Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

An Overview of Nanotechnological Approaches for the Diagnosis and Treatment of Allergic Illness

Author(s): Bhupendra Sharma and Rohitas Deshmukh*

Volume 29, Issue 26, 2023

Published on: 28 August, 2023

Page: [2050 - 2061] Pages: 12

DOI: 10.2174/1381612829666230828104015

Price: $65

conference banner
Abstract

Allergies are a major health issue. Allergen avoidance, antihistamines, and corticosteroids do not treat the pathology's causes, therefore long-term therapy is essential. Long-term allergen-specific immunotherapy builds immune tolerance to the allergen. Unfortunately, immunotherapies for all allergens are not available, and adverse reactions during therapy, especially in severely allergic persons, remain a worry. In this regard, cell and bio- or nanomaterial-based allergy treatments are promising. This overview covers the most important tactics from these two strategies with examples. Nanotechnology encompasses science, engineering, and technology at 1-100 nm. Due to their one-of-a-kind characteristics, nanomaterials can be used in healthcare. Small molecules' chemical and physical properties are modified by the system's size, shape, content, and function. Toxicity and hypersensitivity reactions need to be evaluated. Regulating the physico-chemical properties of numerous accessible structures would make clinical diagnosis and therapy safer and more successful. Dendrimeric antigens, nanoallergens, and nanoparticles can mimic carrier proteins, boost specific IgE binding, and improve signal detection in allergy diagnosis. In immunotherapy, several allergenic structures like glycodendrimers, liposomes, polymers, and nanoparticles have been used as adjuvants, protectors, or depots for allergens. Nanotechnology has the potential to substantially improve both the diagnosis and treatment of allergies.

[1]
Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2015; 16(1): 45-56.
[http://dx.doi.org/10.1038/ni.3049] [PMID: 25521684]
[2]
Ozdemir C, Akdis M, Akdis CA. T-cell response to allergens. Chem Immunol Allergy 2010; 95: 22-44.
[http://dx.doi.org/10.1159/000315936] [PMID: 20519880]
[3]
Méndez-Enríquez E, Hallgren J. Mast cells and their progenitors in allergic asthma. Front Immunol 2019; 10: 821.
[http://dx.doi.org/10.3389/fimmu.2019.00821] [PMID: 31191511]
[4]
Muraro A. The european academy of allergy and clinical immunology (eaaci) advocacy manifesto tackling the allergy crisis in Europe-Concerted Policy Action Needed. Brussels, Belgium: EAACI-EU Liaison Office 2015.
[5]
Komlósi ZI, Kovács N, Sokolowska M, van de Veen W, Akdis M, Akdis CA. Mechanisms of subcutaneous and sublingual aeroallergen immunotherapy. Immunol Allergy Clin North Am 2020; 40(1): 1-14.
[http://dx.doi.org/10.1016/j.iac.2019.09.009] [PMID: 31761112]
[6]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[7]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[8]
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63(3): 136-51.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[9]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[10]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[11]
Sindhwani S, Syed AM, Ngai J, et al. The entry of nanoparticles into solid tumours. Nat Mater 2020; 19(5): 566-75.
[http://dx.doi.org/10.1038/s41563-019-0566-2] [PMID: 31932672]
[12]
Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015; 9(1): 16-30.
[http://dx.doi.org/10.1021/nn5062029] [PMID: 25469470]
[13]
Feng X, Liu J, Xu W, Li G, Ding J. Tackling autoimmunity with nanomedicines. Nanomedicine 2020; 15(16): 1585-97.
[http://dx.doi.org/10.2217/nnm-2020-0102] [PMID: 32669025]
[14]
Paris JL, Baeza A. Nano- and microscale drug delivery approaches for therapeutic immunomodulation. ChemNanoMat 2021; 7(7): 773-88.
[http://dx.doi.org/10.1002/cnma.202100062]
[15]
Fontana F, Figueiredo P, Bauleth-Ramos T, Correia A, Santos HA. Immunostimulation and immunosuppression: Nanotechnology on the brink. Small Methods 2018; 2(5): 1700347.
[http://dx.doi.org/10.1002/smtd.201700347]
[16]
Wong A, Seger DL, Lai KH, Goss FR, Blumenthal KG, Zhou L. Drug hypersensitivity reactions documented in electronic health records within a large health system. J Allergy Clin Immunol Pract 2019; 7(4): 1253-1260.e3.
[http://dx.doi.org/10.1016/j.jaip.2018.11.023] [PMID: 30513361]
[17]
Pouessel G, Beaudouin E, Tanno LK, et al. Food-related anaphylaxis fatalities: Analysis of the allergy vigilance network® database. Allergy 2019; 74(6): 1193-6.
[http://dx.doi.org/10.1111/all.13717] [PMID: 30636053]
[18]
Flores Kim J, McCleary N, Nwaru BI, Stoddart A, Sheikh A. Diagnostic accuracy, risk assessment, and cost-effectiveness of component-resolved diagnostics for food allergy: A systematic review. Allergy 2018; 73(8): 1609-21.
[http://dx.doi.org/10.1111/all.13399] [PMID: 29319184]
[19]
Eguiluz-Gracia I, Tay TR, Hew M, et al. Recent developments and highlights in biomarkers in allergic diseases and asthma. Allergy 2018; 73(12): 2290-305.
[http://dx.doi.org/10.1111/all.13628] [PMID: 30289997]
[20]
Brockow K, Ardern-Jones MR, Mockenhaupt M, et al. EAACI position paper on how to classify cutaneous manifestations of drug hypersensitivity. Allergy 2019; 74(1): 14-27.
[http://dx.doi.org/10.1111/all.13562] [PMID: 30028512]
[21]
Pohlit H, Bellinghausen I, Frey H, Saloga J. Recent advances in the use of nanoparticles for allergen-specific immunotherapy. Allergy 2017; 72(10): 1461-74.
[http://dx.doi.org/10.1111/all.13199] [PMID: 28474379]
[22]
Feynman RP. There’s plenty of room at the bottom. An invitation to enter a new field of physics. Eng Sci 1960; XXIII(5): 22-36.
[23]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2019; 25(1): 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[24]
Khalid K, Tan X, Mohd Zaid HF, et al. Advanced in developmental organic and inorganic nanomaterial: A review. Bioengineered 2020; 11(1): 328-55.
[http://dx.doi.org/10.1080/21655979.2020.1736240] [PMID: 32138595]
[25]
Maurya A, Singh AK, Mishra G, et al. Strategic use of nanotechnology in drug targeting and its consequences on human health: A focused review. Interv Med Appl Sci 2019; 11(1): 38-54.
[http://dx.doi.org/10.1556/1646.11.2019.04] [PMID: 32148902]
[26]
Breiteneder H, Diamant Z, Eiwegger T, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy 2019; 74(12): 2293-311.
[http://dx.doi.org/10.1111/all.13851] [PMID: 31056763]
[27]
Yeo ISL. Modifications of dental implant surfaces at the microand nano-level for enhanced osseointegration. Materials 2019; 13(1): 89.
[http://dx.doi.org/10.3390/ma13010089] [PMID: 31878016]
[28]
Hao Y, Zhou X, Li R, Song Z, Min Y. Advances of functional nanomaterials for cancer immunotherapeutic applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(2): e1574.
[http://dx.doi.org/10.1002/wnan.1574] [PMID: 31566896]
[29]
Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Solinís MÁ, del Pozo-Rodríguez A. Nanomedicines to deliver mRNA: State of the art and future perspectives. Nanomaterials 2020; 10(2): 364.
[http://dx.doi.org/10.3390/nano10020364] [PMID: 32093140]
[30]
Paradise J. Regulating nanomedicine at the food and drug administration. AMA J Ethics 2019; 21(4): E347-55.
[http://dx.doi.org/10.1001/amajethics.2019.347] [PMID: 31012422]
[31]
Chapman MD, Wuenschmann S, King E, Pomés A. Technological innovations for high-throughput approaches to in vitro allergy diagnosis. Curr Allergy Asthma Rep 2015; 15(7): 36.
[http://dx.doi.org/10.1007/s11882-015-0539-8] [PMID: 26143391]
[32]
Mayorga C, Perez-Inestrosa E, Molina N, Montañez MI. Development of nanostructures in the diagnosis of drug hypersensitivity reactions. Curr Opin Allergy Clin Immunol 2016; 16(4): 300-7.
[http://dx.doi.org/10.1097/ACI.0000000000000282] [PMID: 27257940]
[33]
Zubeldia JM, Ferrer M, Dávila I, Justicia JL. Adjuvants in allergenspecific immunotherapy: Modulating and enhancing the immune response. J Investig Allergol Clin Immunol 2019; 29(2): 103-11.
[http://dx.doi.org/10.18176/jiaci.0349] [PMID: 30418155]
[34]
Johnson L, Duschl A, Himly M. Nanotechnology-based vaccines for allergen-specific immunotherapy: Potentials and challenges of conventional and novel adjuvants under research. Vaccines 2020; 8(2): 237.
[http://dx.doi.org/10.3390/vaccines8020237] [PMID: 32443671]
[35]
Mayorga C, Fernandez TD, Montañez MI, Moreno E, Torres MJ. Recent developments and highlights in drug hypersensitivity. Allergy 2019; 74(12): 2368-81.
[http://dx.doi.org/10.1111/all.14061] [PMID: 31557314]
[36]
Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy 2019; 74(8): all.13765.
[http://dx.doi.org/10.1111/all.13765] [PMID: 30843233]
[37]
Diamant Z, Vijverberg S, Alving K, et al. Toward clinically applicable biomarkers for asthma: An EAACI position paper. Allergy 2019; 74(10): 1835-51.
[http://dx.doi.org/10.1111/all.13806] [PMID: 30953574]
[38]
Ansotegui IJ, Melioli G, Canonica GW, et al. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. W Allergy Organ J 2020; 13(2): 100080.
[http://dx.doi.org/10.1016/j.waojou.2019.100080] [PMID: 32128023]
[39]
Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for drug hypersensitivity reactions: An ENDA/EAACI Drug Allergy Interest Group position paper. Allergy 2016; 71(8): 1103-34.
[http://dx.doi.org/10.1111/all.12886] [PMID: 26991315]
[40]
Ariza A, Mayorga C, Salas M, et al. The influence of the carrier molecule on amoxicillin recognition by specific IgE in patients with immediate hypersensitivity reactions to betalactams. Sci Rep 2016; 6(1): 35113.
[http://dx.doi.org/10.1038/srep35113] [PMID: 27731424]
[41]
Barbero N, Fernández-Santamaría R, Mayorga C, et al. Identification of an antigenic determinant of clavulanic acid responsible for IgE-mediated reactions. Allergy 2019; 74(8): all.13761.
[http://dx.doi.org/10.1111/all.13761] [PMID: 30829415]
[42]
Hoffmann HJ, Santos AF, Mayorga C, et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy 2015; 70(11): 1393-405.
[http://dx.doi.org/10.1111/all.12698] [PMID: 26198455]
[43]
Hamilton RG, Franklin Adkinson N Jr. In vitro assays for the diagnosis of IgE-mediated disorders. J Allergy Clin Immunol 2004; 114(2): 213-25.
[http://dx.doi.org/10.1016/j.jaci.2004.06.046] [PMID: 15316492]
[44]
Märki I, Rebeaud F. Nanotechnologies for in vitro IgE testing. Curr Allergy Asthma Rep 2017; 17(7): 50.
[http://dx.doi.org/10.1007/s11882-017-0717-y] [PMID: 28623535]
[45]
Lupinek C, Wollmann E, Baar A, et al. Advances in allergen-microarray technology for diagnosis and monitoring of allergy: The MeDALL allergen-chip. Methods 2014; 66(1): 106-19.
[http://dx.doi.org/10.1016/j.ymeth.2013.10.008] [PMID: 24161540]
[46]
Matricardi PM, Kleine-Tebbe J. Molecular allergology between precision medicine and the choosing wisely initiative. Clin Exp Allergy 2016; 46(5): 664-7.
[http://dx.doi.org/10.1111/cea.12679] [PMID: 27112118]
[47]
Faber M, Sabato V, Witte L, et al. State of the art and perspectives in food allergy (part I): Diagnosis. Curr Pharm Des 2014; 20(6): 954-63.
[http://dx.doi.org/10.2174/13816128113199990046] [PMID: 23701559]
[48]
Mayorga C, Gomez F, Aranda A, et al. Basophil response to peanut allergens in mediterranean peanut-allergic patients. Allergy 2014; 69(7): 964-8.
[http://dx.doi.org/10.1111/all.12421] [PMID: 24816395]
[49]
Laguna JJ, Bogas G, Salas M. The basophil activation test can be of value for diagnosing immediate allergic reactions to omeprazole. J Allergy Clin Immunol Pract 2018; 6(5): 1628-36.
[http://dx.doi.org/10.1016/j.jaip.2017.12.001] [PMID: 29339127]
[50]
Salas M, Fernández-Santamaría R, Mayorga C, et al. Use of the basophil activation test may reduce the need for drug provocation in amoxicillin-clavulanic allergy. J Allergy Clin Immunol Pract 2018; 6(3): 1010-1018.e2.
[http://dx.doi.org/10.1016/j.jaip.2017.08.009] [PMID: 28964705]
[51]
Doña I, Torres MJ, Montañez MI, Fernández TD. In vitro diagnostic testing for antibiotic allergy. Allergy Asthma Immunol Res 2017; 9(4): 288-98.
[http://dx.doi.org/10.4168/aair.2017.9.4.288] [PMID: 28497915]
[52]
Torres MJ, Romano A, Celik G, et al. Approach to the diagnosis of drug hypersensitivity reactions: Similarities and differences between Europe and North America. Clin Transl Allergy 2017; 7(1): 7.
[http://dx.doi.org/10.1186/s13601-017-0144-0] [PMID: 28293415]
[53]
Sánchez-Sancho F, Pérez-Inestrosa E, Suau R, Mayorga C, Torres MJ, Blanca M. Dendrimers as carrier protein mimetics for IgE antibody recognition. Synthesis and characterization of densely penicilloylated dendrimers. Bioconjug Chem 2002; 13(3): 647-53.
[http://dx.doi.org/10.1021/bc0155824] [PMID: 12009957]
[54]
Ruiz-Sanchez AJ, Montañez MI, Mayorga C, et al. Dendrimer- modified solid supports: Nanostructured materials with potential drug allergy diagnostic applications. Curr Med Chem 2012; 19(29): 4942-54.
[http://dx.doi.org/10.2174/0929867311209024942] [PMID: 22963628]
[55]
Montañez MI, Najera F, Mayorga C, et al. Recognition of multiepitope dendrimeric antigens by human immunoglobulin E. Nanomedicine 2015; 11(3): 579-88.
[http://dx.doi.org/10.1016/j.nano.2015.01.006] [PMID: 25661921]
[56]
Maharjan RS, Singh AV, Hanif J, et al. Investigation of the associations between a nanomaterial’s microrheology and toxicology. ACS Omega 2022; 7(16): 13985-97.
[http://dx.doi.org/10.1021/acsomega.2c00472] [PMID: 35559161]
[57]
Vida Y, Montañez MI, Collado D, et al. Dendrimeric antigen-silica particle composites: An innovative approach for IgE quantification. J Mater Chem B Mater Biol Med 2013; 1(24): 3044-50.
[http://dx.doi.org/10.1039/c3tb20548g] [PMID: 32261007]
[58]
Soler M, Mesa-Antunez P, Estevez MC, et al. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens Bioelectron 2015; 66: 115-23.
[http://dx.doi.org/10.1016/j.bios.2014.10.081] [PMID: 25460891]
[59]
Ashraf S, Qadri S, al-Ramadi B, Haik Y. Nanoparticles rapidly assess specific IgE in plasma. Nanotechnology 2012; 23(30): 305101.
[http://dx.doi.org/10.1088/0957-4484/23/30/305101] [PMID: 22782087]
[60]
Teste B, Malloggi F, Siaugue JM, Varenne A, Kanoufi F, Descroix S. Microchip integrating magnetic nanoparticles for allergy diagnosis. Lab Chip 2011; 11(24): 4207-13.
[http://dx.doi.org/10.1039/c1lc20809h] [PMID: 22033539]
[61]
Wang J, Munir A, Li Z, Zhou HS. Aptamer–Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay. Biosens Bioelectron 2009; 25(1): 124-9.
[http://dx.doi.org/10.1016/j.bios.2009.06.016] [PMID: 19592231]
[62]
Wang Y, Cui M, Jiao M, Luo X. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Anal Bioanal Chem 2018; 410(23): 5871-8.
[http://dx.doi.org/10.1007/s00216-018-1201-9] [PMID: 29938372]
[63]
Platt GW, Damin F, Swann MJ, et al. Allergen immobilisation and signal amplification by quantum dots for use in a biosensor assay of IgE in serum. Biosens Bioelectron 2014; 52: 82-8.
[http://dx.doi.org/10.1016/j.bios.2013.08.019] [PMID: 24028905]
[64]
Bojcukova J, Vlas T, Forstenlechner P, Panzner P. Comparison of two multiplex arrays in the diagnostics of allergy. Clin Transl Allergy 2019; 9(1): 31.
[http://dx.doi.org/10.1186/s13601-019-0270-y]
[65]
Heffler E, Puggioni F, Peveri S, Montagni M, Canonica GW, Melioli G. Extended IgE profile based on an allergen macroarray: A novel tool for precision medicine in allergy diagnosis. World Allergy Organ J 2018; 11(1): 7.
[http://dx.doi.org/10.1186/s40413-018-0186-3] [PMID: 29743964]
[66]
Mari A, Alessandri C, Giangrieco I, et al. Introducing FABER test for allergy diagnosis: Food molecule- and extract-based allergenic preparations in the newest and broadest nanotechnology IgE test. Clin Transl Allergy 2017; 7(S1): OP11.
[67]
Deak PE, Kim B, Adnan A. Nanoallergen platform for detection of platin drug allergies. J Allergy Clin Immunol 2019; 143(5): 1957-60.
[http://dx.doi.org/10.1016/j.jaci.2019.01.010] [PMID: 30682456]
[68]
Molina N, Martin-Serrano A, Fernandez T, et al. Dendrimeric antigens for drug allergy diagnosis: A new approach for basophil activation tests. Molecules 2018; 23(5): 997.
[http://dx.doi.org/10.3390/molecules23050997] [PMID: 29695102]
[69]
Gómez-Arribas L, Benito-Peña E, Hurtado-Sánchez M, Moreno-Bondi M. Biosensing based on nanoparticles for food allergens detection. Sensors 2018; 18(4): 1087.
[http://dx.doi.org/10.3390/s18041087] [PMID: 29617319]
[70]
Anfossi L, Di Nardo F, Russo A, et al. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Anal Bioanal Chem 2019; 411(9): 1905-13.
[http://dx.doi.org/10.1007/s00216-018-1451-6] [PMID: 30397760]
[71]
Ross GMS, Bremer MGEG, Nielen MWF. Consumer-friendly food allergen detection: Moving towards smartphone-based immunoassays. Anal Bioanal Chem 2018; 410(22): 5353-71.
[http://dx.doi.org/10.1007/s00216-018-0989-7] [PMID: 29582120]
[72]
Patel N, Rocks BF, Bailey MP. A silver enhanced, gold labelled, immunosorbent assay for detecting antibodies to rubella virus. J Clin Pathol 1991; 44(4): 334-8.
[http://dx.doi.org/10.1136/jcp.44.4.334] [PMID: 2030155]
[73]
Gomez F, Bogas G, Gonzalez M, et al. The clinical and immunological effects of Pru p 3 SLIT on peach and peanut allergy in patients with systemic reactions. Clin Exp Allergy 2017; 47(3): 339-50.
[http://dx.doi.org/10.1111/cea.12901] [PMID: 28160513]
[74]
Gómez E, Fernández TD, Doña I, et al. Initial immunological changes as predictors for house dust mite immunotherapy response. Clin Exp Allergy 2015; 45(10): 1542-53.
[http://dx.doi.org/10.1111/cea.12578] [PMID: 26032922]
[75]
Frischmeyer-Guerrerio PA, Keet CA, Guerrerio AL, et al. Modulation of dendritic cell innate and adaptive immune functions by oral and sublingual immunotherapy. Clin Immunol 2014; 155(1): 47-59.
[http://dx.doi.org/10.1016/j.clim.2014.08.006] [PMID: 25173802]
[76]
Palomares F, Ramos-Soriano J, Gomez F, et al. Pru p 3-glycodendropeptides based on mannoses promote changes in the immunological properties of dendritic and T-cells from LTPallergic patients. Mol Nutr Food Res 2019; 63(20): 1900553.
[http://dx.doi.org/10.1002/mnfr.201900553] [PMID: 31368251]
[77]
Dhami S, Zaman H, Varga EM, et al. Allergen immunotherapy for insect venom allergy: A systematic review and meta-analysis. Allergy 2017; 72(3): 342-65.
[http://dx.doi.org/10.1111/all.13077] [PMID: 28120424]
[78]
Nurmatov U, Dhami S, Arasi S, et al. Allergen immunotherapy for IgE-mediated food allergy: A systematic review and meta-analysis. Allergy 2017; 72(8): 1133-47.
[http://dx.doi.org/10.1111/all.13124] [PMID: 28058751]
[79]
Pfaar O, Agache I, Blay F, et al. Perspectives in allergen immunotherapy: 2019 and beyond. Allergy 2019; 74(S108): 3-25.
[http://dx.doi.org/10.1111/all.14077] [PMID: 31872476]
[80]
Pajno GB, Fernandez-Rivas M, Arasi S, et al. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy 2018; 73(4): 799-815.
[http://dx.doi.org/10.1111/all.13319] [PMID: 29205393]
[81]
Rondón C, Blanca-López N, Campo P, et al. Specific immunotherapy in local allergic rhinitis: A randomized, double-blind placebo- controlled trial with Phleum pratense subcutaneous allergen immunotherapy. Allergy 2018; 73(4): 905-15.
[http://dx.doi.org/10.1111/all.13350] [PMID: 29168570]
[82]
Pfaar O, Lou H, Zhang Y, Klimek L, Zhang L. Recent developments and highlights in allergen immunotherapy. Allergy 2018; 73(12): 2274-89.
[http://dx.doi.org/10.1111/all.13652] [PMID: 30372537]
[83]
Reitsma S, Subramaniam S, Fokkens WWJ, Wang DY. Recent developments and highlights in rhinitis and allergen immunotherapy. Allergy 2018; 73(12): 2306-13.
[http://dx.doi.org/10.1111/all.13617] [PMID: 30260494]
[84]
Chen M, Land M. The current state of food allergy therapeutics. Hum Vaccin Immunother 2017; 13(10): 2434-42.
[http://dx.doi.org/10.1080/21645515.2017.1359363] [PMID: 28846472]
[85]
Gamazo C, D’Amelio C, Gastaminza G, Ferrer M, Irache JM. Adjuvants for allergy immunotherapeutics. Hum Vaccin Immunother 2017; 13(10): 2416-27.
[http://dx.doi.org/10.1080/21645515.2017.1348447] [PMID: 28825867]
[86]
Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: Formulating future vaccines. J Clin Invest 2016; 126(3): 799-808.
[http://dx.doi.org/10.1172/JCI81083] [PMID: 26928033]
[87]
Larsen SøT, Roursgaard M, Jensen KA, Nielsen GD. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 2010; 106(2): 114-7.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00473.x] [PMID: 19874288]
[88]
Sánchez-Navarro M, Rojo J. Targeting DC-SIGN with carbohydrate multivalent systems. Drug News Perspect 2010; 23(9): 557-72.
[http://dx.doi.org/10.1358/dnp.2010.23.9.1437246] [PMID: 21152451]
[89]
Mascaraque A, Kowalczyk W, Fernández T, et al. Glycodendropeptides stimulate dendritic cell maturation and T cell proliferation: A potential influenza A virus immunotherapy. MedChemComm 2015; 6(10): 1755-60.
[http://dx.doi.org/10.1039/C5MD00133A]
[90]
Le Guével X, Perez Perrino M, Fernández TD, et al. Multivalent glycosylation of fluorescent gold nanoclusters promotes increased human dendritic cell targeting via multiple endocytic pathways. ACS Appl Mater Interfaces 2015; 7(37): 20945-56.
[http://dx.doi.org/10.1021/acsami.5b06541] [PMID: 26329370]
[91]
Shahbazi MA, Fernández TD, Mäkilä EM, et al. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials 2014; 35(33): 9224-35.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.050] [PMID: 25123922]
[92]
Rodriguez MJ, Mascaraque A, Ramos-Soriano J, et al. Pru p 3-Epitope-based sublingual immunotherapy in a murine model for the treatment of peach allergy. Mol Nutr Food Res 2017; 61(10): 1700110.
[http://dx.doi.org/10.1002/mnfr.201700110] [PMID: 28586170]
[93]
Souza J, Almeida LY, Luis MAV, et al. Mental health in the family health strategy as perceived by health professionals. Rev Bras Enferm 2017; 70(5): 935-41.
[http://dx.doi.org/10.1590/0034-7167-2016-0492] [PMID: 28977218]
[94]
Gómez S, Gamazo C, Roman BS, Ferrer M, Sanz ML, Irache JM. Gantrez® AN nanoparticles as an adjuvant for oral immunotherapy with allergens. Vaccine 2007; 25(29): 5263-71.
[http://dx.doi.org/10.1016/j.vaccine.2007.05.020] [PMID: 17576025]
[95]
Rose F, Wern JE, Gavins F, Andersen P, Follmann F, Foged C. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. J Control Release 2018; 271: 88-97.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.003] [PMID: 29217176]
[96]
Jeon JO, Kim S, Choi E, et al. Designed nanocage displaying ligand-specific Peptide bunches for high affinity and biological activity. ACS Nano 2013; 7(9): 7462-71.
[http://dx.doi.org/10.1021/nn403184u] [PMID: 23927443]
[97]
Schöll I, Weissenböck A, Förster-Waldl E, et al. Allergen-loaded biodegradable poly(d,l-lactic-co-glycolic) acid nanoparticles down-regulate an ongoing Th2 response in the BALB/c mouse model. Clin Exp Allergy 2004; 34(2): 315-21.
[http://dx.doi.org/10.1111/j.1365-2222.2004.01884.x] [PMID: 14987314]
[98]
Gamazo C, García-Azpíroz M, Souza RJD, Gastaminza G, Ferrer M, Irache JM. Oral immunotherapy using polymeric nanoparticles loaded with peanut proteins in a murine model of fatal anaphylaxis. Immunotherapy 2017; 9(15): 1205-17.
[http://dx.doi.org/10.2217/imt-2017-0111] [PMID: 29130802]
[99]
Licciardi M, Montana G, Bondì ML, et al. An allergen-polymeric nanoaggregate as a new tool for allergy vaccination. Int J Pharm 2014; 465(1-2): 275-83.
[http://dx.doi.org/10.1016/j.ijpharm.2014.01.031] [PMID: 24491528]
[100]
Hajavi J, Hashemi M, Sankian M. Evaluation of size and dose effects of rChe a 3 allergen loaded PLGA nanoparticles on modulation of Th2 immune responses by sublingual immunotherapy in mouse model of rhinitis allergic. Int J Pharm 2019; 563: 282-92.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.040] [PMID: 30902708]
[101]
Balenga NAB, Zahedifard F, Weiss R, Sarbolouki MN, Thalhamer J, Rafati S. Protective efficiency of dendrosomes as novel nano-sized adjuvants for DNA vaccination against birch pollen allergy. J Biotechnol 2006; 124(3): 602-14.
[http://dx.doi.org/10.1016/j.jbiotec.2006.01.014] [PMID: 16515817]
[102]
Beilvert F, Tissot A, Langelot M, et al. DNA/amphiphilic block copolymer nanospheres reduce asthmatic response in a mouse model of allergic asthma. Hum Gene Ther 2012; 23(6): 597-608.
[http://dx.doi.org/10.1089/hum.2012.024] [PMID: 22429072]
[103]
Pali-Schöll I, Szöllösi H, Starkl P, et al. Protamine nanoparticles with CpG-oligodeoxynucleotide prevent an allergen-induced Th2-response in BALB/c mice. Eur J Pharm Biopharm 2013; 85(3) (3 Pt A): 656-64.
[http://dx.doi.org/10.1016/j.ejpb.2013.03.003] [PMID: 23523543]
[104]
Taylor WA, Sheldon D, Spicer JW. Adjuvant and suppressive effects of Grass Conjuvac and other alginate conjugates on IgG and IgE antibody responses in mice. Immunology 1981; 44(1): 41-50.
[PMID: 7275187]
[105]
Jatana S, Palmer BC, Phelan SJ, DeLouise LA. Immunomodulatory effects of nanoparticles on skin allergy. Sci Rep 2017; 7(1): 3979.
[http://dx.doi.org/10.1038/s41598-017-03729-2] [PMID: 28638049]
[106]
Benedé S, Ramos-Soriano J, Palomares F, et al. Peptide glycodendrimers as potential vaccines for olive pollen allergy. Mol Pharm 2020; 17(3): 827-36.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01082] [PMID: 31990560]
[107]
Rodriguez MJ, Ramos-Soriano J, Perkins JR, et al. Glycosylated nanostructures in sublingual immunotherapy induce long-lasting tolerance in LTP allergy mouse model. Sci Rep 2019; 9(1): 4043.
[http://dx.doi.org/10.1038/s41598-019-40114-7] [PMID: 30858392]
[108]
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16(1): 87-124.
[http://dx.doi.org/10.1080/1547691X.2019.1605553] [PMID: 31195861]
[109]
Najahi-Missaoui W, Arnold RD, Cummings BS. Safe nanoparticles: Are we there yet? Int J Mol Sci 2020; 22(1): 385.
[http://dx.doi.org/10.3390/ijms22010385] [PMID: 33396561]
[110]
Gatto F, Moglianetti M, Pompa P, Bardi G. Platinum nanoparticles decrease reactive oxygen species and modulate gene expression without alteration of immune responses in THP-1 monocytes. Nanomaterials 2018; 8(6): 392.
[http://dx.doi.org/10.3390/nano8060392] [PMID: 29865145]
[111]
Albalawi F, Hussein MZ, Fakurazi S, Masarudin MJ. Engineered nanomaterials: The challenges and opportunities for nanomedicines. Int J Nanomedicine 2021; 16: 161-84.
[http://dx.doi.org/10.2147/IJN.S288236] [PMID: 33447033]
[112]
Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: Size matters. J Nanobiotechnology 2014; 12(1): 5.
[http://dx.doi.org/10.1186/1477-3155-12-5] [PMID: 24491160]
[113]
Zamboni WC, Szebeni J, Kozlov SV, Lucas AT, Piscitelli JA, Dobrovolskaia MA. Animal models for analysis of immunological responses to nanomaterials: Challenges and considerations. Adv Drug Deliv Rev 2018; 136-137: 82-96.
[http://dx.doi.org/10.1016/j.addr.2018.09.012] [PMID: 30273617]
[114]
Čapek J, Roušar T. Detection of oxidative stress induced by nanomaterials in cells-the roles of reactive oxygen species and glutathione. Molecules 2021; 26(16): 4710.
[http://dx.doi.org/10.3390/molecules26164710] [PMID: 34443297]
[115]
Lehner R, Wang X, Marsch S, Hunziker P. Intelligent nanomaterials for medicine: Carrier platforms and targeting strategies in the context of clinical application. Nanomedicine 2013; 9(6): 742-57.
[http://dx.doi.org/10.1016/j.nano.2013.01.012] [PMID: 23434677]
[116]
Klimek L, Schmidt-Weber CB, Kramer MF, Skinner MA, Heath MD. Clinical use of adjuvants in allergen-immunotherapy. Expert Rev Clin Immunol 2017; 13(6): 599-610.
[http://dx.doi.org/10.1080/1744666X.2017.1292133] [PMID: 28162007]
[117]
Weiss DS, Takeda K, Akira S, Zychlinsky A, Moreno E. MyD88, but not toll-like receptors 4 and 2, is required for efficient clearance of Brucella abortus. Infect Immun 2005; 73(8): 5137-43.
[http://dx.doi.org/10.1128/IAI.73.8.5137-5143.2005] [PMID: 16041030]
[118]
Shannahan JH, Brown JM. Engineered nanomaterial exposure and the risk of allergic disease. Curr Opin Allergy Clin Immunol 2014; 14(2): 95-9.
[http://dx.doi.org/10.1097/ACI.0000000000000031] [PMID: 24378479]
[119]
Yoshioka Y, Kuroda E, Hirai T, Tsutsumi Y, Ishii KJ. Allergic responses induced by the immunomodulatory effects of nanomaterials upon skin exposure. Front Immunol 2017; 8: 169.
[http://dx.doi.org/10.3389/fimmu.2017.00169] [PMID: 28261221]
[120]
Inoue K, Takano H, Yanagisawa R, Ichinose T, Sakurai M, Yoshikawa T. Effects of nano particles on cytokine expression in murine lung in the absence or presence of allergen. Arch Toxicol 2006; 80(9): 614-9.
[http://dx.doi.org/10.1007/s00204-006-0075-3] [PMID: 16482471]
[121]
Bezemer GFG, Bauer SM, Oberdörster G, et al. Activation of pulmonary dendritic cells and Th2-type inflammatory responses on instillation of engineered, environmental diesel emission source or ambient air pollutant particles in vivo. J Innate Immun 2011; 3(2): 150-66.
[http://dx.doi.org/10.1159/000321725] [PMID: 21099199]
[122]
Yanagisawa R, Takano H, Inoue K, et al. Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp Biol Med 2009; 234(3): 314-22.
[http://dx.doi.org/10.3181/0810-RM-304] [PMID: 19144875]
[123]
Hamad I, Moghimi SM. Critical issues in site-specific targeting of solid tumours: the carrier, the tumour barriers and the bioavailable drug. Expert Opin Drug Deliv 2008; 5(2): 205-19.
[http://dx.doi.org/10.1517/17425247.5.2.205] [PMID: 18248319]
[124]
Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Sci 2008; 320(5876): 674-7.
[http://dx.doi.org/10.1126/science.1156995] [PMID: 18403674]
[125]
Schleimer RP, Berdnikovs S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol 2017; 139(6): 1752-61.
[http://dx.doi.org/10.1016/j.jaci.2017.04.010] [PMID: 28583447]
[126]
Ali S, Rytting E. Influences of nanomaterials on the barrier function of epithelial cells. Adv Exp Med Biol 2014; 811: 45-54.
[http://dx.doi.org/10.1007/978-94-017-8739-0_3] [PMID: 24683026]
[127]
Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy. J Control Release 2015; 220(PtB): 571-83.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.056] [PMID: 26348388]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy