cell. Dev. Biol., 2020, 8, 79.
[http://dx.doi.org/10.3389/fcell.2020.00079]
[63]
Jimenez-Pascual, A.; Siebzehnrubl, F. A. Fibroblast growth factor receptor functions in glioblastoma. Cells., 2019, 8(7), 715.
[http://dx.doi.org/10.3390/cells8070715]
[64]
Babina, I.S.; Turner, N.C. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer, 2017, 17(5), 318-332.
[http://dx.doi.org/10.1038/nrc.2017.8]
[65]
Hierro, C.; Rodon, J.; Tabernero, J. Fibroblast Growth Factor (FGF) receptor/FGF inhibitors: Novel targets and strategies for optimization of response of solid tumors. In: Seminars in Oncology; W.B. Saunders, 2015; pp. 801-819.
[http://dx.doi.org/10.1053/j.seminoncol.2015.09.027]
[66]
Katoh, M.; Nakagama, H. FGF receptors: Cancer biology and therapeutics. Med. Res. Rev., 2014, 34(2), 280-300.
[http://dx.doi.org/10.1002/med.21288] [PMID: 23696246]
[67]
Roskoski, R. The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder. Pharmacol. Res., 2020, 151, 104567.
[http://dx.doi.org/10.1016/j.phrs.2019.104567]
[68]
Sootome, H.; Fujita, H.; Ito, K.; Ochiiwa, H.; Fujioka, Y.; Ito, K.; Miura, A.; Sagara, T.; Ito, S.; Ohsawa, H.; Otsuki, S.; Funabashi, K.; Yashiro, M.; Matsuo, K.; Yonekura, K.; Hirai, H. Futibatinib is a novel irreversible FGFR 1–4 inhibitor that shows selective antitumor activity against FGFR-deregulated tumors. Cancer Res., 2020, 80(22), 4986-4997.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-2568] [PMID: 32973082]
[69]
Gavine, P.R.; Mooney, L.; Kilgour, E.; Thomas, A.P.; Al-Kadhimi, K.; Beck, S.; Rooney, C.; Coleman, T.; Baker, D.; Mellor, M.J.; Brooks, A.N.; Klinowska, T. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res., 2012, 72(8), 2045-2056.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3034] [PMID: 22369928]
[70]
Singh, D.; Chan, J. M.; Zoppoli, P.; Niola, F.; Sullivan, R.; Castano, A.; Liu, E. M.; Reichel, J.; Porrati, P.; Pellegatta, S. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science, 2012, 337(6099), 1231.
[http://dx.doi.org/10.1126/science.1220834]
[71]
Schramm, K.; Iskar, M.; Statz, B.; Jäger, N.; Haag, D.; Słabicki, M.; Pfister, S.M.; Zapatka, M.; Gronych, J.; Jones, D.T.W.; Lichter, P. DECIPHER pooled shRNA library screen identifies PP2A and FGFR signaling as potential therapeutic targets for diffuse intrinsic pontine gliomas. Neuro-oncol., 2019, 21(7), 867-877.
[http://dx.doi.org/10.1093/neuonc/noz057] [PMID: 30943283]
[72]
Crispo, F.; Notarangelo, T.; Pietrafesa, M.; Lettini, G.; Storto, G.; Sgambato, A.; Maddalena, F.; Landriscina, M. BRAF inhibitors in thyroid cancer: Clinical impact, mechanisms of resistance and future perspectives. Cancers, 2019, 11(9), 1388.
[http://dx.doi.org/10.3390/cancers11091388]
[73]
Molina-Cerrillo, J.; San Román, M.; Pozas, J.; Alonso-Gordoa, T.; Pozas, M.; Conde, E.; Rosas, M.; Grande, E.; García-Bermejo, M. L.; Carrato, A. BRAF mutated colorectal cancer: New treatment approaches. Cancers., 2020, 12(6), 1571.
[http://dx.doi.org/10.3390/cancers12061571]
[74]
Zaman, A.; Wu, W.; Bivona, T. G. Targeting oncogenic BRAF: Past, present, and future. Cancers., 2019, 11(8), 1197.
[http://dx.doi.org/10.3390/cancers11081197]
[75]
Andrews, L.J.; Thornton, Z.A.; Saincher, S.S.; Yao, I.Y.; Dawson, S.; McGuinness, L.A.; Jones, H.E.; Jefferies, S.; Short, S.C.; Cheng, H.Y. Prevalence of BRAFV600 in glioma and use of BRAF Inhibitors in patients with BRAFV600 mutation-positive glioma: Systematic review. Neuro Oncol., 2022, 24(4), 528-540.
[http://dx.doi.org/10.1093/neuonc/noab247]
[76]
Schreck, K..; Grossman, S.A.; Pratilas, C.A. BRAF mutations and the utility of RAF and MEK inhibitors in primary brain tumors. Cancers., 2019, 11(9), 1262.
[http://dx.doi.org/10.3390/cancers11091262]
[77]
Marzęda, P.; Drozd, M.; Wróblewska-Łuczka, P.; Łuszczki, J. J. Cannabinoids and their derivatives in struggle against melanoma. Pharmacol. Rep., 2021, 73(6), 1485-1496.
[http://dx.doi.org/10.1007/s43440-021-00308-1]
[78]
Panebianco, F.; Nikitski, A.V.; Nikiforova, M.N.; Nikiforov, Y.E. Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer. Cancer Med., 2019, 8(13), 5831-5839.
[http://dx.doi.org/10.1002/cam4.2467] [PMID: 31408918]
[79]
Dratwa, M.; Wysoczańska, B.; Łacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT-regulation and roles in cancer formation. Front. Immunol., 2020, 11, 589929.
[http://dx.doi.org/10.3389/fimmu.2020.589929]
[80]
Ohba, S.; Kuwahara, K.; Yamada, S.; Abe, M.; Hirose, Y. Correlation between IDH, ATRX, and TERT promoter mutations in glioma. Brain. Tumor. Pathol., 2020, 37(2), 33-40.
[http://dx.doi.org/10.1007/s10014-020-00360-4]
[81]
Yang, L.; Li, N.; Wang, M.; Zhang, Y.H.; Yan, L.; Da; Zhou, W.; Yu, Z.Q.; Peng, X.C.; Cai, J. Tumorigenic effect of TERT and its potential therapeutic target in NSCLC (Review). Oncol Rep., 2021, 46(2), 182.
[http://dx.doi.org/10.3892/or.2021.8133]
[82]
Hussein, N.A.E.M.; El-Toukhy, M.A.E.F.; Kazem, A.H.; Ali, M.E.S.; Ahmad, M.A.E.R.; Ghazy, H.M.R.; El-Din, A.M.G. Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice. Alex. J. Med., 2014, 50(3), 241-251.
[http://dx.doi.org/10.1016/j.ajme.2014.02.003]
[83]
Hanihara, M.; Kawataki, T.; Oh-Oka, K.; Mitsuka, K.; Nakao, A.; Kinouchi, H. Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model. J. Neurosurg., 2016, 124(6), 1594-1601.
[http://dx.doi.org/10.3171/2015.5.JNS141901] [PMID: 26636389]
[84]
Godin-Ethier, J.; Hanafi, L.A.; Piccirillo, C.A.; Lapointe, R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin. Cancer Res., 2011, 17(22), 6985-6991.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1331] [PMID: 22068654]
[85]
Batista, C.E.A.; Juhász, C.; Muzik, O.; Kupsky, W.J.; Barger, G.; Chugani, H.T.; Mittal, S.; Sood, S.; Chakraborty, P.K.; Chugani, D.C. Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors. Mol. Imaging Biol., 2009, 11(6), 460-466.
[http://dx.doi.org/10.1007/s11307-009-0225-0] [PMID: 19434461]
[86]
Guastella, A.R.; Michelhaugh, S.K.; Klinger, N.V.; Kupsky, W.J.; Polin, L.A.; Muzik, O.; Juhász, C.; Mittal, S. Tryptophan PET imaging of the kynurenine pathway in patient-derived xenograft models of glioblastoma. Mol. Imaging, 2016, 15 1536012116644881.
[http://dx.doi.org/10.1177/1536012116644881] [PMID: 27151136]
[87]
Hosseinalizadeh, H.; Mahmoodpour, M.; Samadani, A. A.; Roudkenar, M. H. The immunosuppressive role of indoleamine 2, 3-dioxygenase in glioblastoma: Mechanism of action and immunotherapeutic strategies. Med Oncol., 2022, 39(9), 130.
[http://dx.doi.org/10.1007/s12032-022-01724-w]
[88]
Ladomersky, E.; Zhai, L.; Lenzen, A.; Lauing, K.L.; Qian, J.; Scholtens, D.M.; Gritsina, G.; Sun, X.; Liu, Y.; Yu, F.; Gong, W.; Liu, Y.; Jiang, B.; Tang, T.; Patel, R.; Platanias, L.C.; James, C.D.; Stupp, R.; Lukas, R.V.; Binder, D.C.; Wainwright, D.A. IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. Clin. Cancer Res., 2018, 24(11), 2559-2573.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3573] [PMID: 29500275]
[89]
Tang, K.; Wu, Y.H.; Song, Y.; Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol., 2021, 14(1), 68.
[http://dx.doi.org/10.1186/s13045-021-01080-8]
[90]
Wainwright, D.A.; Chang, A.L.; Dey, M.; Balyasnikova, I.V.; Kim, C.K.; Tobias, A.; Cheng, Y.; Kim, J.W.; Qiao, J.; Zhang, L.; Han, Y.; Lesniak, M.S. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin. Cancer Res., 2014, 20(20), 5290-5301.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0514] [PMID: 24691018]
[91]
Kesarwani, P.; Prabhu, A.; Kant, S.; Kumar, P.; Graham, S.F.; Buelow, K.L.; Wilson, G.D.; Miller, C.R.; Chinnaiyan, P. Tryptophan metabolism contributes to radiation-induced immune checkpoint reactivation in glioblastoma. Clin. Cancer Res., 2018, 24(15), 3632-3643.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0041] [PMID: 29691296]
[92]
Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol., 2018, 227, 300-315.
[http://dx.doi.org/10.1016/j.jep.2018.09.004]
[93]
Jastrząb, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E. The origin and biomedical relevance of cannabigerol. Int. J. Mol. Sci., 2022, 23(14), 7929.
[http://dx.doi.org/10.3390/ijms23147929]
[94]
Anderson, L.L.; Heblinski, M.; Absalom, N.L.; Hawkins, N.A.; Bowen, M.T.; Benson, M.J.; Zhang, F.; Bahceci, D.; Doohan, P.T.; Chebib, M.; McGregor, I.S.; Kearney, J.A.; Arnold, J.C. Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy. Br. J. Pharmacol., 2021, 178(24), 4826-4841.
[http://dx.doi.org/10.1111/bph.15661] [PMID: 34384142]
[95]
Walsh, K.B.; McKinney, A.E.; Holmes, A.E. Minor cannabinoids: Biosynthesis, molecular pharmacology and potential therapeutic uses. Front. Pharmacol., 2021, 12, 777804.
[http://dx.doi.org/10.3389/fphar.2021.777804]
[96]
Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and biosynthesis. Trends Plant Sci, 2020, 25(10), 985-1004.
[http://dx.doi.org/10.1016/j.tplants.2020.05.005]
[97]
Kovalchuk, O.; Kovalchuk, I. Cannabinoids as anticancer therapeutic agents. Cell Cycle, 2020, 19(9), 961-989.
[http://dx.doi.org/10.1080/15384101.2020.1742952]
[98]
Likar, R.; Nahler, G. The use of cannabis in supportive care and treatment of brain tumor. Neurooncol. Pract., 2017, 4(3), 151-160.
[http://dx.doi.org/10.1093/nop/npw027] [PMID: 31385997]
[99]
Dumitru, C.A.; Sandalcioglu, I.E.; Karsak, M. Cannabinoids in glioblastoma therapy: New applications for old drugs. Front. Mol. Neurosci., 2018, 11, 159.
[http://dx.doi.org/10.3389/fnmol.2018.00159]
[100]
Peeri, H.; Shalev, N.; Vinayaka, A.C.; Nizar, R.; Kazimirsky, G.; Namdar, D.; Anil, S.M.; Belausov, E.; Brodie, C.; Koltai, H. Specific compositions of cannabis sativa compounds have cytotoxic activity and inhibit motility and colony formation of human glioblastoma cells in vitro. Cancers., 2021, 13(7), 1720.
[http://dx.doi.org/10.3390/cancers13071720] [PMID: 33916466]
[101]
Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.; Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev., 2002, 54(2), 161-202.
[102]
Lah, T.T.; Novak, M.; Almidon, M.A.P.; Marinelli, O.; Baškovič, B.Z.; Majc, B.; Mlinar, M.; Bošnjak, R.; Breznik, B.; Zomer, R.; Nabissi, M. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells., 2021, 10(2), 340.
[http://dx.doi.org/10.3390/cells10020340] [PMID: 33562819]
[103]
Lah, T.T.; Majc, B.; Novak, M.; Sušnik, A.; Breznik, B.; Porčnik, A.; Bošnjak, R.; Sadikov, A.; Malavolta, M.; Halilčević, S.; Mlakar, J.; Zomer, R. The cytotoxic effects of cannabidiol and cannabigerol on glioblastoma stem cells may mostly involve GPR55 and TRPV1 signalling. Cancers, 2022, 14(23), 5918.
[http://dx.doi.org/10.3390/cancers14235918] [PMID: 36497400]
[104]
Gross, C.; Ramirez, D.A.; McGrath, S.; Gustafson, D.L. Cannabidiol induces apoptosis and perturbs mitochondrial function in human and canine glioma cells. Front. Pharmacol., 2021, 12, 725136.
[http://dx.doi.org/10.3389/fphar.2021.725136] [PMID: 34456736]
[105]
Ligresti, A.; De Petrocellis, L.; Di Marzo, V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: Pleiotropic physiological and pathological roles through complex pharmacology. Physiol. Rev., 2016, 96(4), 1593-1659.
[http://dx.doi.org/10.1152/physrev.00002.2016] [PMID: 27630175]
[106]
Guzmán, M.; Duarte, M.J.; Blázquez, C.; Ravina, J.; Rosa, M.C.; Galve-Roperh, I.; Sánchez, C.; Velasco, G.; González-Feria, L. A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br. J. Cancer, 2006, 95(2), 197-203.
[http://dx.doi.org/10.1038/sj.bjc.6603236] [PMID: 16804518]
[107]
Salazar, M.; Carracedo, A.; Salanueva, Í.J.; Hernández-Tiedra, S.; Lorente, M.; Egia, A.; Vázquez, P.; Blázquez, C.; Torres, S.; García, S.; Nowak, J.; Fimia, G.M.; Piacentini, M.; Cecconi, F.; Pandolfi, P.P.; González-Feria, L.; Iovanna, J.L.; Guzmán, M.; Boya, P.; Velasco, G. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest., 2009, 119(5), 1359-1372.
[http://dx.doi.org/10.1172/JCI37948] [PMID: 19425170]
[108]
Hernán Pérez de la Ossa, D.; Lorente, M.; Gil-Alegre, M.E.; Torres, S.; García-Taboada, E.; Aberturas, M.R.; Molpeceres, J.; Velasco, G.; Torres-Suárez, A.I. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme. PLoS One, 2013, 8(1), e54795.
[http://dx.doi.org/10.1371/journal.pone.0054795] [PMID: 23349970]
[109]
Hernández-Tiedra, S.; Fabriàs, G.; Dávila, D.; Salanueva, Í.J.; Casas, J.; Montes, L.R.; Antón, Z.; García-Taboada, E.; Salazar-Roa, M.; Lorente, M.; Nylandsted, J.; Armstrong, J.; López-Valero, I.; McKee, C.S.; Serrano-Puebla, A.; García-López, R.; González-Martínez, J.; Abad, J.L.; Hanada, K.; Boya, P.; Goñi, F.; Guzmán, M.; Lovat, P.; Jäättelä, M.; Alonso, A.; Velasco, G. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy, 2016, 12(11), 2213-2229.
[http://dx.doi.org/10.1080/15548627.2016.1213927] [PMID: 27635674]
[110]
Kolbe, M.R.; Hohmann, T.; Hohmann, U.; Ghadban, C.; Mackie, K.; Zöller, C.; Prell, J.; Illert, J.; Strauss, C.; Dehghani, F. THC reduces Ki67-immunoreactive cells derived from human primary glioblastoma in a GPR55-dependent manner. Cancers, 2021, 13(5), 1064.
[http://dx.doi.org/10.3390/cancers13051064]
[111]
Maioli, C.; Mattoteia, D.; Amin, H.I.M.; Minassi, A.; Caprioglio, D. Cannabinol: History, syntheses, and biological profile of the greatest "minor" cannabinoid. Plants, 2022, 11(21), 2896.
[http://dx.doi.org/10.3390/plants11212896]
[112]
Marcu, J.P.; Christian, R.T.; Lau, D.; Zielinski, A.J.; Horowitz, M.P.; Lee, J.; Pakdel, A.; Allison, J.; Limbad, C.; Moore, D.H.; Yount, G.L.; Desprez, P.Y.; McAllister, S.D. Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol. Cancer Ther., 2010, 9(1), 180-189.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0407] [PMID: 20053780]
[113]
Scott, K.A.; Dalgleish, A.G.; Liu, W.M. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol. Cancer Ther., 2014, 13(12), 2955-2967.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0402] [PMID: 25398831]
[114]
López-Valero, I.; Torres, S.; Salazar-Roa, M.; García-Taboada, E.; Hernández-Tiedra, S.; Guzmán, M.; Sepúlveda, J.M.; Velasco, G.; Lorente, M. Optimization of a preclinical therapy of cannabinoids in combination with temozolomide against glioma. Biochem. Pharmacol., 2018, 157, 275-284.
[http://dx.doi.org/10.1016/j.bcp.2018.08.023] [PMID: 30125556]
[115]
Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural Determinants of Phosphoinositide 3-Kinase Inhibition by Wortmannin, LY294002, Quercetin, Myricetin, and Staurosporine for Proteins Such as Protein Kinase B (PKB) and Phos-Pholipid-Dependent Kinase 1 (PDK1); These Are Im-Portant Components of the Molecular Mechanisms of Diseases Such as Diabetes, Cancer, and Chronic Inflam-Mation. The Class I Isozymes Are Subdivided into Classes, 2000, Vol. 6, .
[116]
Tucker, J.A.; Klein, T.; Breed, J.; Breeze, A.L.; Overman, R.; Phillips, C.; Norman, R.A. Structural insights into FGFR kinase isoform selectivity: diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure., 2014, 22(12), 1764-1774.
[http://dx.doi.org/10.1016/j.str.2014.09.019] [PMID: 25465127]
[117]
Haling, J.R.; Sudhamsu, J.; Yen, I.; Sideris, S.; Sandoval, W.; Phung, W.; Bravo, B.J.; Giannetti, A.M.; Peck, A.; Masselot, A.; Morales, T.; Smith, D.; Brandhuber, B.J.; Hymowitz, S.G.; Malek, S. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Cancer Cell., 2014, 26(3), 402-413.
[http://dx.doi.org/10.1016/j.ccr.2014.07.007] [PMID: 25155755]
[118]
Peng, Y.H.; Ueng, S.H.; Tseng, C.T.; Hung, M.S.; Song, J.S.; Wu, J.S.; Liao, F.Y.; Fan, Y.S.; Wu, M.H.; Hsiao, W.C.; Hsueh, C.C.; Lin, S.Y.; Cheng, C.Y.; Tu, C.H.; Lee, L.C.; Cheng, M.F.; Shia, K.S.; Shih, C.; Wu, S.Y. Important hydrogen bond networks in indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor design revealed by crystal structures of imidazoleisoindole derivatives with IDO1. J. Med. Chem., 2016, 59(1), 282-293.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01390] [PMID: 26642377]
[119]
Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The protein data bank: A computer-based archival file for macromolecular structures. J. Mol. Biol., 1977, 112(3), 535-542.
[http://dx.doi.org/10.1016/S0022-2836(77)80200-3] [PMID: 875032]
[120]
Mollegro Virtual Docker 6.0; CLC Bio Company, 2014.
[121]
De Azevedo, W., Jr; Walter, F. MolDock applied to structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 327-334.
[http://dx.doi.org/10.2174/138945010790711941] [PMID: 20210757]
[122]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[123]
Yusuf, D.; Davis, A.M.; Kleywegt, G.J.; Schmitt, S. An alternative method for the evaluation of docking performance: RSR vs RMSD. J. Chem. Inf. Model., 2008, 48(7), 1411-1422.
[http://dx.doi.org/10.1021/ci800084x] [PMID: 18598022]
[124]
Hung, L.H.; Guerquin, M.; Samudrala, R. GPU-Q-J, a fast method for calculating root mean square deviation (RMSD) after optimal superposition. BMC Res. Notes, 2011, 4(1), 97.
[http://dx.doi.org/10.1186/1756-0500-4-97] [PMID: 21453553]
[125]
To, C.; Beyett, T.S.; Jang, J.; Feng, W.W.; Bahcall, M.; Haikala, H.M.; Shin, B.H.; Heppner, D.E.; Rana, J.K.; Leeper, B.A.; Soroko, K.M.; Poitras, M.J.; Gokhale, P.C.; Kobayashi, Y.; Wahid, K.; Kurppa, K.J.; Gero, T.W.; Cameron, M.D.; Ogino, A.; Mushajiang, M.; Xu, C.; Zhang, Y.; Scott, D.A.; Eck, M.J.; Gray, N.S.; Jänne, P.A. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat. Can., 2022, 3(4), 402-417.
[http://dx.doi.org/10.1038/s43018-022-00351-8] [PMID: 35422503]
[126]
Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 2000, 6(4), 909-919.
[http://dx.doi.org/10.1016/S1097-2765(05)00089-4] [PMID: 11090628]
[127]
Choi, W.S.; Weng, P.J.; Yang, W. Flexibility of telomerase in binding the RNA template and DNA telomeric repeat. Proc. Natl. Acad. Sci., 2022, 119(1), e2116159118.
[http://dx.doi.org/10.1073/pnas.2116159118] [PMID: 34969861]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy