Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Transformer and Graph Transformer-Based Prediction of Drug-Target Interactions

Author(s): Meiling Qian*, Weizhong Lu*, Yu Zhang, Junkai Liu, Hongjie Wu, Yaoyao Lu, Haiou Li, Qiming Fu, Jiyun Shen and Yongbiao Xiao

Volume 19, Issue 5, 2024

Published on: 06 September, 2023

Page: [470 - 481] Pages: 12

DOI: 10.2174/1574893618666230825121841

Price: $65

Abstract

Background: As we all know, finding new pharmaceuticals requires a lot of time and money, which has compelled people to think about adopting more effective approaches to locate drugs. Researchers have made significant progress recently when it comes to using Deep Learning (DL) to create DTI.

Methods: Therefore, we propose a deep learning model that applies Transformer to DTI prediction. The model uses a Transformer and Graph Transformer to extract the feature information of protein and compound molecules, respectively, and combines their respective representations to predict interactions.

Results: We used Human and C.elegans, the two benchmark datasets, evaluated the proposed method in different experimental settings and compared it with the latest DL model.

Conclusion: The results show that the proposed model based on DL is an effective method for the classification and recognition of DTI prediction, and its performance on the two data sets is significantly better than other DL based methods.

[1]
Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Prog Med Chem 2021; 60: 273-343.
[http://dx.doi.org/10.1016/bs.pmch.2021.01.004] [PMID: 34147204]
[2]
Liu C, Zhao J, Yang ZZ, Zhao DX. Dividing the periodic box into subdivisions with their surroundings to accelerate molecular dynamics simulation with high accuracy. J Chem Theory Comput 2020; 16(12): 7618-31.
[http://dx.doi.org/10.1021/acs.jctc.0c00808] [PMID: 33231445]
[3]
Bredel M, Jacoby E. Chemogenomics: An emerging strategy for rapid target and drug discovery. Nat Rev Genet 2004; 5(4): 262-75.
[http://dx.doi.org/10.1038/nrg1317] [PMID: 15131650]
[4]
Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug-target interaction predictions. Brief Bioinform 2015; 16(2): 325-37.
[http://dx.doi.org/10.1093/bib/bbu010] [PMID: 24723570]
[5]
Olayan RS, Ashoor H, Bajic VB. DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches. Bioinformatics 2018; 34(7): 1164-73.
[http://dx.doi.org/10.1093/bioinformatics/btx731] [PMID: 29186331]
[6]
Shen C, Ding Y, Tang J, Xu X, Guo F. An ameliorated prediction of drug–target interactions based on multi-scale discrete wavelet transform and network features. Int J Mol Sci 2017; 18(8): 1781.
[http://dx.doi.org/10.3390/ijms18081781] [PMID: 28813000]
[7]
Lavecchia A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov Today 2015; 20(3): 318-31.
[http://dx.doi.org/10.1016/j.drudis.2014.10.012] [PMID: 25448759]
[8]
Zhang J, Zhu M, Chen P, Wang B. DrugRPE: Random projection ensemble approach to drug-target interaction prediction. Neurocomputing 2017; 228: 256-62.
[http://dx.doi.org/10.1016/j.neucom.2016.10.039]
[9]
Zeng X, Zhu S, Hou Y, et al. Network-based prediction of drug–target interactions using an arbitrary-order proximity embedded deep forest. Bioinformatics 2020; 36(9): 2805-12.
[http://dx.doi.org/10.1093/bioinformatics/btaa010] [PMID: 31971579]
[10]
Li L, Koh CC, Reker D, et al. Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees. Sci Rep 2019; 9(1): 7703.
[http://dx.doi.org/10.1038/s41598-019-43125-6] [PMID: 31118426]
[11]
Cichonska A, Pahikkala T, Szedmak S, et al. Learning with multiple pairwise kernels for drug bioactivity prediction. Bioinformatics 2018; 34(13): i509-18.
[http://dx.doi.org/10.1093/bioinformatics/bty277] [PMID: 29949975]
[12]
Cichonska A, Ravikumar B, Parri E, et al. Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors. PLOS Comput Biol 2017; 13(8): e1005678.
[http://dx.doi.org/10.1371/journal.pcbi.1005678] [PMID: 28787438]
[13]
Shi H, Liu S, Chen J, Li X, Ma Q, Yu B. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure. Genomics 2019; 111(6): 1839-52.
[http://dx.doi.org/10.1016/j.ygeno.2018.12.007] [PMID: 30550813]
[14]
Tabei Y, Pauwels E, Stoven V, Takemoto K, Yamanishi Y. Identification of chemogenomic features from drug–target interaction networks using interpretable classifiers. Bioinformatics 2012; 28(18): i487-94.
[http://dx.doi.org/10.1093/bioinformatics/bts412] [PMID: 22962471]
[15]
Lee I, Keum J, Nam H. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS Comput Biol 2019; 15(6): e1007129.
[http://dx.doi.org/10.1371/journal.pcbi.1007129] [PMID: 31199797]
[16]
Wang YB, You ZH, Yang S, Yi HC, Chen ZH, Zheng K. A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network. BMC Med Inform Decis Mak 2020; 20(S2)(2): 49.
[http://dx.doi.org/10.1186/s12911-020-1052-0] [PMID: 32183788]
[17]
Torng W, Altman RB. Graph convolutional neural networks for predicting drug-target interactions. J Chem Inf Model 2019; 59(10): 4131-49.
[http://dx.doi.org/10.1021/acs.jcim.9b00628] [PMID: 31580672]
[18]
Tsubaki M, Tomii K, Sese J. Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 2019; 35(2): 309-18.
[http://dx.doi.org/10.1093/bioinformatics/bty535] [PMID: 29982330]
[19]
Li Y, Qiao G, Wang K, Wang G. Drug–target interaction predication via multi-channel graph neural networks. Brief Bioinform 2022; 23(1): bbab346.
[http://dx.doi.org/10.1093/bib/bbab346] [PMID: 34661237]
[20]
Chen L, Tan X, Wang D, et al. TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics 2020; 36(16): 4406-14.
[http://dx.doi.org/10.1093/bioinformatics/btaa524] [PMID: 32428219]
[21]
Liu S, Wang Y, Deng Y, et al. Improved drug–target interaction prediction with intermolecular graph transformer. Brief Bioinform 2022; 23(5): bbac162.
[http://dx.doi.org/10.1093/bib/bbac162] [PMID: 35514186]
[22]
Popov P, Buslaev P, Kozlovskii I. Rationalizing viral drug target identification using computational approaches: The SARS-CoV-2 spike glycoprotein s case study. ChemRxiv preprint, version 1 2020.
[23]
Mikolov T, Chen K, Corrado G. Efficient estimation of word representations in vector space arXiv:13013781 2013.
[24]
Pang S, Zhang Y, Song T, Zhang X, Wang X, Rodriguez-Patón A. AMDE: A novel attention-mechanism-based multidimensional feature encoder for drug–drug interaction prediction. Brief Bioinform 2022; 23(1): bbab545.
[http://dx.doi.org/10.1093/bib/bbab545] [PMID: 34965586]
[25]
Ju W, Fang Z, Gu Y. A Comprehensive survey on deep graph representation learning arXiv: 230405055 2023.
[26]
Ju W, Liu Z, Qin Y, et al. Few-shot molecular property prediction via hierarchically structured learning on relation graphs. Neural Netw 2023; 163: 122-31.
[http://dx.doi.org/10.1016/j.neunet.2023.03.034] [PMID: 37037059]
[27]
Ju W, Luo X, Ma Z, Yang J, Deng M, Zhang M. GHNN: Graph harmonic neural networks for semi-supervised graph-level classification. Neural Netw 2022; 151: 70-9.
[http://dx.doi.org/10.1016/j.neunet.2022.03.018] [PMID: 35398673]
[28]
Ju W, Luo X, Qu M. TGNN: A joint semi-supervised framework for graph-level classification arXiv:230411688 2023.
[29]
Ju W, Gu Y, Chen B, et al. Glcc: A general framework for graph-level clustering. Proc Conf AAAI Artif Intell 2023; 37(4): 4391-9.
[http://dx.doi.org/10.1609/aaai.v37i4.25559]
[30]
Wang MY. Towards efficient and scalable deep learning on graphs. ICLR workshop on representation learning on graphs and manifolds; New Orleans, Louisiana, United States 2019.
[31]
Jiang D, Hsieh CY, Wu Z, et al. Interactiongraphnet: A novel and efficient deep graph representation learning framework for accurate protein–ligand interaction predictions. J Med Chem 2021; 64(24): 18209-32.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01830] [PMID: 34878785]
[32]
Wu Z, Jiang D, Wang J, Hsieh CY, Cao D, Hou T. Mining toxicity information from large amounts of toxicity data. J Med Chem 2021; 64(10): 6924-36.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00421] [PMID: 33961429]
[33]
Vaswani A, Shazeer N, Parmar N. Attention is all you need. Adv Neural Inf Process Syst 2017; 30.
[34]
Gehring J, Auli M, Grangier D. Convolutional sequence to sequence learning. Proc Mach Learn Res 2017; 70: 1243-52.
[35]
Dwivedi VP, Bresson X. A generalization of transformer networks to graphs. arXiv:201209699 2020.
[36]
Cai R, Chen X, Fang Y, Wu M, Hao Y. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers. Bioinformatics 2020; 36(16): 4458-65.
[http://dx.doi.org/10.1093/bioinformatics/btaa211] [PMID: 32221609]
[37]
Liu L, Jiang H, He P. On the variance of the adaptive learning rate and beyond arXiv:190803265 2019.
[38]
Liu H, Sun J, Guan J, Zheng J, Zhou S. Improving compound–protein interaction prediction by building up highly credible negative samples. Bioinformatics 2015; 31(12): i221-9.
[http://dx.doi.org/10.1093/bioinformatics/btv256] [PMID: 26072486]
[39]
Le NQK, Do DT, Nguyen TTD, Le QA. A sequence-based prediction of Kruppel-like factors proteins using XGBoost and optimized features. Gene 2021; 787: 145643.
[http://dx.doi.org/10.1016/j.gene.2021.145643] [PMID: 33848577]
[40]
Kha QH, Ho QT, Le NQK. Identifying SNARE proteins using an alignment-free method based on multiscan convolutional neural network and PSSM profiles. J Chem Inf Model 2022; 62(19): 4820-6.
[http://dx.doi.org/10.1021/acs.jcim.2c01034] [PMID: 36166351]
[41]
Li P, Li Y, Hsieh CY, et al. TrimNet: Learning molecular representation from triplet messages for biomedicine. Brief Bioinform 2021; 22(4): bbaa266.
[http://dx.doi.org/10.1093/bib/bbaa266] [PMID: 33147620]
[42]
Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S. GraphDTA: Predicting drug–target binding affinity with graph neural networks. Bioinformatics 2021; 37(8): 1140-7.
[http://dx.doi.org/10.1093/bioinformatics/btaa921] [PMID: 33119053]
[43]
Zheng S, Li Y, Chen S, Xu J, Yang Y. Predicting drug–protein interaction using quasi-visual question answering system. Nat Mach Intell 2020; 2(2): 134-40.
[http://dx.doi.org/10.1038/s42256-020-0152-y]
[44]
Zhao T, Hu Y, Valsdottir LR, et al. Identifying debug target interactions based on graph convolutional network and deep neural network. Briefings in bioinformatics 2021; 22(2) 2141-2150.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy