Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Review Article

Ionic Conductivity, Dielectric, and Structural Insights of Deep Eutectic Solvent-based Polymer Electrolyte: A Review

Author(s): N.A.A. Shaharuddin and S.Z.Z. Abidin*

Volume 16, Issue 4, 2023

Published on: 21 September, 2023

Page: [228 - 240] Pages: 13

DOI: 10.2174/2405520416666230830125120

Price: $65

conference banner
Abstract

The exponential concern about environmental concerns has heavily driven the development of green technology. In light of these needs, Deep Eutectic Solvent (DES) emerged as a green solvent and additive, characterized by its minimal toxicity, volatility, biodegradability, and biocompatibility, as well as the simplicity of synthesis, high yields, purity, and the availability of its precursors. This review is intended to summarise and discuss polymer electrolytes based on DES for better insight into the potential of replacing conventional organic solvents or ionic liquids for energy storage applications in the aspect of their electrical and structural properties. Therefore, an examination of dielectric studies is conducted as they hold significance in establishing a correlation between the rise in ionic conductivity and the augmentation of freely movable ions, thereby highlighting the importance of investigating the dielectric properties of an electrolyte. Besides, XRD and morphological studies in this work can show how ionic conductivities can influence the size of pores in DES-based polymer electrolytes.

Graphical Abstract

[1]
Gebreyesus MA, Purushotham Y, Kumar JS. Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate). Heliyon 2016; 2(7): e00134.
[http://dx.doi.org/10.1016/j.heliyon.2016.e00134] [PMID: 27512728]
[2]
Zhu M, Wu J, Wang Y, et al. Recent advances in gel polymer electrolyte for high-performance lithium batteries. J Energy Chem 2019; 37: 126-42.
[http://dx.doi.org/10.1016/j.jechem.2018.12.013]
[3]
Cruz H, Jordão N, Branco LC. Deep eutectic solvents (DESs) as low-cost and green electrolytes for electrochromic devices. Green Chem 2017; 19(7): 1653-8.
[http://dx.doi.org/10.1039/C7GC00347A]
[4]
Kudłak B, Owczarek K, Namieśnik J. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents- A review. Environ Sci Pollut Res Int 2015; 22(16): 11975-92.
[http://dx.doi.org/10.1007/s11356-015-4794-y] [PMID: 26040266]
[5]
Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Chem Commun 2003; (1): 70-1.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
[6]
Gómez A, Biswas A, Tadini C, Furtado R, Alves C, Cheng H. Use of natural deep eutectic solvents for polymerization and polymer reactions. J Braz Chem Soc 2019; 30(4): 717-26.
[http://dx.doi.org/10.21577/0103-5053.20190001]
[7]
Li X, Row KH. Exploration of mesoporous stationary phases prepared using deep eutectic solvents combining choline chloride with 1,2-butanediol or glycerol for use in size-exclusion chromatography. Chromatographia 2015; 78(21-22): 1321-5.
[http://dx.doi.org/10.1007/s10337-015-2957-0]
[8]
Ibrahim RK, Hayyan M, AlSaadi MA, Ibrahim S, Hayyan A, Hashim MA. Physical properties of ethylene glycol-based deep eutectic solvents. J Mol Liq 2019; 276: 794-800.
[http://dx.doi.org/10.1016/j.molliq.2018.12.032]
[9]
Cvjetko BM, Vidović S, Radojčić RI, Jokić S. Green solvents for green technologies. J Chem Technol Biotechnol 2015; 90(9): 1631-9.
[http://dx.doi.org/10.1002/jctb.4668]
[10]
Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev 2014; 114(21): 11060-82.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[11]
Choi YH, van Spronsen J, Dai Y, et al. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 2011; 156(4): 1701-5.
[http://dx.doi.org/10.1104/pp.111.178426] [PMID: 21677097]
[12]
Duarte ARC, Ferreira ASD, Barreiros S, Cabrita E, Reis RL, Paiva A. A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. Eur J Pharm Biopharm 2017; 114: 296-304.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.003] [PMID: 28189620]
[13]
Jordão N, Cruz H, Pina F, Branco LC. Studies of bipyridinium ionic liquids and deep eutectic solvents as electrolytes for electrochromic devices. Electrochim Acta 2018; 283: 718-26.
[http://dx.doi.org/10.1016/j.electacta.2018.04.179]
[14]
Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnol Adv 2017; 35(2): 105-34.
[http://dx.doi.org/10.1016/j.biotechadv.2016.11.006] [PMID: 27923764]
[15]
Tomé LIN, Baião V, da Silva W, Brett CMA. Deep eutectic solvents for the production and application of new materials. Appl Mater Today 2018; 10: 30-50.
[http://dx.doi.org/10.1016/j.apmt.2017.11.005]
[16]
Zahrina I, Nasikin M, Mulia K. Evaluation of the interaction between molecules during betaine monohydrate-organic acid deep eutectic mixture formation. J Mol Liq 2017; 225: 446-50.
[http://dx.doi.org/10.1016/j.molliq.2016.10.134]
[17]
Craveiro R, Aroso I, Flammia V, et al. Properties and thermal behavior of natural deep eutectic solvents. J Mol Liq 2016; 215: 534-40.
[http://dx.doi.org/10.1016/j.molliq.2016.01.038]
[18]
Florindo C, McIntosh AJS, Welton T, Branco LC, Marrucho IM. A closer look into deep eutectic solvents: Exploring intermolecular interactions using solvatochromic probes. Phys Chem Chem Phys 2018; 20(1): 206-13.
[http://dx.doi.org/10.1039/C7CP06471C] [PMID: 29199751]
[19]
Crawford DE, Wright LA, James SL, Abbott AP. Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion. Chem Commun 2016; 52(22): 4215-8.
[http://dx.doi.org/10.1039/C5CC09685E] [PMID: 26911554]
[20]
Seyedi N, Khabazzadeh H, Saeednia S. ZnCl 2/urea as a deep eutectic solvent for the preparation of bis(indolyl)methanes under ultrasonic conditions. Synth React Inorg Met-Org Nano-Met Chem 2015; 45(10): 1501-5.
[http://dx.doi.org/10.1080/15533174.2013.862828]
[21]
Gano ZS, Mjalli FS, Al-Wahaibi T, Al-Wahaibi Y, AlNashef IM. Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: Experimental design and optimization by central-composite design. Chem Eng Process 2015; 93: 10-20.
[http://dx.doi.org/10.1016/j.cep.2015.04.001]
[22]
Jiang W, Li H, Wang C, et al. Synthesis of ionic-liquid-based deep eutectic solvents for extractive desulfurization of fuel. Energy Fuels 2016; 30(10): 8164-70.
[http://dx.doi.org/10.1021/acs.energyfuels.6b01976]
[23]
Shahbaz K, AlNashef IM, Lin RJT, Hashim MA, Mjalli FS, Farid MM. A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials. Sol Energy Mater Sol Cells 2016; 155: 147-54.
[http://dx.doi.org/10.1016/j.solmat.2016.06.004]
[24]
Kadhom MA, Abdullah GH, Al-Bayati N. Studying two series of ternary deep eutectic solvents (Choline Chloride–Urea–Glycerol) and (Choline Chloride–Malic Acid–Glycerol), synthesis and characterizations. Arab J Sci Eng 2017; 42(4): 1579-89.
[http://dx.doi.org/10.1007/s13369-017-2431-4]
[25]
Altamash T, Atilhan M, Aliyan A, Ullah R, Nasser M, Aparicio S. Rheological, thermodynamic, and gas solubility properties of phenylacetic acid-based deep eutectic solvents. Chem Eng Technol 2017; 40(4): 778-90.
[http://dx.doi.org/10.1002/ceat.201600475]
[26]
Li G, Yang H, Zuo D, Xu J, Zhang H. Deep eutectic solvent-based supramolecular gel polymer electrolytes for high-performance electrochemical double layer capacitors. Int J Hydrogen Energy 2021; 46(24): 13044-9.
[http://dx.doi.org/10.1016/j.ijhydene.2021.01.158]
[27]
Qin H, Panzer MJ. Chemically cross‐linked poly(2‐hydroxyethyl methacrylate)‐supported deep eutectic solvent gel electrolytes for eco‐friendly supercapacitors. ChemElectroChem 2017; 4(10): 2556-62.
[http://dx.doi.org/10.1002/celc.201700586]
[28]
Angell M, Guanzhou Z, Meng-Chang L, et al. Ionic liquid analogs of AlCl3 with urea derivatives as electrolytes for aluminum batteries. Adv Funct Mater 2019; 30(4): 1901928.
[29]
Mahanta U, Choudhury S, Venkatesh RP, SarojiniAmma S, Ilangovan SA, Banerjee T. Ionic-liquid-based deep eutectic solvents as novel electrolytes for supercapacitors: COSMO-SAC predictions, synthesis, and characterization. ACS Sustain Chem Eng 2020; 8(1): 372-81.
[http://dx.doi.org/10.1021/acssuschemeng.9b05596]
[30]
Jaumaux P, Liu Q, Zhou D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew Chem Int Ed 2020; 59(23): 9134-42.
[http://dx.doi.org/10.1002/anie.202001793] [PMID: 32103602]
[31]
Hong S, Yuan Y, Liu C, et al. A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors. J Mater Chem C Mater Opt Electron Devices 2020; 8(2): 550-60.
[http://dx.doi.org/10.1039/C9TC05913J]
[32]
Rahman SM, Mohd Said SB, Subramanian B, Long BD, Kareem MA, Soin N. Synthesis and characterization of polymer electrolyte using deep eutectic solvents and electrospun poly(vinyl alcohol) membrane. Ind Eng Chem Res 2016; 55(30): 8341-8.
[http://dx.doi.org/10.1021/acs.iecr.6b01754]
[33]
Li Z, Zhang S, Jiang Z, Cai D, Gu C, Tu J. Deep eutectic solvent-immobilized PVDF-HFP eutectogel as solid electrolyte for safe lithium metal battery. Mater Chem Phys 2021; 267(267): 124701.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124701]
[34]
Mukherjee K, Tarif E, Barman A, Biswas R. Dynamics of a PEG based non-ionic deep eutectic solvent: Temperature dependence. Fluid Phase Equilib 2017; 448: 22-9.
[http://dx.doi.org/10.1016/j.fluid.2017.05.003]
[35]
Tran KTT, Le LTM, Phan ALB, et al. New deep eutectic solvents based on ethylene glycol - LiTFSI and their application as an electrolyte in electrochemical double layer capacitor (EDLC). J Mol Liq 2020; 320: 114495.
[http://dx.doi.org/10.1016/j.molliq.2020.114495]
[36]
Karimi MB, Mohammadi F, Hooshyari K. Non-humidified fuel cells using a deep eutectic solvent (DES) as the electrolyte within a polymer electrolyte membrane (PEM): The effect of water and counterions. Phys Chem Chem Phys 2020; 22(5): 2917-29.
[http://dx.doi.org/10.1039/C9CP06207F] [PMID: 31951238]
[37]
Hammond OS, Bowron DT, Edler KJ. The effect of water upon deep eutectic solvent nanostructure: An unusual transition from ionic mixture to aqueous solution. Angew Chem Int Ed 2017; 56(33): 9782-5.
[http://dx.doi.org/10.1002/anie.201702486] [PMID: 28480595]
[38]
Gontrani L, Bonomo M, Plechkova NV, Dini D, Caminiti R. X-Ray structure and ionic conductivity studies of anhydrous and hydrated choline chloride and oxalic acid deep eutectic solvents. Phys Chem Chem Phys 2018; 20(48): 30120-4.
[http://dx.doi.org/10.1039/C8CP06728G] [PMID: 30515498]
[39]
Geiculescu OE, DesMarteau DD, Creager SE, et al. Novel binary deep eutectic electrolytes for rechargeable Li-ion batteries based on mixtures of alkyl sulfonamides and lithium perfluoroalkylsulfonimide salts. J Power Sources 2016; 307: 519-25.
[http://dx.doi.org/10.1016/j.jpowsour.2015.11.072]
[40]
Zhong M, Tang QF, Qiu ZG, Wang WP, Chen XY, Zhang ZJ. A novel electrolyte of ternary deep eutectic solvent for wide temperature region supercapacitor with superior performance. J Energy Storage 2020; 32: 101904.
[http://dx.doi.org/10.1016/j.est.2020.101904]
[41]
Sim LN, Yahya R, Arof AK. Infrared studies of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis(trifluoromethane)sulfonimide and urea as deep eutectic solvent. Opt Mater 2016; 56: 140-4.
[http://dx.doi.org/10.1016/j.optmat.2016.01.007]
[42]
Reuter D, Binder C, Lunkenheimer P, Loidl A. Ionic conductivity of deep eutectic solvents: The role of orientational dynamics and glassy freezing. Phys Chem Chem Phys 2019; 21(13): 6801-9.
[http://dx.doi.org/10.1039/C9CP00742C] [PMID: 30843909]
[43]
Emmert S, Wolf M, Gulich R, et al. Electrode polarization effects in broadband dielectric spectroscopy. Eur Phys J B 2011; 83(2): 157-65.
[http://dx.doi.org/10.1140/epjb/e2011-20439-8]
[44]
Buonomenna MG, Macchi P, Davoli M, Drioli E. Poly(vinylidene fluoride) membranes by phase inversion: The role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur Polym J 2007; 43(4): 1557-72.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.12.033]
[45]
Shen J, Zhang Q, Yin Q, Cui Z, Li W, Xing W. Fabrication and characterization of amphiphilic PVDF copolymer ultrafiltration membrane with high anti-fouling property. J Membr Sci 2017; 521: 95-103.
[http://dx.doi.org/10.1016/j.memsci.2016.09.006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy