Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells

Author(s): Farhad Sheikhnia, Hossein Maghsoudi and Maryam Majidinia*

Volume 24, Issue 6, 2024

Published on: 25 September, 2023

Page: [601 - 617] Pages: 17

DOI: 10.2174/1389557523666230825144150

Price: $65

conference banner
Abstract

Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.

Graphical Abstract

[1]
Liang, C.; Yang, J.B.; Lin, X.Y.; Xie, B.L.; Xu, Y.X.; Lin, S.; Xu, T.W. Recent advances in the diagnostic and therapeutic roles of microRNAs in colorectal cancer progression and metastasis. Front. Oncol., 2022, 12, 911856.
[http://dx.doi.org/10.3389/fonc.2022.911856] [PMID: 36313731]
[2]
Casale, J.; Patel, P. Fluorouracil, statpearls; StatPearls Publishing, 2022. Internet
[3]
Yuan, C.; Parekh, H.; Allegra, C.; George, T.J.; Starr, J.S. 5-FU induced cardiotoxicity: Case series and review of the literature. Cardiooncology, 2019, 5(1), 13.
[http://dx.doi.org/10.1186/s40959-019-0048-3] [PMID: 32154019]
[4]
Wigmore, P.M.; Mustafa, S.; El-Beltagy, M.; Lyons, L.; Umka, J.; Bennett, G. Effects of 5-FU. Adv. Exp. Med. Biol., 2010, 678, 157-164.
[http://dx.doi.org/10.1007/978-1-4419-6306-2_20] [PMID: 20738018]
[5]
Pardini, B.; Kumar, R.; Naccarati, A.; Novotny, J.; Prasad, R.B.; Forsti, A.; Hemminki, K.; Vodicka, P.; Lorenzo Bermejo, J. 5-Fluorouracil-based chemotherapy for colorectal cancer and MTHFR/MTRR genotypes. Br. J. Clin. Pharmacol., 2011, 72(1), 162-163.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03892.x] [PMID: 21204909]
[6]
Sethy, C; Kundu, CN 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021, 137, 111285.
[7]
Pagotto, S.; Colorito, M.L.; Nicotra, A.; Apuzzo, T.; Tinari, N.; Protasi, F.; Stassi, G.; Visone, R.; Di Franco, S.; Veronese, A. A perspective analysis: MicroRNAs, glucose metabolism, and drug resistance in colon cancer stem cells. Cancer Gene Ther., 2022, 29(1), 4-9.
[http://dx.doi.org/10.1038/s41417-021-00298-5] [PMID: 33526845]
[8]
Magee, P.; Shi, L.; Garofalo, M. Role of microRNAs in chemoresistance. Ann. Transl. Med., 2015, 3(21), 332.
[PMID: 26734642]
[9]
Simmer, F.; Venderbosch, S.; Dijkstra, J.R. Vink-Bِörger, E.M.; Faber, C.; Mekenkamp, L.J.; Koopman, M.; De Haan, A.F.; Punt, C.J.; Nagtegaal, I.D. MicroRNA-143 is a putative predictive factor for the response to fluoropyrimidine-based chemotherapy in patients with metastatic colorectal cancer. Oncotarget, 2015, 6(26), 22996-23007.
[http://dx.doi.org/10.18632/oncotarget.4035] [PMID: 26392389]
[10]
Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother., 2021, 137, 111285.
[http://dx.doi.org/10.1016/j.biopha.2021.111285] [PMID: 33485118]
[11]
Ghafouri-Fard, S.; Abak, A.; Tondro Anamag, F.; Shoorei, H.; Fattahi, F.; Javadinia, S.A.; Basiri, A.; Taheri, M. 5-Fluorouracil: A narrative review on the role of regulatory mechanisms in driving resistance to this chemotherapeutic agent. Front. Oncol., 2021, 11, 658636.
[http://dx.doi.org/10.3389/fonc.2021.658636] [PMID: 33954114]
[12]
Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[13]
Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer chemotherapy; StatPearls Publishing: Treasure Island, FL, 2022, p. 2022.
[14]
Sun, X; Chen, J; Chen, X; Gao, Q; Chen, W; Zou, X A systematic review of clinical validated and potential miRNA markers related to the efficacy of fluoropyrimidine drugs. Disease Markers, 2022, 2022.
[http://dx.doi.org/10.1155/2022/1360954]
[15]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2023 update. Nucleic Acids Res., 2023, 51(D1), D1373-D1380.
[http://dx.doi.org/10.1093/nar/gkac956] [PMID: 36305812]
[16]
Zhao, C.; Zhao, Q.; Zhang, C.; Wang, G.; Yao, Y.; Huang, X.; Zhan, F.; Zhu, Y.; Shi, J.; Chen, J.; Yan, F.; Zhang, Y. miR-15b-5p resensitizes colon cancer cells to 5-fluorouracil by promoting apoptosis via the NF-κB/XIAP axis. Sci. Rep., 2017, 7(1), 4194.
[http://dx.doi.org/10.1038/s41598-017-04172-z] [PMID: 28127051]
[17]
Hassani, S.; Maghsoudi, H.; Fattahi, F.; Malekinejad, F.; Hajmalek, N.; Sheikhnia, F.; Kheradmand, F.; Fahimirad, S.; Ghorbanpour, M. Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int. J. Biol. Macromol., 2023, 241, 124508.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124508] [PMID: 37085076]
[18]
Xu, X.; Chen, X.; Xu, M.; Liu, X.; Pan, B.; Qin, J.; Xu, T.; Zeng, K.; Pan, Y.; He, B.; Sun, H.; Sun, L.; Wang, S. miR-375-3p suppresses tumorigenesis and partially reverses chemoresistance by targeting YAP1 and SP1 in colorectal cancer cells. Aging (Albany NY), 2019, 11(18), 7357-7385.
[http://dx.doi.org/10.18632/aging.102214] [PMID: 31543507]
[19]
Liu, X.; Xie, T.; Mao, X.; Xue, L.; Chu, X.; Chen, L. MicroRNA-149 increases the sensitivity of colorectal cancer cells to 5-fluorouracil by targeting forkhead box transcription factor FOXM1. Cell. Physiol. Biochem., 2016, 39(2), 617-629.
[http://dx.doi.org/10.1159/000445653] [PMID: 27415661]
[20]
Liu, G.; Zhou, J.; Dong, M. Down-regulation of miR-543 expression increases the sensitivity of colorectal cancer cells to 5-Fluorouracil through the PTEN/PI3K/AKT pathway. Biosci. Rep., 2019, 39(3), BSR20190249.
[http://dx.doi.org/10.1042/BSR20190249] [PMID: 30842340]
[21]
Chai, J.; Dong, W.; Xie, C.; Wang, L.; Han, D.L.; Wang, S.; Guo, H.L.; Zhang, Z.L. MicroRNA-494 sensitizes colon cancer cells to fluorouracil through regulation of DPYD. IUBMB Life, 2015, 67(3), 191-201.
[http://dx.doi.org/10.1002/iub.1361] [PMID: 25873402]
[22]
Nishida, N.; Yamashita, S.; Mimori, K.; Sudo, T.; Tanaka, F.; Shibata, K.; Yamamoto, H.; Ishii, H.; Doki, Y.; Mori, M. MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann. Surg. Oncol., 2012, 19(9), 3065-3071.
[http://dx.doi.org/10.1245/s10434-012-2246-1] [PMID: 22322955]
[23]
Azwar, S.; Seow, H.F.; Abdullah, M.; Faisal Jabar, M.; Mohtarrudin, N. Recent updates on mechanisms of resistance to 5-fluorouracil and reversal strategies in colon cancer treatment. Biology, 2021, 10(9), 854.
[http://dx.doi.org/10.3390/biology10090854] [PMID: 34571731]
[24]
Morrison, H. Thymidylate synthase. In: Enzyme Active Sites and their Reaction Mechanisms; Morrison, H., Ed.; Academic Press, 2021; pp. 225-230.
[http://dx.doi.org/10.1016/B978-0-12-821067-3.00037-4]
[25]
He, J.; Xie, G.; Tong, J.; Peng, Y.; Huang, H.; Li, J.; Wang, N.; Liang, H. Overexpression of microRNA-122 re-sensitizes 5-FU-resistant colon cancer cells to 5-FU through the inhibition of PKM2 in vitro and in vivo. Cell Biochem. Biophys., 2014, 70(2), 1343-1350.
[http://dx.doi.org/10.1007/s12013-014-0062-x] [PMID: 24898807]
[26]
Massaro, C.; Safadeh, E.; Sgueglia, G.; Stunnenberg, H.G.; Altucci, L.; Dell’Aversana, C. MicroRNA-assisted hormone cell signaling in colorectal cancer resistance. Cells, 2020, 10(1), 39.
[http://dx.doi.org/10.3390/cells10010039] [PMID: 33396628]
[27]
Shang, J.; Yang, F.; Wang, Y.; Wang, Y.; Xue, G.; Mei, Q.; Wang, F.; Sun, S. MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J. Cell. Biochem., 2014, 115(4), 772-784.
[http://dx.doi.org/10.1002/jcb.24721] [PMID: 24249161]
[28]
Blondy, S.; David, V.; Verdier, M.; Mathonnet, M.; Perraud, A.; Christou, N. 5‐Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci., 2020, 111(9), 3142-3154.
[http://dx.doi.org/10.1111/cas.14532] [PMID: 32536012]
[29]
Majidinia, M.; Alizadeh, E.; Yousefi, B.; Akbarzadeh, M.; Zarghami, N. Downregulation of notch signaling pathway as an effective chemosensitizer for cancer treatment. Drug Res., 2016, 66(11), 571-579.
[http://dx.doi.org/10.1055/s-0042-111821] [PMID: 27701712]
[30]
Yousefi, B.; Samadi, N.; Baradaran, B.; Rameshknia, V.; Shafiei-Irannejad, V.; Majidinia, M.; Targhaze, N.; Zarghami, N. Differential effects of peroxisome proliferator-activated receptor agonists on doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. Cell. Mol. Biol., 2015, 61(8), 118-122.
[PMID: 26718439]
[31]
Fanale, D; Castiglia, M; Bazan, V; Russo, A. Involvement of non-coding RNAs in chemo-and radioresistance of colorectal cancer. Non-coding RNAs in Colorectal Cancer, 2016, 207-228.
[http://dx.doi.org/10.1007/978-3-319-42059-2_11]
[32]
Lathia, J.D.; Liu, H. Overview of cancer stem cells and stemness for community oncologists. Target. Oncol., 2017, 12(4), 387-399.
[http://dx.doi.org/10.1007/s11523-017-0508-3] [PMID: 28664387]
[33]
Zhang, N.; Yin, Y.; Xu, S.J.; Chen, W.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules, 2008, 13(8), 1551-1569.
[http://dx.doi.org/10.3390/molecules13081551] [PMID: 18794772]
[34]
Zhang, H.; Tang, J.; Li, C.; Kong, J.; Wang, J.; Wu, Y.; Xu, E.; Lai, M. MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Lett., 2015, 356(2), 781-790.
[http://dx.doi.org/10.1016/j.canlet.2014.10.029] [PMID: 25449431]
[35]
Xie, T.; Geng, J.; Wang, Y.; Wang, L.; Huang, M.; Chen, J.; Zhang, K.; Xue, L.; Liu, X.; Mao, X.; Chen, Y.; Wang, Q.; Dai, T.; Ren, L.; Yu, H.; Wang, R.; Chen, L.; Chen, C.; Chu, X. FOXM1 evokes 5-fluorouracil resistance in colorectal cancer depending on ABCC10. Oncotarget, 2017, 8(5), 8574-8589.
[http://dx.doi.org/10.18632/oncotarget.14351] [PMID: 28051999]
[36]
Varghese, V.; Magnani, L.; Harada-Shoji, N.; Mauri, F.; Szydlo, R.M.; Yao, S.; Lam, E.W.F.; Kenny, L.M. FOXM1 modulates 5-FU resistance in colorectal cancer through regulating TYMS expression. Sci. Rep., 2019, 9(1), 1505.
[http://dx.doi.org/10.1038/s41598-018-38017-0] [PMID: 30728402]
[37]
Liang, G.; Zhu, Y.; Ali, D.J.; Tian, T.; Xu, H.; Si, K. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J. Nanobiotechnology, 2020, 18(1), 1-15.
[http://dx.doi.org/10.1186/s12951-019-0560-5] [PMID: 31898555]
[38]
Yu, X.; Shi, W.; Zhang, Y.; Wang, X.; Sun, S.; Song, Z.; Liu, M.; Zeng, Q.; Cui, S.; Qu, X. CXCL12/CXCR4 axis induced miR-125b promotes invasion and confers 5-fluorouracil resistance through enhancing autophagy in colorectal cancer. Sci. Rep., 2017, 7(1), 42226.
[http://dx.doi.org/10.1038/srep42226] [PMID: 28176874]
[39]
Wang, W.B.; Yang, Y.; Zhao, Y-P.; Zhang, T-P.; Liao, Q.; Shu, H. Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol., 2014, 20(42), 15682-15690.
[http://dx.doi.org/10.3748/wjg.v20.i42.15682] [PMID: 25400452]
[40]
Han, J.H.; Kim, M.; Kim, H.J.; Jang, S.B.; Bae, S.J.; Lee, I.K.; Ryu, D.; Ha, K.T. Targeting lactate dehydrogenase A with catechin resensi-tizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil. Int. J. Mol. Sci., 2021, 22(10), 5406.
[http://dx.doi.org/10.3390/ijms22105406] [PMID: 34065602]
[41]
Gonçalves-Ribeiro, S. Díaz-Maroto, N.G.; Berdiel-Acer, M.; Soriano, A.; Guardiola, J.; Martínez-Villacampa, M.; Salazar, R.; Capellà, G.; Villanueva, A.; Martínez-Balibrea, E.; Molleví, D.G. Carcinoma-associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells. Oncotarget, 2016, 7(37), 59766-59780.
[http://dx.doi.org/10.18632/oncotarget.11121] [PMID: 27517495]
[42]
Yun, C.W.; Han, Y.S.; Lee, S.H. PGC-1α controls mitochondrial biogenesis in drug-resistant colorectal cancer cells by regulating endoplasmic reticulum stress. Int. J. Mol. Sci., 2019, 20(7), 1707.
[http://dx.doi.org/10.3390/ijms20071707]
[43]
Pelullo, M.; Zema, S.; De Carolis, M.; Cialfi, S.; Giuli, M.V.; Palermo, R.; Capalbo, C.; Giannini, G.; Screpanti, I.; Checquolo, S.; Bellavia, D. 5FU/Oxaliplatin-induced jagged1 cleavage counteracts apoptosis induction in colorectal cancer: A novel mechanism of intrinsic drug resistance. Front. Oncol., 2022, 12, 918763.
[http://dx.doi.org/10.3389/fonc.2022.918763] [PMID: 35847908]
[44]
Deng, J.; Wang, Y.; Lei, J.; Lei, W.; Xiong, J.P. Insights into the involvement of noncoding RNAs in 5-fluorouracil drug resistance. Tumour Biol., 2017, 39(4)
[http://dx.doi.org/10.1177/1010428317697553] [PMID: 28381160]
[45]
Yin, W; Zhong, G; Fan, H; Xia, H The effect of compound Sophora on fluorouracil and oxaliplatin resistance in colorectal cancer cells. Evidence-Based Complementary and Alternative Medicine., 2019, 2019
[http://dx.doi.org/10.1155/2019/7564232]
[46]
Wang, H.; Li, J.M.; Wei, W.; Yang, R.; Chen, D.; Ma, X.D.; Jiang, G.M.; Wang, B.L. Regulation of ATP‐binding cassette subfamily B member 1 by Snail contributes to chemoresistance in colorectal cancer. Cancer Sci., 2020, 111(1), 84-97.
[http://dx.doi.org/10.1111/cas.14253] [PMID: 31774615]
[47]
Shaikhnia, F.; Ghasempour, G.; Mohammadi, A.; Shabani, M.; Najafi, M. miR-27a inhibits molecular adhesion between monocytes and human umbilical vein endothelial cells; systemic approach. BMC Res. Notes, 2022, 15(1), 31.
[http://dx.doi.org/10.1186/s13104-022-05920-9] [PMID: 35144666]
[48]
Liu, B.; Liu, Y.; Zhao, L.; Pan, Y.; Shan, Y.; Li, Y.; Jia, L. Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. Mol. Carcinog., 2017, 56(12), 2669-2680.
[http://dx.doi.org/10.1002/mc.22710] [PMID: 28767179]
[49]
Maali, A.; Sarfi, M.; Mirzakhani, M.; Goodarzi, G.; Maghsoudi, H.; Maniati, M.; Tehrani, S.S.; Qujeq, D. Peaceful existence of tumor cells with their non-malignant neighbors: the trade of tumor cells with tumor microenvironment. Curr. Chem. Biol., 2021, 14(4), 228-239.
[http://dx.doi.org/10.2174/2212796814999200925162943]
[50]
Abolghasemi, M.; Tehrani, S.S.; Yousefi, T.; Karimian, A.; Mahmoodpoor, A.; Ghamari, A.; Jadidi-Niaragh, F.; Yousefi, M.; Kafil, H.S.; Bastami, M.; Edalati, M.; Eyvazi, S.; Naghizadeh, M.; Targhazeh, N.; Mihanfar, A.; Yousefi, B.; Safa, A.; Majidinia, M.; Rameshknia, V. Critical roles of long noncoding RNAs in breast cancer. J. Cell. Physiol., 2020, 235(6), 5059-5071.
[http://dx.doi.org/10.1002/jcp.29442] [PMID: 31951025]
[51]
Zhao, Y.; Wang, Z.; Zhang, W.; Zhang, L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors, 2019, 45(6), 844-856.
[http://dx.doi.org/10.1002/biof.1555] [PMID: 31418958]
[52]
Guo, L.; Zhang, Q.; Liu, Y. The role of microRNAs in ferroptosis. Front. Mol. Biosci., 2022, 9, 1003045.
[http://dx.doi.org/10.3389/fmolb.2022.1003045] [PMID: 36310600]
[53]
Cirillo, F.; Catellani, C.; Lazzeroni, P.; Sartori, C.; Street, M.E. The role of MicroRNAs in influencing body growth and development. Horm. Res. Paediatr., 2020, 93(1), 7-15.
[http://dx.doi.org/10.1159/000504669] [PMID: 31914447]
[54]
Sammarco, G.; Gallo, G.; Vescio, G.; Picciariello, A.; De Paola, G.; Trompetto, M. Currٍò,, G.; Ammendola, M. Mast cells, microRNAs and Others: The role of translational research on colorectal cancer in the forthcoming era of precision medicine. J. Clin. Med., 2020, 9(9), 2852.
[http://dx.doi.org/10.3390/jcm9092852] [PMID: 32899322]
[55]
Vaghari-Tabari, M.; Majidinia, M.; Moein, S.; Qujeq, D.; Asemi, Z.; Alemi, F.; Mohamadzadeh, R.; Targhazeh, N.; Safa, A.; Yousefi, B. MicroRNAs and colorectal cancer chemoresistance: New solution for old problem. Life Sci., 2020, 259, 118255.
[http://dx.doi.org/10.1016/j.lfs.2020.118255] [PMID: 32818543]
[56]
Shi, X.; Valizadeh, A.; Mir, S.M.; Asemi, Z.; Karimian, A.; Majidina, M.; Safa, A.; Yosefi, B. miRNA-29a reverses P-glycoprotein-mediated drug resistance and inhibits proliferation via up-regulation of PTEN in colon cancer cells. Eur. J. Pharmacol., 2020, 880, 173138.
[http://dx.doi.org/10.1016/j.ejphar.2020.173138] [PMID: 32416187]
[57]
Borralho, P.M.; Kren, B.T.; Castro, R.E.; Moreira da Silva, I.B.; Steer, C.J.; Rodrigues, C.M.P. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J., 2009, 276(22), 6689-6700.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07383.x] [PMID: 19843160]
[58]
Strubberg, A.M.; Madison, B.B. MicroRNAs in the etiology of colorectal cancer: Pathways and clinical implications. Dis. Model. Mech., 2017, 10(3), 197-214.
[http://dx.doi.org/10.1242/dmm.027441] [PMID: 28250048]
[59]
Sarvizadeh, M.; Malekshahi, Z.V.; Razi, E.; Sharifi, H.; Moussavi, N.; Taghizadeh, M. MicroRNA: A new player in response to therapy for colorectal cancer. J. Cell. Physiol., 2019, 234(6), 8533-8540.
[http://dx.doi.org/10.1002/jcp.27806] [PMID: 30478837]
[60]
Li, X.W.; Qiu, S.J.; Zhang, X. Overexpression of miR-215-3p sensitizes colorectal cancer to 5-fluorouracil induced apoptosis through regulating CXCR1. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7240-7250.
[PMID: 30468467]
[61]
Hernández, R.; Sánchez-Jiménez, E.; Melguizo, C.; Prados, J.; Rama, A.R. Downregulated microRNAs in the colorectal cancer: Diagnostic and therapeutic perspectives. BMB Rep., 2018, 51(11), 563-571.
[http://dx.doi.org/10.5483/BMBRep.2018.51.11.116] [PMID: 30158023]
[62]
Chen, B.; Xia, Z.; Deng, Y.N.; Yang, Y.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis. Open Biol., 2019, 9(1), 180212.
[http://dx.doi.org/10.1098/rsob.180212] [PMID: 30958116]
[63]
Zhang, Y.; Hu, X.; Miao, X.; Zhu, K.; Cui, S.; Meng, Q.; Sun, J.; Wang, T. Micro RNA ‐425‐5p regulates chemoresistance in colorectal cancer cells via regulation of Programmed Cell Death 10. J. Cell. Mol. Med., 2016, 20(2), 360-369.
[http://dx.doi.org/10.1111/jcmm.12742] [PMID: 26647742]
[64]
Marjaneh, R.M.; Khazaei, M.; Ferns, G.A.; Avan, A.; Aghaee-Bakhtiari, S.H. The role of microRNAs in 5‐FU resistance of colorectal can-cer: Possible mechanisms. J. Cell. Physiol., 2019, 234(3), 2306-2316.
[http://dx.doi.org/10.1002/jcp.27221] [PMID: 30191973]
[65]
Karim, S.; Burzangi, A.S.; Ahmad, A.; Siddiqui, N.A.; Ibrahim, I.M.; Sharma, P.; Abualsunun, W.A.; Gabr, G.A. PI3K-AKT pathway mo-dulation by thymoquinone limits tumor growth and glycolytic metabolism in colorectal cancer. Int. J. Mol. Sci., 2022, 23(4), 2305.
[http://dx.doi.org/10.3390/ijms23042305] [PMID: 35216429]
[66]
Moreno-Londoñٌo, A.P.; Castaٌñeda-Patlán, M.C.; Sarabia-Sánchez, M.A.; Macías-Silva, M.; Robles-Flores, M. Canonical wnt pathway is involved in chemoresistance and cell cycle arrest induction in colon cancer cell line spheroids. Int. J. Mol. Sci., 2023, 24(6), 5252.
[http://dx.doi.org/10.3390/ijms24065252] [PMID: 36982333]
[67]
Heydari, K.; Saidijam, M.; Sharifi, M. dermani, F.K.; Soleimani Asl, S.; Shabab, N.; Najafi, R. The effect of miR-200c inhibition on che-mosensitivity (5-FluoroUracil) in colorectal cancer. Pathol. Oncol. Res., 2018, 24(1), 145-151.
[http://dx.doi.org/10.1007/s12253-017-0222-6] [PMID: 28411308]
[68]
Pan, R.; Cai, W.; Sun, J.; Yu, C.; Li, P.; Zheng, M. Inhibition of KHSRP sensitizes colorectal cancer to 5‐fluoruracil through miR‐501‐5p‐mediated ERRFI1 mRNA degradation. J. Cell. Physiol., 2020, 235(2), 1576-1587.
[http://dx.doi.org/10.1002/jcp.29076] [PMID: 31313286]
[69]
Cairns, J.; Fridley, B.L.; Jenkins, G.D.; Zhuang, Y.; Yu, J.; Wang, L. Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation. EMBO Rep., 2018, 19(3), e44767.
[http://dx.doi.org/10.15252/embr.201744767] [PMID: 29335246]
[70]
Zhang, Y.; Talmon, G.; Wang, J. Erratum: MicroRNA-587 antagonizes 5-FU-induced apoptosis and confers drug resistance by regulating PPP2R1B expression in colorectal cancer. Cell Death Dis., 2016, 7(12), e2525.
[http://dx.doi.org/10.1038/cddis.2016.450] [PMID: 28005075]
[71]
Zhang, Y.; Geng, L.; Talmon, G.; Wang, J. MicroRNA-520g confers drug resistance by regulating p21 expression in colorectal cancer. J. Biol. Chem., 2015, 290(10), 6215-6225.
[http://dx.doi.org/10.1074/jbc.M114.620252] [PMID: 25616665]
[72]
Han, J.; Li, J.; Tang, K.; Zhang, H.; Guo, B.; Hou, N.; Huang, C. miR-338-3p confers 5-fluorouracil resistance in p53 mutant colon cancer cells by targeting the mammalian target of rapamycin. Exp. Cell Res., 2017, 360(2), 328-336.
[http://dx.doi.org/10.1016/j.yexcr.2017.09.023] [PMID: 28928082]
[73]
Valeri, N.; Gasparini, P.; Braconi, C.; Paone, A.; Lovat, F.; Fabbri, M.; Sumani, K.M.; Alder, H.; Amadori, D.; Patel, T.; Nuovo, G.J.; Fishel, R.; Croce, C.M. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc. Natl. Acad. Sci. USA, 2010, 107(49), 21098-21103.
[http://dx.doi.org/10.1073/pnas.1015541107] [PMID: 21078976]
[74]
Deng, J.; Lei, W.; Fu, J.C.; Zhang, L.; Li, J.H.; Xiong, J.P. Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro. Biochem. Biophys. Res. Commun., 2014, 443(3), 789-795.
[http://dx.doi.org/10.1016/j.bbrc.2013.11.064] [PMID: 24275137]
[75]
Ren, T.; Hou, J.; Liu, C.; Shan, F.; Xiong, X. Qin, A The long non-coding RNA HOTAIRM1 suppresses cell progression via sponging endogenous miR-17-5p/B-cell translocation gene 3 (BTG3) axis in 5-fluorouracil resistant colorectal cancer cells. Biomed. Pharmacother., 2019, 117, 109171.
[76]
Kim, C.; Hong, Y.; Lee, H.; Kang, H.; Lee, E.K. MicroRNA-195 desensitizes HCT116 human colon cancer cells to 5-fluorouracil. Cancer Lett., 2018, 412, 264-271.
[http://dx.doi.org/10.1016/j.canlet.2017.10.022] [PMID: 29080751]
[77]
Chai, H.; Liu, M.; Tian, R.; Li, X.; Tang, H. miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochim. Biophys. Sin., 2011, 43(3), 217-225.
[http://dx.doi.org/10.1093/abbs/gmq125] [PMID: 21242194]
[78]
Li, X.; Li, X.; Liao, D.; Wang, X.; Wu, Z.; Nie, J.; Bai, M.; Fu, X.; Mei, Q.; Han, W. Elevated microRNA-23a expression enhances the chemoresistance of colorectal cancer cells with microsatellite instability to 5-fluorouracil by directly targeting ABCF1. Curr. Protein Pept. Sci., 2015, 16(4), 301-309.
[http://dx.doi.org/10.2174/138920371604150429153309] [PMID: 25929864]
[79]
Sun, L.H.; Tian, D.; Yang, Z.C.; Li, J.L. Exosomal miR-21 promotes proliferation, invasion and therapy resistance of colon adenocarcinoma cells through its target PDCD4. Sci. Rep., 2020, 10(1), 8271.
[http://dx.doi.org/10.1038/s41598-020-65207-6] [PMID: 32427870]
[80]
Wu, L.; Li, S.; Peng, R.; Gong, S.; Xu, L.; Zou, F. Drug resistance of colon cancer cells to 5-fluorouracil mediated by microRNA-21. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2015, 32(5), 620-624.
[PMID: 26418978]
[81]
Nakagawa, Y.; Kuranaga, Y.; Tahara, T.; Yamashita, H.; Shibata, T.; Nagasaka, M.; Funasaka, K.; Ohmiya, N.; Akao, Y. Induced miR‐31 by 5‐fluorouracil exposure contributes to the resistance in colorectal tumors. Cancer Sci., 2019, 110(8), 2540-2548.
[http://dx.doi.org/10.1111/cas.14090] [PMID: 31162779]
[82]
Zhao, J.; Cao, J.; Zhou, L.; Du, Y.; Zhang, X.; Yang, B.; Gao, Y.; Wang, Y.; Ma, N.; Yang, W. MiR 1260b inhibitor enhances the chemosensitivity of colorectal cancer cells to fluorouracil by targeting PDCD4/IGF1. Oncol. Lett., 2018, 16(4), 5131-5139.
[http://dx.doi.org/10.3892/ol.2018.9307] [PMID: 30250581]
[83]
Ren, D.; Lin, B.; Zhang, X.; Peng, Y.; Ye, Z.; Ma, Y.; Liang, Y.; Cao, L.; Li, X.; Li, R.; Sun, L.; Liu, Q.; Wu, J.; Zhou, K.; Zeng, J. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway. Oncotarget, 2017, 8(30), 49807-49823.
[http://dx.doi.org/10.18632/oncotarget.17971] [PMID: 28591704]
[84]
Ye, L.; Jiang, T.; Shao, H.; Zhong, L.; Wang, Z.; Liu, Y.; Tang, H.; Qin, B.; Zhang, X.; Fan, J. miR-1290 Is a biomarker in DNA-mismatch-repair-deficient colon cancer and promotes resistance to 5-Fluorouracil by directly targeting hMSH2. Mol. Ther. Nucleic Acids, 2017, 7, 453-464.
[http://dx.doi.org/10.1016/j.omtn.2017.05.006] [PMID: 28624221]
[85]
Liu, J.; Huang, Y.; Wang, H.; Wu, D. MiR-106a-5p promotes 5-FU resistance and the metastasis of colorectal cancer by targeting TGFβR2. Int. J. Clin. Exp. Pathol., 2018, 11(12), 5622-5634.
[PMID: 31949649]
[86]
Ren, T.J.; Liu, C.; Hou, J.F.; Shan, F.X. CircDDX17 reduces 5-fluorouracil resistance and hinders tumorigenesis in colorectal cancer by regulating miR-31-5p/KANK1 axis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(4), 1743-1754.
[PMID: 32141542]
[87]
Song, B.; Wang, Y.; Xi, Y.; Kudo, K.; Bruheim, S.; Botchkina, G.I.; Gavin, E.; Wan, Y.; Formentini, A.; Kornmann, M.; Fodstad, O.; Ju, J. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene, 2009, 28(46), 4065-4074.
[http://dx.doi.org/10.1038/onc.2009.274] [PMID: 19734943]
[88]
Fu, Q.; Cheng, J.; Zhang, J.; Zhang, Y.; Chen, X.; Luo, S.; Xie, J. miR-20b reduces 5-FU resistance by suppressing the ADAM9/EGFR signaling pathway in colon cancer. Oncol. Rep., 2017, 37(1), 123-130.
[http://dx.doi.org/10.3892/or.2016.5259] [PMID: 27878272]
[89]
Karaayvaz, M.; Zhai, H.; Ju, J. miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis., 2013, 4(6), 659.
[90]
Gotanda, K.; Hirota, T.; Matsumoto, N.; Ieiri, I. MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells. BMC Cancer, 2013, 13(1), 369.
[http://dx.doi.org/10.1186/1471-2407-13-369] [PMID: 23915286]
[91]
Liu, H.; Yin, Y.; Hu, Y.; Feng, Y.; Bian, Z.; Yao, S.; Li, M.; You, Q.; Huang, Z. miR-139-5p sensitizes colorectal cancer cells to 5-fluorouracil by targeting NOTCH-1. Pathol. Res. Pract., 2016, 212(7), 643-649.
[http://dx.doi.org/10.1016/j.prp.2016.04.011] [PMID: 27173050]
[92]
Wang, L.; Jiang, C.; Li, D.; Ge, X.; Shi, Z.; Li, C.; Liu, X.; Yin, Y.; Zhen, L.; Liu, L.Z.; Jiang, B.H. MicroRNA-497 inhibits tumor growth and increases chemosensitivity to 5-fluorouracil treatment by targeting KSR1. Oncotarget, 2016, 7(3), 2660-2671.
[http://dx.doi.org/10.18632/oncotarget.6545] [PMID: 26673620]
[93]
Zhao, M.; Luo, R.; Liu, Y.; Gao, L.; Fu, Z.; Fu, Q.; Luo, X.; Chen, Y.; Deng, X.; Liang, Z.; Li, X.; Cheng, C.; Liu, Z.; Fang, W. miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR–p-PI3K/AKT-c-JUN. Nat. Commun., 2016, 7(1), 11309.
[http://dx.doi.org/10.1038/ncomms11309] [PMID: 27095304]
[94]
Feng, C.; Zhang, L.; Sun, Y.; Li, X.; Zhan, L.; Lou, Y.; Wang, Y.; Liu, L.; Zhang, Y. GDPD5, a target of miR-195-5p, is associated with metastasis and chemoresistance in colorectal cancer. Biomed. Pharmacother., 2018, 101, 945-952.
[http://dx.doi.org/10.1016/j.biopha.2018.03.028] [PMID: 29635904]
[95]
Salendo, J.; Spitzner, M.; Kramer, F.; Zhang, X.; Jo, P.; Wolff, H.A.; Kitz, J. Kaulfuß, S.; Beißbarth, T.; Dobbelstein, M.; Ghadimi, M.; Grade, M.; Gaedcke, J. Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g. Radiother. Oncol., 2013, 108(3), 451-457.
[http://dx.doi.org/10.1016/j.radonc.2013.06.032] [PMID: 23932154]
[96]
Li, P-L.; Zhang, X.; Wang, L-L.; Du, L-T.; Yang, Y-M.; Li, J.; Wang, C.X. MicroRNA-218 is a prognostic indicator in colorectal cancer and enhances 5-fluorouracil-induced apoptosis by targeting BIRC5. Carcinogenesis, 2015, 36(12), 1484-1493.
[PMID: 26442524]
[97]
Li, X.; Zhao, H.; Zhou, X.; Song, L. Inhibition of lactate dehydrogenase A by microRNA-34a resensitizes colon cancer cells to 5-fluorouracil. Mol. Med. Rep., 2015, 11(1), 577-582.
[http://dx.doi.org/10.3892/mmr.2014.2726] [PMID: 25333573]
[98]
Li, T.; Gao, F.; Zhang, X.P. miR-203 enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Oncol. Rep., 2015, 33(2), 607-614.
[http://dx.doi.org/10.3892/or.2014.3646] [PMID: 25482885]
[99]
Xu, F.; Ye, M.L.; Zhang, Y.P.; Li, W.J.; Li, M.T.; Wang, H.Z.; Qiu, X.; Xu, Y.; Yin, J.W.; Hu, Q.; Wei, W.H.; Chang, Y.; Liu, L.; Zhao, Q. MicroRNA‐375‐3p enhances chemosensitivity to 5‐fluorouracil by targeting thymidylate synthase in colorectal cancer. Cancer Sci., 2020, 111(5), 1528-1541.
[http://dx.doi.org/10.1111/cas.14356] [PMID: 32073706]
[100]
Findlay, V.J.; Wang, C.; Nogueira, L.M.; Hurst, K.; Quirk, D.; Ethier, S.P.; Staveley O’Carroll, K.F.; Watson, D.K.; Camp, E.R. SNAI2 modulates colorectal cancer 5-fluorouracil sensitivity through miR145 repression. Mol. Cancer Ther., 2014, 13(11), 2713-2726.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0207] [PMID: 25249558]
[101]
Sun, Z; Zhou, N; Han, Q; Zhao, L; Bai, C; Chen, Y. MicroRNA-197 influences 5-fluorouracil resistance via thymidylate synthase in colorectal cancer. Clinical & translational oncology : Official publication of the Federation of Spanish Oncology Societies and of the national cancer institute of Mexico 2015, 17(11), 876-883.
[102]
Bian, Z.; Zhang, J.; Li, M.; Feng, Y.; Yao, S.; Song, M.; Qi, X.; Fei, B.; Yin, Y.; Hua, D.; Huang, Z. Long non-coding RNA LINC00152 promotes cell proliferation, metastasis, and confers 5-FU resistance in colorectal cancer by inhibiting miR-139-5p. Oncogenesis, 2017, 6(11), 395.
[http://dx.doi.org/10.1038/s41389-017-0008-4] [PMID: 29180678]
[103]
Wang, S.; Cao, J.; Pei, L. Knockdown of circ_0004585 enhances the chemosensitivity of colorectal cancer cells to 5-fluorouracil via the miR-874-3p/CCND1 axis. Histol. Histopathol., 2023, 38(1), 99-112.
[PMID: 35900059]
[104]
Wang, B.; Lu, F-Y.; Shi, R-H.; Feng, Y-D.; Zhao, X-D.; Lu, Z-P.; Xiao, L.; Zhou, G.Q.; Qiu, J.M.; Cheng, C.E. MiR-26b regulates 5-FU-resistance in human colorectal cancer via down-regulation of Pgp. Am. J. Cancer Res., 2018, 8(12), 2518-2527.
[PMID: 30662808]
[105]
Chen, G.; Zhou, T.; Li, Y.; Yu, Z.; Sun, L. p53 target miR-29c-3p suppresses colon cancer cell invasion and migration through inhibition of PHLDB2. Biochem. Biophys. Res. Commun., 2017, 487(1), 90-95.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.023] [PMID: 28392396]
[106]
Jiang, S.; Miao, D.; Wang, M.; Lv, J.; Wang, Y.; Tong, J. MiR-30-5p suppresses cell chemoresistance and stemness in colorectal cancer through USP22/Wnt/β-catenin signaling axis. J. Cell. Mol. Med., 2019, 23(1), 630-640.
[http://dx.doi.org/10.1111/jcmm.13968] [PMID: 30338942]
[107]
Akao, Y.; Noguchi, S.; Iio, A.; Kojima, K.; Takagi, T.; Naoe, T. Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett., 2011, 300(2), 197-204.
[http://dx.doi.org/10.1016/j.canlet.2010.10.006] [PMID: 21067862]
[108]
Xie, Z.Y.; Wang, F.F.; Xiao, Z.H.; Liu, S.F.; Tang, S.L.; Lai, Y.L. Overexpressing microRNA-34a overcomes ABCG2-mediated drug resistance to 5-FU in side population cells from colon cancer via suppressing DLL1. J. Biochem., 2020, 167(6), 557-564.
[http://dx.doi.org/10.1093/jb/mvaa012] [PMID: 32044957]
[109]
Lv, L.; Li, Q.; Chen, S.; Zhang, X.; Tao, X.; Tang, X.; Wang, S.; Che, G.; Yu, Y.; He, L. miR-133b suppresses colorectal cancer cell stemness and chemoresistance by targeting methyltransferase DOT1L. Exp. Cell Res., 2019, 385(1), 111597.
[http://dx.doi.org/10.1016/j.yexcr.2019.111597] [PMID: 31525340]
[110]
Li, Q.; Liang, X.; Wang, Y.; Meng, X.; Xu, Y.; Cai, S.; Wang, Z.; Liu, J.; Cai, G. miR-139-5p inhibits the epithelial-mesenchymal transition and enhances the chemotherapeutic sensitivity of colorectal cancer cells by downregulating BCL2. Sci. Rep., 2016, 6(1), 27157.
[http://dx.doi.org/10.1038/srep27157] [PMID: 27244080]
[111]
Liu, R.L.; Dong, Y.; Deng, Y.Z.; Wang, W.J.; Li, W.D. Tumor suppressor miR-145 reverses drug resistance by directly targeting DNA damage-related gene RAD18 in colorectal cancer. Tumour Biol., 2015, 36(7), 5011-5019.
[http://dx.doi.org/10.1007/s13277-015-3152-5] [PMID: 25913620]
[112]
Zhou, C.; Kong, W.; Ju, T.; Xie, Q.; Zhai, L. MiR-185-3p mimic promotes the chemosensitivity of CRC cells via AQP5. Cancer Biol. Ther., 2020, 21(9), 790-798.
[http://dx.doi.org/10.1080/15384047.2020.1761238] [PMID: 32588739]
[113]
Wu, H.; Liang, Y.; Shen, L.; Shen, L. MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2. Biol. Open, 2016, 5(5), 563-570.
[http://dx.doi.org/10.1242/bio.015008] [PMID: 27095441]
[114]
Meng, X.; Fu, R. miR-206 regulates 5-FU resistance by targeting Bcl-2 in colon cancer cells. OncoTargets Ther., 2018, 11, 1757-1765.
[http://dx.doi.org/10.2147/OTT.S159093] [PMID: 29636622]
[115]
Pranzini, E.; Leo, A.; Rapizzi, E.; Ramazzotti, M.; Magherini, F.; Giovannelli, L.; Caselli, A.; Cirri, P.; Taddei, M.L.; Paoli, P. miR‐210‐3p mediates metabolic adaptation and sustains DNA damage repair of resistant colon cancer cells to treatment with 5‐fluorouracil. Mol. Carcinog., 2019, 58(12), 2181-2192.
[http://dx.doi.org/10.1002/mc.23107] [PMID: 31468617]
[116]
Yang, Y.; Bao, Y.; Yang, G.K.; Wan, J.; Du, L.J.; Ma, Z.H. MiR-214 sensitizes human colon cancer cells to 5-FU by targeting Hsp27. Cell. Mol. Biol. Lett., 2019, 24(1), 22.
[http://dx.doi.org/10.1186/s11658-019-0143-3] [PMID: 30915129]
[117]
Liu, N.; Li, J.; Zhao, Z.; Han, J.; Jiang, T.; Chen, Y.; Hou, N.; Huang, C. MicroRNA-302a enhances 5-fluorouracil-induced cell death in human colon cancer cells. Oncol. Rep., 2017, 37(1), 631-639.
[http://dx.doi.org/10.3892/or.2016.5237] [PMID: 27840990]
[118]
Yin, J.; Shen, X.; Li, M.; Ni, F.; Xu, L.; Lu, H. miR-329 regulates the sensitivity of 5-FU in chemotherapy of colorectal cancer by targeting E2F1. Oncol. Lett., 2018, 16(3), 3587-3592.
[http://dx.doi.org/10.3892/ol.2018.9121] [PMID: 30127965]
[119]
Xu, W.; Jiang, H.; Zhang, F.; Gao, J.; Hou, J. MicroRNA-330 inhibited cell proliferation and enhanced chemosensitivity to 5-fluorouracil in colorectal cancer by directly targeting thymidylate synthase. Oncol. Lett., 2017, 13(5), 3387-3394.
[http://dx.doi.org/10.3892/ol.2017.5895] [PMID: 28521444]
[120]
Zhang, L.; Li, B.; Zhang, B.; Zhang, H.; Suo, J. miR 361 enhances sensitivity to 5 fluorouracil by targeting the FOXM1 ABCC5/10 signaling pathway in colorectal cancer. Oncol. Lett., 2019, 18(4), 4064-4073.
[http://dx.doi.org/10.3892/ol.2019.10741] [PMID: 31579069]
[121]
Deng, X.; Li, D.; Ke, X.; Wang, Q.; Yan, S.; Xue, Y.; Wang, Q.; Zheng, H. Mir‐488 alleviates chemoresistance and glycolysis of colorectal cancer by targeting PFKFB3. J. Clin. Lab. Anal., 2021, 35(1), e23578.
[http://dx.doi.org/10.1002/jcla.23578] [PMID: 32990355]
[122]
To, K.K.W.; Leung, W.W.; Ng, S.S.M. Exploiting a novel miR-519c–HuR–ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer. Exp. Cell Res., 2015, 338(2), 222-231.
[http://dx.doi.org/10.1016/j.yexcr.2015.09.011] [PMID: 26386386]
[123]
Huang, R.; Lin, J.Y.; Chi, Y.J. MiR-519d reduces the 5-fluorouracil resistance in colorectal cancer cells by down-regulating the expression of CCND1. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(9), 2869-2875.
[PMID: 29771440]
[124]
Zhao, P.; Ma, Y.; Zhao, Y.; Liu, D.; Dai, Z.; Yan, C.; Guan, H. MicroRNA-552 deficiency mediates 5-fluorouracil resistance by targeting SMAD2 signaling in DNA-mismatch-repair-deficient colorectal cancer. Cancer Chemother. Pharmacol., 2019, 84(2), 427-439.
[http://dx.doi.org/10.1007/s00280-019-03866-7] [PMID: 31087138]
[125]
Jiang, H.; Ju, H.; Zhang, L.; Lu, H.; Jie, K. microRNA-577 suppresses tumor growth and enhances chemosensitivity in colorectal cancer. J. Biochem. Mol. Toxicol., 2017, 31(6), e21888.
[http://dx.doi.org/10.1002/jbt.21888] [PMID: 28150434]
[126]
Cristَóbal, I.; Rubio, J.; Santos, A.; Torrejóَn, B.; Caramés, C.; Imedio, L.; Mariblanca, S.; Luque, M.; Sanz-Alvarez, M.; Zazo, S.; Madoz-Gْúrpide, J.; Rojo, F.; García-Foncillas, J. MicroRNA-199b downregulation confers resistance to 5-fluorouracil treatment and predicts poor outcome and response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Cancers, 2020, 12(6), 1655.
[http://dx.doi.org/10.3390/cancers12061655] [PMID: 32580513]
[127]
Offer, S.M.; Butterfield, G.L.; Jerde, C.R.; Fossum, C.C.; Wegner, N.J.; Diasio, R.B. microRNAs miR-27a and miR-27b directly regulate liver dihydropyrimidine dehydrogenase expression through two conserved binding sites. Mol. Cancer Ther., 2014, 13(3), 742-751.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0878] [PMID: 24401318]
[128]
Wei, Z-J.; Tao, M-L.; Zhang, W.; Han, G-D.; Zhu, Z-C.; Miao, Z-G.; Li, J.Y.; Qiao, Z.B. Up-regulation of microRNA-302a inhibited the proliferation and invasion of colorectal cancer cells by regulation of the MAPK and PI3K/Akt signaling pathways. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4481-4491.
[PMID: 26191138]
[129]
Nie, J.; Liu, L.; Zheng, W.; Chen, L.; Wu, X.; Xu, Y.; Du, X.; Han, W. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis, 2012, 33(1), 220-225.
[http://dx.doi.org/10.1093/carcin/bgr245] [PMID: 22072615]
[130]
Wan, L.Y.; Deng, J.; Xiang, X.J.; Zhang, L.; Yu, F.; Chen, J.; Sun, Z.; Feng, M.; Xiong, J.P. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1. Biochem. Biophys. Res. Commun., 2015, 457(2), 125-132.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.039] [PMID: 25446103]
[131]
Kim, S.A.; Kim, I.; Yoon, S.K.; Lee, E.K.; Kuh, H.J. Indirect modulation of sensitivity to 5-fluorouracil by microRNA-96 in human colorectal cancer cells. Arch. Pharm. Res., 2015, 38(2), 239-248.
[http://dx.doi.org/10.1007/s12272-014-0528-9] [PMID: 25502560]
[132]
Zhang, Q.; Wang, J.; Li, N.; Liu, Z.; Chen, Z.; Li, Z.; Lai, Y.; Shen, L.; Gao, J. miR-34a increases the sensitivity of colorectal cancer cells to 5-fluorouracil in vitro and in vivo. Am. J. Cancer Res., 2018, 8(2), 280-290.
[PMID: 29511598]
[133]
Zhang, J.; Guo, H.; Zhang, H.; Wang, H.; Qian, G.; Fan, X.; Hoffman, A.R.; Hu, J.F.; Ge, S. Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene friend leukemia virus integration 1 gene. Cancer, 2011, 117(1), 86-95.
[http://dx.doi.org/10.1002/cncr.25522] [PMID: 20737575]
[134]
Guo, S.T.; Jiang, C.C.; Wang, G.P.; Li, Y.P.; Wang, C.Y.; Guo, X.Y.; Yang, R.H.; Feng, Y.; Wang, F.H.; Tseng, H-Y.; Thorne, R.F.; Jin, L.; Zhang, X.D. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene, 2013, 32(15), 1910-1920.
[http://dx.doi.org/10.1038/onc.2012.214] [PMID: 22710713]
[135]
Jin, Y.; Jiang, Z.; Guan, X.; Chen, Y.; Tang, Q.; Wang, G.; Wang, X. miR-450b-5p Suppresses Stemness and the Development of Chemoresistance by Targeting SOX2 in Colorectal Cancer. DNA Cell Biol., 2016, 35(5), 249-256.
[http://dx.doi.org/10.1089/dna.2015.3120] [PMID: 26845645]
[136]
Siemens, H.; Jackstadt, R.; Kaller, M.; Hermeking, H. Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness. Oncotarget, 2013, 4(9), 1399-1415.
[http://dx.doi.org/10.18632/oncotarget.1202] [PMID: 24009080]
[137]
Han, P.; Li, J.; Zhang, B.; Lv, J.; Li, Y.; Gu, X.; Yu, Z.; Jia, Y.; Bai, X.; Li, L.; Liu, Y.; Cui, B. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol. Cancer, 2017, 16(1), 9.
[http://dx.doi.org/10.1186/s12943-017-0583-1] [PMID: 28086904]
[138]
Gasiulė, S.; Dreize, N.; Kaupinis, A.; Ražanskas, R.; Čiupas, L.; Stankevičius, V.; Kapustina, Ž.; Laurinavičius, A.; Valius, M.; Vilkaitis, G. Molecular insights into miRNA-driven resistance to 5-fluorouracil and oxaliplatin chemotherapy: miR-23b modulates the epithelial–mesenchymal transition of colorectal cancer cells. J. Clin. Med., 2019, 8(12), 2115.
[http://dx.doi.org/10.3390/jcm8122115] [PMID: 31810268]
[139]
Xu, G.; Zhu, H.; Xu, J.; Wang, Y.; Zhang, Y.; Zhang, M.; Zhu, D. Long non‐coding RNA POU6F2‐AS2 promotes cell proliferation and drug resistance in colon cancer by regulating miR‐377/BRD4. J. Cell. Mol. Med., 2020, 24(7), 4136-4149.
[http://dx.doi.org/10.1111/jcmm.15070] [PMID: 32100443]
[140]
Park, G.B.; Jeong, J.Y.; Kim, D. Modified TLR‐mediated downregulation of miR‐125b‐5p enhances CD248 (endosialin)‐induced metastasis and drug resistance in colorectal cancer cells. Mol. Carcinog., 2020, 59(2), 154-167.
[http://dx.doi.org/10.1002/mc.23137] [PMID: 31746054]
[141]
Fang, Y; Yang, C; Zhang, L; Wei, L; Lin, J; Zhao, J Spica prunellae extract enhances fluorouracil sensitivity of 5-fluorouracilresistant human colon carcinoma HCT-8/5-FU cells via TOP2α and miR-494. BioMed Res. Int., 2019, 2019
[142]
Gu, C.; Cai, J.; Xu, Z.; Zhou, S.; Ye, L.; Yan, Q.; Zhang, Y.; Fang, Y.; Liu, Y.; Tu, C.; Wang, X.; He, J.; Li, Q.; Han, L.; Lin, X.; Li, A.; Liu, S. MiR-532-3p suppresses colorectal cancer progression by disrupting the ETS1/TGM2 axis-mediated Wnt/β-catenin signaling. Cell Death Dis., 2019, 10(10), 739.
[http://dx.doi.org/10.1038/s41419-019-1962-x] [PMID: 31570702]
[143]
Hu, Y.; French, S.W.; Chau, T.; Liu, H.X.; Sheng, L.; Wei, F.; Stondell, J.; Garcia, J.C.; Du, Y.; Bowlus, C.L.; Wan, Y.J.Y. RARβ acts as both an upstream regulator and downstream effector of miR‐22, which epigenetically regulates NUR77 to induce apoptosis of colon cancer cells. FASEB J., 2019, 33(2), 2314-2326.
[http://dx.doi.org/10.1096/fj.201801390R] [PMID: 30252536]
[144]
Gao, S.J.; Ren, S.N.; Liu, Y.T.; Yan, H.W.; Chen, X.B. Targeting EGFR sensitizes 5-Fu-resistant colon cancer cells through modification of the lncRNA-FGD5-AS1-miR-330-3p-Hexokinase 2 axis. Mol. Ther. Oncolytics, 2021, 23, 14-25.
[http://dx.doi.org/10.1016/j.omto.2021.06.012] [PMID: 34589581]
[145]
Wang, J.; Zhang, X.; Zhang, J.; Chen, S.; Zhu, J.; Wang, X. Long noncoding RNA CRART16 confers 5-FU resistance in colorectal cancer cells by sponging miR-193b-5p. Cancer Cell Int., 2021, 21(1), 638.
[http://dx.doi.org/10.1186/s12935-021-02353-5] [PMID: 34844630]
[146]
Azar, M.R.M.H.; Aghazadeh, H.; Mohammed, H.N.; Sara, M.R.S.; Hosseini, A.; Shomali, N.; Tamjidifar, R.; Tarzi, S.; Mansouri, M.; Sarand, S.P.; Marofi, F.; Akbari, M.; Xu, H.; Shotorbani, S.S. miR-193a-5p as a promising therapeutic candidate in colorectal cancer by reducing 5-FU and Oxaliplatin chemoresistance by targeting CXCR4. Int. Immunopharmacol., 2021, 92, 107355.
[http://dx.doi.org/10.1016/j.intimp.2020.107355] [PMID: 33429333]
[147]
Xu, L.; Beckebaum, S.; Iacob, S.; Wu, G.; Kaiser, G.M.; Radtke, A.; Liu, C.; Kabar, I.; Schmidt, H.H.; Zhang, X.; Lu, M.; Cicinnati, V.R. MicroRNA-101 inhibits human hepatocellular carcinoma progression through EZH2 downregulation and increased cytostatic drug sensiti-vity. J. Hepatol., 2014, 60(3), 590-598.
[http://dx.doi.org/10.1016/j.jhep.2013.10.028] [PMID: 24211739]
[148]
Yin, J.; Zheng, G.; Jia, X.; Zhang, Z.; Zhang, W.; Song, Y.; Xiong, Y.; He, Z.A. Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PLoS One, 2013, 8(9), e73268.
[http://dx.doi.org/10.1371/journal.pone.0073268] [PMID: 24039897]
[149]
Yang, X.; Yin, J.; Yu, J.; Xiang, Q.; Liu, Y.; Tang, S.; Liao, D.; Zhu, B.; Zu, X.; Tang, H.; Lei, X. miRNA-195 sensitizes human hepatoce-llular carcinoma cells to 5-FU by targeting BCL-w. Oncol. Rep., 2012, 27(1), 250-257.
[PMID: 21947305]
[150]
Sacconi, A.; Biagioni, F.; Canu, V.; Mori, F.; Di Benedetto, A.; Lorenzon, L. miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death Dis., 2012, 3(11), 423.
[151]
Chen, B.; Duan, L.; Yin, G.; Tan, J.; Jiang, X. miR-381, a novel intrinsic WEE1 inhibitor, sensitizes renal cancer cells to 5-FU by up-regulation of Cdc2 activities in 786-O. J. Chemother., 2013, 25(4), 229-238.
[http://dx.doi.org/10.1179/1973947813Y.0000000092] [PMID: 23816136]
[152]
Yang, Y.; Meng, W.J.; Wang, Z.Q. MicroRNAs (miRNAs): Novel potential therapeutic targets in colorectal cancer. Front. Oncol., 2022, 12, 1054846.
[http://dx.doi.org/10.3389/fonc.2022.1054846] [PMID: 36591525]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy