Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Quinoline-hydrazone Conjugates: Recent Insights into Synthetic Strategies, Structure-activity Relationship, and Biological Activities

Author(s): Upendra Kumar, Rajnish Kumar*, Avijit Mazumder, Salahuddin and Greesh Kumar

Volume 21, Issue 14, 2024

Published on: 09 October, 2023

Page: [2853 - 2874] Pages: 22

DOI: 10.2174/1570180820666230830125155

Price: $65

Abstract

The fusion of two distinct and free pharmacologically active chemical moieties into single conjugate molecules can result in synergized pharmacological action of both moieties into the new composite molecule. Ultimately, it increases the therapeutic potentialof the newly formed hybrid compound which is more than the combination of each specific moiety’s therapeutic potential. So nowadays, it is common practice to combine at least two pharmacophores to create a particular compound with a powerful therapeutic effects. Quinoline has been reported with multiple pharmacological activities and industrial applications. On the other hand, hydrazones are also found very useful as herbicides, acaricides, rodenticides, insecticides, and various therapeutic applications. The conjugate containing quinoline and hydrazone is also being used as an anticancer, antibacterial, antifungal, antimalarial, anticonvulsant, antiinflammatory, and antioxidant. The combination of two moieties yields a better therapeutic effect because of excellent efficacy and fewer side effects. Several synthetic methods have been employed in recent times to synthesize quinoline-hydrazone conjugates which are listed in the manuscript with their merits and demerits. The structure-activity relationship relating to their pharmacological actions with molecular structure has also been highlighted. The article aims to provide a good toolkit and comprehension to the medicinal chemists, for their future work, comprising of quinoline-hydrazone hybrid compounds.

[1]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[2]
Orhan Püsküllü, M.; Tekiner, B.; Suzen, S. Recent studies of antioxidant quinoline derivatives. Mini Rev. Med. Chem., 2013, 13(3), 365-372.
[PMID: 23190035]
[3]
Rajesh, Y.B. Quinoline heterocycles: synthesis and bioactivity; Heterocycl; Synth Bio Act, 2018, p. 19.
[4]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[5]
Luo, Y.; Yue, X.; Wei, P.; Zhou, A.; Kong, X.; Alimzhanova, S. A state-of-the-art review of quinoline degradation and technical bottlenecks. Sci. Total Environ., 2020, 747, 141136.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141136] [PMID: 32777494]
[6]
Kouznetsov, V.; Méndez, L.; Gómez, C. Recent progress in the synthesis of quinolines. Curr. Org. Chem., 2005, 9(2), 141-161.
[http://dx.doi.org/10.2174/1385272053369196]
[7]
Gu, W.; Jin, X.Y.; Li, D.D.; Wang, S.F.; Tao, X.B.; Chen, H. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett., 2017, 27(17), 4128-4132.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.033] [PMID: 28733083]
[8]
Czaplinska, B.; Spaczynska, E.; Musiol, R. Quinoline fluorescent probes for zinc–from diagnostic to therapeutic molecules in treating neurodegenerative diseases. Med. Chem., 2018, 14(1), 19-33.
[PMID: 28969572]
[9]
Kumar, H.; Devaraji, V.; Joshi, R.; Jadhao, M.; Ahirkar, P.; Prasath, R.; Bhavana, P.; Ghosh, S.K. Antihypertensive activity of a quinoline appended chalcone derivative and its site specific binding interaction with a relevant target carrier protein. RSC Advances, 2015, 5(80), 65496-65513.
[http://dx.doi.org/10.1039/C5RA08778C]
[10]
Wang, M.; Zhang, G.; Zhao, J.; Cheng, N.; Wang, Y.; Fu, Y.; Zheng, Y.; Wang, J.; Zhu, M.; Cen, S.; He, J.; Wang, Y. Synthesis and antiviral activity of a series of novel quinoline derivatives as anti-RSV or anti-IAV agents. Eur. J. Med. Chem., 2021, 214, 113208.
[http://dx.doi.org/10.1016/j.ejmech.2021.113208] [PMID: 33571829]
[11]
Mubeen, S.; Rauf, A.; Qureshi, A.M. Synthesis of new quinoline scaffolds via a solvent-free fusion method and their anti-microbial properties. Trop. J. Pharm. Res., 2018, 17(9), 1853-1858.
[http://dx.doi.org/10.4314/tjpr.v17i9.25]
[12]
Mohamed, M.F.A.; Abuo-Rahma, G.E.D.A. Molecular targets and anticancer activity of quinoline–chalcone hybrids: literature review. RSC Advances, 2020, 10(52), 31139-31155.
[http://dx.doi.org/10.1039/D0RA05594H] [PMID: 35520674]
[13]
Uddin, A.; Chawla, M.; Irfan, I.; Mahajan, S.; Singh, S.; Abid, M. Medicinal chemistry updates on quinoline- and endoperoxide-based hybrids with potent antimalarial activity. RSC Medicinal Chemistry, 2021, 12(1), 24-42.
[http://dx.doi.org/10.1039/D0MD00244E] [PMID: 34046596]
[14]
Costa, C.A.; Lopes, R.M.; Ferraz, L.S.; Esteves, G.N.N.; Di Iorio, J.F.; Souza, A.A.; de Oliveira, I.M.; Manarin, F.; Judice, W.A.S.; Stefani, H.A.; Rodrigues, T. Cytotoxicity of 4-substituted quinoline derivatives: Anticancer and antileishmanial potential. Bioorg. Med. Chem., 2020, 28(11), 115511.
[http://dx.doi.org/10.1016/j.bmc.2020.115511] [PMID: 32336669]
[15]
Abdelrahman, M.H.; Youssif, B.G.M. abdelgawad, M.A.; Abdelazeem, A.H.; Ibrahim, H.M.; Moustafa, A.E.G.A.; Treamblu, L.; Bukhari, S.N.A. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur. J. Med. Chem., 2017, 127, 972-985.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.006] [PMID: 27837994]
[16]
Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and antibacterial, antioxidant, and molecular docking analysis of some novel quinoline derivatives. J. Chem., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/1324096]
[17]
Gaurav, A.; Singh, R. Pharmacophore modeling, 3DQSAR, and docking-based design of polysubstituted quinolines derivatives as inhibitors of phosphodiesterase 4, and preliminary evaluation of their anti-asthmatic potential. Med. Chem. Res., 2014, 23(12), 5008-5030.
[http://dx.doi.org/10.1007/s00044-014-1048-3]
[18]
Rajanarendar, E.; Nagi Reddy, M.; Rama Krishna, S.; Rama Murthy, K.; Reddy, Y.N.; Rajam, M.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin-4-ones. Eur. J. Med. Chem., 2012, 55, 273-283.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.029] [PMID: 22846796]
[19]
Asif, M.; Husain, A. Analgesic, anti-inflammatory, and antiplatelet profile of hydrazones containing synthetic molecules. J. Appl. Chem. (Cairo), 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/247203]
[20]
Abdel-Wahab, B.F.; Awad, G.E.A.; Badria, F.A. Synthesis, antimicrobial, antioxidant, anti-hemolytic and cytotoxic evaluation of new imidazole-based heterocycles. Eur. J. Med. Chem., 2011, 46(5), 1505-1511.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.062] [PMID: 21353349]
[21]
Kumar, N.; Chauhan, L.S.; Dashora, N.; Sharma, C.S. Anticonvulant potential of hydrazone derivatives: A review. Sch. Acad. J. Pharm., 2014, 366-373.
[22]
Lindgren, E.B.; de Brito, M.A.; Vasconcelos, T.R.A.; de Moraes, M.O.; Montenegro, R.C.; Yoneda, J.D.; Leal, K.Z. Synthesis and anticancer activity of (E)-2-benzothiazole hydrazones. Eur. J. Med. Chem., 2014, 86, 12-16.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.039] [PMID: 25147145]
[23]
Edrees, M.M.; Farghaly, T.A.; El-Hag, F.A.A.; Abdalla, M.M. Antimicrobial, antitumor and 5α-reductase inhibitor activities of some hydrazonoyl substituted pyrimidinones. Eur. J. Med. Chem., 2010, 45(12), 5702-5707.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.026] [PMID: 20933305]
[24]
Kolate, S.S.; Waghulde, G.P.; Patil, C.J.; Sarode, C.H. Synthesis, spectroscopic characterization and biological evaluation of some 6- nitro-benzothiazole-2-yl-hydrazone derivatives. J. Pharm. Chem. Bio. Sci., 2018, 2348-7658.
[25]
Tripathi, L.; Singh, R.; Stables, J.P. Design & synthesis of N′-[substituted] pyridine-4-carbohydrazides as potential anticonvulsant agents. Eur. J. Med. Chem., 2011, 46(2), 509-518.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.030] [PMID: 21167624]
[26]
Philippe, H.; Firas, B.; Sonia, B.; Jerome, C.; Madani, R. Substituted 2,4 diamino-quinoline as new medicament for fibrosis, Autophagy flux and Cathepsins B(CTSB), L(CTSL), and D(CTSD) related diseases. Patent US 11261189 B2, 2022.
[27]
Nils, G.; Wei, Z.; Daniel, K.; Claudia, B.; Hans-Georg, S.; Thomas, I. Quinoline derivatives for treating infections with helminths. Patent US 11254661 B2, 2022.
[28]
Fan, J.; Qian, Y.; He, W.; Liu, K. Substituted quinoline-8-carbonitrile derivatives having androgen receptor degradation activity and uses thereof. Patent EP 3795570 B1, 2022.
[29]
Quaranta, L. Microbiocidal quinoline (thio) carboxamide derivatives. Patent EP 3601228 B1, 2022.
[30]
Chappie Thomas, A.; Galatsis, P.; Garnsey Michelle, R.; Helal Christopher, J.; Henderson Jaclyn, L.; Kormos Bethany, L. Kurumbail, Ravi G.; Martinez-Alsina Luis, A.; Pettersson Martin, Y. Novel 2-and 4-substituted 1H- imidazo[4,5-C] quinoline-4-amine derivatives as allosteridc modulators of the A3 adenosine receptor. Patent EP 3592740 B1, 2022.
[31]
Griesgraber, G.W.; Saint, P. Amide substituted imidazo[4,5- C]quinoline compounds with a branched chain linking group for use an immune response modifier. Patent EP 3728255 B1, 2022.
[32]
Vikram, S.; Vikram, S.K.; David P, H.; Ping, H.; Mo, J.; Xianjun, Y. Compositions and methods for inhibiting dihydroorotate dehydrogenase. Patent US 11230528 B2, 2022.
[33]
Nouri, N.; Ann, A.; Yi, J.; Jun, L. Small molecule inhibitors of myc and uses thereof. Patent US 11214567 B2, 2022.
[34]
Liu, J.; Liu, Q.; Wu, Y.; Wang, B.; Zou, F.; Wang, W.; Chen, C.; Wang, J.; Wang, Li. Pan-KIT kinase inhibitor having quinoline structure and application thereof. Patent AU 2018453128 B2, 2022.
[35]
Tazi, J.; Najman, R.; Mahuteau, F.; Scherrer, D.; Chebli, K. Quinoline derivatives for the treatment of Inflammatory diseases. Patent EP 3169328 B1, 2022.
[36]
Ann Marle, S.; Franklin, L.; Ravichandran, R.; Alexander, S.; Vivek, R.; Michaele, B.M. Quinoline compounds as modulators of rage activity and uses there of. Patent US 11192859 B2, 2021.
[37]
Andrew, M.; Sunil, K. Quinoline amides and methods of using same. Patent US 11135213 B2, 2021.
[38]
Stephane, S.; Aziz, F. Use for dyeing keratin fibers of a compound of azomethine type bearing a quinoline-derived unit. Patent US 11117864 B2, 2021.
[39]
Scherrer, D.; Garcel, A.; Campos, N.; Tazi, J.; Vautrin, A.; Mahuteau, F.; Najman, R.; Fornarelli, P. Derivados de quinoline para suusoeneltratamientoo la prevencion de infeccion viral. Patent ES 288254 T3, 2021.
[40]
Jones, K.; Cheeseman, M.D. Deuterated N-(5-(2,3- dihydobenzo[B][1,4]dioxine-6-carboxamido)-2-fluorophenyl)-2- ((4-ethylpiperazin-1-yl)methyl)quinoline-6-carboxamide. Patent EP 3523295 B1, 2021.
[41]
David, J.A.; Anthony, F., B.; Adam, B.; Darren, R.C.; John, A.G.; Spencer, D.K.; Xin, Y. Hydrazone derivatives for the treatment of cancer. US 10828288 B2, 2020.
[42]
Benfatti, Fides Jeanguenat, A Pesticidally active oxime and hydrazone derivatives. EP 3303285 B1, 2020.
[43]
David, H; Steven Howard, S.; Gerald, S; Cruz, A.-A.; Nneka, T. B.; James M., R.; Thomas L., .; Jeffery D., Webster. Fungicidal compositions including hydrazone derivatives and copper. US 8715745 B2, 2014.
[44]
Stacy, T.; Jeffery, D.W.; David, H.Y. Synergistic algicidal composition including hydrazone derivatives and copper. US 8906829 B2, 2014.
[45]
Adrian, Wiestner Yihong, Y; Qiuyan, W.; William, C.T.; Bidhan, A.S. Hydrazone and diacyl hydrazine compounds and method of use. US 8518968 B2, 2013.
[46]
Manssour, Fraga Carlo, A.; De Lacerda, B.; Palhares De, M.; Ana, L.; Louback Da,, S. Heterocyclic N-glycinyl-N-acyl hydrazone compounds, synthesis method, pharmaceutical compositions and treatment method. WO2013078523 A1, 2013.
[47]
Guozhang, Xu. Lilly Lee, S.; Shenlin, H. Hydrazone derivatives as kinase inhibitors. US 7893064 B2, 2011.
[48]
Guozhang, Xu.; Holzgrabe, U.-R.; Alptuzun, V. Hydrazone -1,4- dihydropyridine derivatives for the treatment of neurodegenerative diseases. WO2010142642 A1, 2010.
[49]
Lee, S.P.; Atwal, K.; Palmer, R.K.; Cerne, R.; Bryant, R.W. Hydrazone derivatives and uses thereof. AU 2006311826 C1, 2007.
[50]
Shiro, Yuishi Yoshino, H; Kobayashi, K. Method for producing hydrazone derivatives. AU 2006241673 B2, 2006.
[51]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[52]
Nayak, N.; Ramprasad, J.; Dalimba, U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline–pyrazole hybrid derivatives. J. Fluor. Chem., 2016, 183, 59-68.
[http://dx.doi.org/10.1016/j.jfluchem.2016.01.011]
[53]
Bingul, M.; Tan, O.; Gardner, C.R.; Sutton, S.K.; Arndt, G.M.; Marshall, G.M.; Cheung, B.B.; Kumar, N.; Black, D.S. Synthesis, characterization and anti-cancer activity of hydrazide derivatives incorporating a quinoline moiety; Mole, 2016, pp. 21-916.
[54]
Tang, Q.; Xu, Z.; Jin, M.; Shu, T.; Chen, Y.; Feng, L.; Zhang, Q.; Lan, K.; Wu, S.; Zhou, H.B. Identification of dibucaine derivatives as novel potent enterovirus 2C helicase inhibitors: In vitro, in vivo, and combination therapy study. Eur. J. Med. Chem., 2020, 202, 112310.
[http://dx.doi.org/10.1016/j.ejmech.2020.112310] [PMID: 32619885]
[55]
Sutherland, H.S.; Tong, A.S.T.; Choi, P.J.; Blaser, A.; Conole, D.; Franzblau, S.G.; Lotlikar, M.U.; Cooper, C.B.; Upton, A.M.; Denny, W.A.; Palmer, B.D. 3,5-Dialkoxypyridine analogues of bedaquiline are potent antituberculosis agents with minimal inhibition of the hERG channel. Bioorg. Med. Chem., 2019, 27(7), 1292-1307.
[http://dx.doi.org/10.1016/j.bmc.2019.02.026] [PMID: 30803745]
[56]
De, L. Ríos, C.; Marco-Contelles, J. Tacrines for Alzheimer’s disease therapy. III. The PyridoTacrines. Eur. J. Med. Chem., 2019, 15, 381-389.
[57]
Catapano, A.L. Pitavastatin: a different pharmacological profile. Clin. Lipidol., 2012, 7(sup1), 3-9.
[http://dx.doi.org/10.2217/clp.12.21]
[58]
Sun, Y.; Lu, X.; Gai, Y.; Sha, C.; Leng, G.; Yang, X.; Liu, W. LC-MS/MS method for the determination of the prodrug aripiprazole lauroxil and its three metabolites in plasma and its application to in vitro biotransformation and animal pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1081-1082, 67-75.
[http://dx.doi.org/10.1016/j.jchromb.2018.02.011] [PMID: 29510329]
[59]
Soares, R.R.; Razeghinejad, M.R. Efficacy of the combination of carteolol hydrochloride + latanoprost in the treatment of glaucoma and ocular hypertension. Expert Opin. Pharmacother., 2018, 19(15), 1731-1738.
[http://dx.doi.org/10.1080/14656566.2018.1518432] [PMID: 30295543]
[60]
Cazzola, M.; Calzetta, L.; Page, C.P.; Matera, M.G. Use of indacaterol for the treatment of COPD: a pharmacokinetic evaluation. Expert Opin. Drug Metab. Toxicol., 2014, 10(1), 129-137.
[http://dx.doi.org/10.1517/17425255.2014.865723] [PMID: 24295085]
[61]
Branham, M.L.; Moyo, T.; Govender, T. Preparation and solid-state characterization of ball milled saquinavir mesylate for solubility enhancement. Eur. J. Pharm. Biopharm., 2012, 80(1), 194-202.
[http://dx.doi.org/10.1016/j.ejpb.2011.08.005] [PMID: 21906676]
[62]
Otake, T.; Aoyagi, Y.; Yarita, T. Multiresidue analysis and monitoring of pesticides in rice by pressurized liquid extraction. J. Environ. Sci. Health B, 2009, 44(5), 423-427.
[http://dx.doi.org/10.1080/03601230902934603] [PMID: 20183045]
[63]
Gumieniczek, A.; Galeza, J.; Berecka, A.; Mroczek, T.; Wojtanowski, K.; Lipska, K.; Skarbek, J. Chemical stability and interactions in a new antihypertensive mixture containing indapamide and dihydralazine using FT-IR, HPLC and LC-MS methods. RSC Advances, 2018, 8(63), 36076-36089.
[http://dx.doi.org/10.1039/C8RA06707D] [PMID: 35558458]
[64]
Yang, Z.W.; Zhao, Y.Z.; Zang, Y.J.; Wang, H.; Zhu, X.; Meng, L.J.; Yuan, X.H.; Zhang, L.; Zhang, S.L. Rapid structure-based screening informs potential agents for coronavirus disease (COVID-19) outbreak. Chin. Phys. Lett., 2020, 37(5), 058701.
[http://dx.doi.org/10.1088/0256-307X/37/5/058701]
[65]
Kannigadu, C.; Aucamp, J.; N’Da, D.D. Synthesis and in vitro antileishmanial efficacy of benzyl analogues of nifuroxazide. Drug Dev. Res., 2021, 82(2), 287-295.
[http://dx.doi.org/10.1002/ddr.21755] [PMID: 33141473]
[66]
Pineda-Sanabria, S.E.; Robertson, I.M.; Sun, Y.B.; Irving, M.; Sykes, B.D. Probing the mechanism of cardiovascular drugs using a covalent levosimendan analog. J. Mol. Cell. Cardiol., 2016, 92, 174-184.
[http://dx.doi.org/10.1016/j.yjmcc.2016.02.003] [PMID: 26853943]
[67]
Ahmad, S.; Hughes, M.A.; Yeh, L.A.; Scott, J.E. Potential repurposing of known drugs as potent bacterial β-glucuronidase inhibitors. SLAS Discov., 2012, 17(7), 957-965.
[http://dx.doi.org/10.1177/1087057112444927] [PMID: 22535688]
[68]
Ajani, O.O.; Iyaye, K.T.; Aderohunmu, D.V.; Olanrewaju, I.O.; Germann, M.W.; Olorunshola, S.J.; Bello, B.L. Microwave-assisted synthesis and antibacterial propensity of N′-s-benzylidene-2-propylquinoline-4-carbohydrazide and N′-((s-1H-pyrrol-2-yl)methylene)-2-propylquinoline-4-carbohydrazide motifs. Arab. J. Chem., 2020, 13(1), 1809-1820.
[http://dx.doi.org/10.1016/j.arabjc.2018.01.015]
[69]
Ajani, O.O.; Iyaye, K.T.; Audu, O.Y.; Olorunshola, S.J.; Kuye, A.O.; Olanrewaju, I.O. Microwave assisted synthesis and antimicrobial potential of quinoline‐based 4‐hydrazide‐hydrazone Derivatives. J. Heterocycl. Chem., 2018, 55(1), 302-312.
[http://dx.doi.org/10.1002/jhet.3050]
[70]
Devi, K.R.; Ashok, D.; Patnaik, K.R.; Bathula, R.; Rani, S.S.; Bhakshi, V. Synthesis of quinoline derivatives by microwave irradiation method and evaluation for their anti-helminthic activity.,
[71]
Kumar, M.; Kumar, V.; Gupta, G.K. Synthesis, antibacterial evaluation, and SAR study of some novel 3-aryl/heteroaryl-9-methyl-1,2,4-triazolo-[4,3-a]-quinoline derivatives. Med. Chem. Res., 2015, 24(5), 1857-1868.
[http://dx.doi.org/10.1007/s00044-014-1254-z]
[72]
Mandewale, M.C.; Thorat, B.; Nivid, Y.; Jadhav, R.; Nagarsekar, A.; Yamgar, R. Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II) complexes. J. Saudi Chem. Soc., 2018, 22(2), 218-228.
[http://dx.doi.org/10.1016/j.jscs.2016.04.003]
[73]
Kumar, S.; Bawa, S.; Drabu, S.; Kumar, R.; Machawal, L. Synthesis and in vivo anticonvulsant evaluation of 2-chloroquinolinyl hydrazone derivatives. Acta Pol. Pharm., 2010, 67(5), 567-573.
[PMID: 20873428]
[74]
Shah, S.R.; Katariya, K.D.; Reddy, D. Quinoline‐1, 3‐Oxazole hybrids: syntheses, anticancer activity and molecular docking studies. ChemistrySelect, 2020, 5(3), 1097-1102.
[http://dx.doi.org/10.1002/slct.201903763]
[75]
Morsy, A.R.I.; Ramadan, S.K.; Elsafty, M.M. Synthesis and antiviral activity of some pyrrolonyl substituted heterocycles as additives to enhance inactivated Newcastle disease vaccine. Med. Chem. Res., 2020, 29(6), 979-988.
[http://dx.doi.org/10.1007/s00044-020-02538-z]
[76]
Aly, M.R.E.; Ibrahim, M.M.; Okael, A.M.; Gherbawy, Y.A. Synthesis, insecticidal, and fungicidal screening of some new synthetic quinoline derivatives. Bioorg. Khim., 2014, 40(2), 234-247.
[http://dx.doi.org/10.7868/S013234231402002X] [PMID: 25895344]
[77]
Gao, L.L.; Li, S.P.; Wang, Y.; Wu, W.N.; Zhao, X.L.; Li, H.J.; Xu, Z.H. Quinoline-based hydrazone for colorimetric detection of Co2+ and fluorescence turn-on response of Zn2+. Spectrochimica Acta Part A; Mole; Biomole. Spect, 2020, pp. 230-118025.
[78]
Mandewale, M.C.; Thorat, B.R.; Shelke, D.; Patil, R.; Yamgar, R. Synthesis, characterization and fluorescence study of N-[(E)-(2- hydroxyquinolin-3-yl) methylidene]-1-benzofuran-2-carbohydrazide and its metal complexes. Heterocycl. Lett., 2015, 251-9.
[79]
Alodeani, E.A.; Arshad, M.; Izhari, M.A. Anti-uropathogenic activity, drug likeness, physicochemical and molecular docking assessment of (E-)-N′-(substituted-benzylidene)-2-(quinolin-8-yloxy) acetohydrazide. Asian Pac. J. Trop. Biomed., 2015, 5(8), 676-683.
[http://dx.doi.org/10.1016/j.apjtb.2015.04.010]
[80]
Revanasiddappa, B.C.; Subrahmanyam, E.V.; Satyanarayana, D.; Thomas, J. Synthesis and biological studies of some novel schiff bases and hydrazones derived from 8-hydroxy quinoline moiety. Int. J. Chemtech Res., 2009, 1, 1100-1104.
[81]
Prathap, K.C.; Kayarmar, R.; Naveen, S.; Bhat, M.; Nagaraja, G.K.; Lokanath, N.K. Synthesis, Characterization, Crystal Structure and Hirshfeld Surface Analysis of (1E)-1-Phenylethanone (1-Isobutyl-1H-Imidazo [4, 5-C] Quinolin-4-Yl). Hydrazone. J. Appl. Chem., 2017, 6, 400-409.
[82]
El-Helw, E.A.E.; El-Badawy, A.A. Synthesis of chromenone, pyrimidinone, thiazoline, and quinolone derivatives as prospective antitumor agents. J. Heterocycl. Chem., 2020, 57(6), 2354-2364.
[http://dx.doi.org/10.1002/jhet.3948]
[83]
Yu, X.; Feng, G.; Huang, J.; Xu, H. Evaluation of some quinoline-based hydrazone derivatives as insecticidal agents. RSC Advances, 2016, 6(36), 30405-30411.
[http://dx.doi.org/10.1039/C6RA00993J]
[84]
Sharma, A.; Kumar, V.; Khare, R.; Gupta, G.K.; Beniwal, V. Synthesis, docking study, and DNA photocleavage activity of some pyrimidinyl hydrazones and 3-(quinolin-3-yl)-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidine derivatives. Med. Chem. Res., 2015, 24(5), 1830-1841.
[http://dx.doi.org/10.1007/s00044-014-1265-9]
[85]
Design, synthesis and study of antibacterial and antitubercular activity of quinoline hydrazone hybrids. Heterocycl. Commun., 2020, 15, 137-147.
[86]
Osorio, E.; Bravo, K.; Cardona, W.; Yepes, A.; Osorio, E.H.; Coa, J.C. Antiaging activity, molecular docking, and prediction of percutaneous absorption parameters of quinoline–hydrazone hybrids. Med. Chem. Res., 2019, 28(11), 1959-1973.
[http://dx.doi.org/10.1007/s00044-019-02427-0]
[87]
Cui, J.; Liu, L.; Zhao, D.; Gan, C.; Huang, X.; Xiao, Q.; Qi, B.; Yang, L.; Huang, Y. Synthesis, characterization and antitumor activities of some steroidal derivatives with side chain of 17-hydrazone aromatic heterocycle. Steroids, 2015, 95, 32-38.
[http://dx.doi.org/10.1016/j.steroids.2015.01.002] [PMID: 25578734]
[88]
Hegde, G.S.; Bhat, S.S.; Netalkar, S.P.; Hegde, P.L.; Kotian, A.; Butcher, R.J.; Revankar, V.K. The Co (II), Ni (II), Cu (II) and Zn (II) complexes of aroylhydrazone of quinolone core: Syntheses, characterization and evaluation of antimicrobial and antitubercular activity. Inorg. Chem. Acta., 2021, 120352 .
[89]
Li, C.; Liu, Z.; Wang, B.; Li, T.; Yang, Z. Synthesis and fluorescence properties of Sm-2-oxo-quinoline-3-carbaldehyde-isonicotinyl hydrazone decorated with 1,10-phenanthroline. Synth. Met., 2015, 209, 273-278.
[http://dx.doi.org/10.1016/j.synthmet.2015.08.009]
[90]
Mukherjee, S.; Talukder, S.; Chowdhury, S.; Mal, P.; Stoeckli-Evans, H. Synthesis, structure and sensing behavior of hydrazone based chromogenic chemosensors for Cu2+ in aqueous environment. Inorg. Chim. Acta, 2016, 450, 216-224.
[http://dx.doi.org/10.1016/j.ica.2016.05.049]
[91]
Marinho, J.A.; Guimarães, D.S.; Glanzmann, N.; de Almeida Pimentel, G.; da Costa Nunes, I.K.; Pereira, H.M.; Navarro, M. de PillaVarotti, F.; da Silva, A.D.; Abramo, C. In vitro and in vivo antiplasmodial activity of novel quinoline derivative compounds by molecular hybridization. Eur. J. Med. Chem., 2021, 5, 215-113271.
[92]
Puskullu, M.O.; Shirinzadeh, H.; Nenni, M.; Gurer-Orhan, H.; Suzen, S. Synthesis and evaluation of antioxidant activity of new quinoline-2-carbaldehyde hydrazone derivatives: bioisosteric melatonin analogues. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 121-125.
[http://dx.doi.org/10.3109/14756366.2015.1005012] [PMID: 25942363]
[93]
Korcz, M.; Sączewski, F.; Bednarski, P.; Kornicka, A. Synthesis, structure, chemical stability, and in vitro cytotoxic properties of novel quinoline-3-carbaldehyde hydrazones bearing a 1, 2, 4-triazole or benzotriazole moiety. Molecules, 2018, 23(6), 1497.
[http://dx.doi.org/10.3390/molecules23061497] [PMID: 29925826]
[94]
Lamani, D.S.; Venugopala Reddy, K.R.; Bhojya Naik, H.S.; Savyasachi, A.; Naik, H.R. Synthesis and DNA binding studies of novel heterocyclic substituted quinoline schiff bases: a potent antimicrobial agent. Nucleosides Nucleotides Nucleic Acids, 2008, 27(10-11), 1197-1210.
[http://dx.doi.org/10.1080/15257770802400081] [PMID: 18788049]
[95]
Maurya, R.K.; Patel, O.P.S.; Anand, D.; Yadav, P.P. Substrate selective synthesis of indole, tetrahydroquinoline and quinoline derivatives via intramolecular addition of hydrazones and imines. Org. Chem. Front., 2018, 5(7), 1170-1175.
[http://dx.doi.org/10.1039/C7QO01115F]
[96]
Rashad, A.E.; El-Sayed, W.A.; Mohamed, A.M.; Ali, M.M. Synthesis of new quinoline derivatives as inhibitors of human tumor cells growth. Arch. Pharm. (Weinheim), 2010, 343(8), 440-448.
[http://dx.doi.org/10.1002/ardp.201000002] [PMID: 20803621]
[97]
Qin, J.; Yang, Z. Selective fluorescent sensor for Al3+ using a novel quinoline derivative in aqueous solution. Synth. Met., 2015, 209, 570-576.
[http://dx.doi.org/10.1016/j.synthmet.2015.09.021]
[98]
Karayel Incili, G.; Aycık, G.A. Chemical modification of silica gel with synthesized Schiff base hydrazone derivative and application for preconcentration and separation of U(VI) ions from aqueous solutions. J. Radioanal. Nucl. Chem., 2014, 301(2), 417-426.
[http://dx.doi.org/10.1007/s10967-014-3151-9]
[99]
Bispo, M.; Lima, C.; Cardoso, L.; Candéa, A.; Bezerra, F.; Lourenço, M.; Henriques, M.; Alencastro, R.; Kaiser, C.; Souza, M.; Albuquerque, M. Anti-Mycobacterial Evaluation of 7-Chloro-4-Aminoquinolines and Hologram Quantitative Structure–Activity Relationship (HQSAR) Modeling of Amino–Imino Tautomers. Pharmaceuticals (Basel), 2017, 10(4), 52.
[http://dx.doi.org/10.3390/ph10020052] [PMID: 28598408]
[100]
Singh, S.; Kaur, G.; Mangla, V.; Gupta, M.K. Quinoline and quinolones: promising scaffolds for future antimycobacterial agents. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 492-504.
[http://dx.doi.org/10.3109/14756366.2014.930454] [PMID: 25032745]
[101]
Eswaran, S.; Adhikari, A.V.; Pal, N.K.; Chowdhury, I.H. Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett., 2010, 20(3), 1040-1044.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.045] [PMID: 20056418]
[102]
Shah, S.K.; Goyal, A. A review for biological activity on hydrazide hydrazones: a promising moiety. Eur. J. Mol. Clin. Med., 2020, 857-881.
[103]
Metwally, K.A.; Abdel-Aziz, L.M.; Lashine, E.S.M.; Husseiny, M.I.; Badawy, R.H. Hydrazones of 2-aryl-quinoline-4-carboxylic acid hydrazides: Synthesis and preliminary evaluation as antimicrobial agents. Bioorg. Med. Chem., 2006, 14(24), 8675-8682.
[http://dx.doi.org/10.1016/j.bmc.2006.08.022] [PMID: 16949294]
[104]
Dorababu, A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch. Pharm. (Weinheim), 2021, 354(3), 2000232.
[http://dx.doi.org/10.1002/ardp.202000232] [PMID: 33210348]
[105]
Celik, I.; Erol, M.; Puskullu, M.O.; Uzunhisarcikli, E.; Ince, U.; Kuyucuklu, G.; Suzen, S. In vitro and in silico studies of quinoline-2-carbaldehyde hydrazone derivatives as potent antimicrobial agents. Polycycl. Aromat. Compd., 2022, 42(4), 1942-1958.
[http://dx.doi.org/10.1080/10406638.2020.1821230]
[106]
Panda, P.; Chakroborty, S. Navigating the synthesis of quinoline hybrid molecules as promising anticancer agents. ChemistrySelect, 2020, 5(33), 10187-10199.
[http://dx.doi.org/10.1002/slct.202002790]
[107]
Bingul, M.; Tan, O.; Gardner, C.; Sutton, S.; Arndt, G.; Marshall, G.; Cheung, B.; Kumar, N.; Black, D. Synthesis, characterization and anti-cancer activity of hydrazide derivatives incorporating a quinoline moiety. Molecules, 2016, 21(7), 916.
[http://dx.doi.org/10.3390/molecules21070916] [PMID: 27428941]
[108]
Liao, W.; Xu, C.; Ji, X.; Hu, G.; Ren, L.; Liu, Y.; Li, R.; Gong, P.; Sun, T. Design and optimization of novel 4-(2-fluorophenoxy)quinoline derivatives bearing a hydrazone moiety as c-Met kinase inhibitors. Eur. J. Med. Chem., 2014, 87, 508-518.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.095] [PMID: 25282672]
[109]
Ibrahim, T.S.; Hawwas, M.M.; Malebari, A.M.; Taher, E.S.; Omar, A.M.; O’Boyle, N.M.; McLoughlin, E.; Abdel-Samii, Z.K.; Elshaier, Y.A.M.M. Potent quinoline-containing combretastatin a-4 analogues: design, synthesis, antiproliferative, and anti-tubulin activity. Pharmaceuticals (Basel), 2020, 13(11), 393.
[http://dx.doi.org/10.3390/ph13110393] [PMID: 33203182]
[110]
Manohar, C.S.; Manikandan, A.; Sridhar, P.; Sivakumar, A.; Kumar, B.S.; Reddy, S.R. Drug repurposing of novel quinoline acetohydrazide derivatives as potent COX-2 inhibitors and anti-cancer agents. J. Mole. Stru., 2018, 1154, 437-44.
[111]
Debnath, U.; Mukherjee, S.; Joardar, N.; Sinha Babu, S.P.; Jana, K.; Misra, A.K. Aryl quinolinyl hydrazone derivatives as anti-inflammatory agents that inhibit TLR4 activation in the macrophages. Eur. J. Pharm. Sci., 2019, 134, 102-115.
[http://dx.doi.org/10.1016/j.ejps.2019.04.016] [PMID: 31002986]
[112]
Feng, L.S.; Xu, Z.; Chang, L.; Li, C.; Yan, X.F.; Gao, C.; Ding, C.; Zhao, F.; Shi, F.; Wu, X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug‐resistant Plasmodium falciparum. Med. Res. Rev., 2020, 40(3), 931-971.
[http://dx.doi.org/10.1002/med.21643] [PMID: 31692025]
[113]
Alodeani, E.A.; Arshad, M.; Izhari, M.A. Antileishmanial activity and computational studies of some hydrazone derivatives possessing quinoline nucleus. In Vitro; , 2015, pp. 1-3.
[114]
Coimbra, E.S.; Antinarelli, L.M.R.; da Silva, A.D.; Bispo, M.L.F.; Kaiser, C.R.; de Souza, M.V.N. 7-Chloro-4-quinolinyl hydrazones: a promising and potent class of antileishmanial compounds. Chem. Biol. Drug Des., 2013, 81(5), 658-665.
[http://dx.doi.org/10.1111/cbdd.12112] [PMID: 23350797]

© 2025 Bentham Science Publishers | Privacy Policy