Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Impact of Ferroptosis Inducers on Chronic Radiation-exposed Survivor Glioblastoma Cells

Author(s): İlknur Sur Erdem*

Volume 23, Issue 19, 2023

Published on: 26 October, 2023

Page: [2154 - 2160] Pages: 7

DOI: 10.2174/1871520623666230825110346

Price: $65

Abstract

Introduction: The median survival of patients diagnosed with glioblastoma is very poor, despite efforts to improve the therapeutic effects of surgery, followed by treatment with temozolomide (TMZ) and ionizing radiation (IR). The utilization of TMZ or IR survivor cell models has enhanced the understanding of glioblastoma biology and the development of novel therapeutic strategies. In this present study, naïve U373 and clinically relevant U373 IRsurvivor (Surv) cells were used, as the IR-Surv cell model mimics the chronic long-term exposure to standardized radiotherapy for patients with glioblastoma in the clinic. As the role of ferroptosis in the IR survivor cell model has not previously been reported, we aimed to clarify its involvement in the clinically relevant IR-Surv glioblastoma model.

Methods: Transcriptomic alterations of ferroptosis-related genes were studied on naïve U373 and IR-Surv cell populations. To determine the effects of glutathione peroxidase inhibitors, ferroptosis-inducing agent 56 (FIN56) and Ras synthetic lethal 3 (RSL3), on the cells, several properties were assessed, including colony formation, cell viability and lipid peroxidation.

Results: Results from the transcriptomic analysis identified ferroptosis as a critical mechanism after radiation exposure in glioblastoma. Our findings also identified the role of ferroptosis inducers (FINs) in IR-survivor cells and suggested using FINs to treat glioblastoma.

Conclusion: FINs serve an important role in radioresistant cells; thus, the results of the present study may contribute to improving survival in patients with glioblastoma.

Graphical Abstract

[1]
Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[2]
Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro-oncol., 2022, 24(Suppl. 5), v1-v95.
[http://dx.doi.org/10.1093/neuonc/noac202] [PMID: 36196752]
[3]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[4]
Gu, J.; Mu, N.; Jia, B.; Guo, Q.; Pan, L.; Zhu, M.; Zhang, W.; Zhang, K.; Li, W.; Li, M.; Wei, L.; Xue, X.; Zhang, Y.; Zhang, W. Targeting radiation-tolerant persister cells as a strategy for inhibiting radioresistance and recurrence in glioblastoma. Neuro-oncol., 2022, 24(7), 1056-1070.
[http://dx.doi.org/10.1093/neuonc/noab288] [PMID: 34905060]
[5]
Xu, Y.Y.; Gao, P.; Sun, Y.; Duan, Y.R. Development of targeted therapies in treatment of glioblastoma. Cancer Biol. Med., 2015, 12(3), 223-237.
[PMID: 26487967]
[6]
Sulman, E.P.; Ismaila, N.; Armstrong, T.S.; Tsien, C.; Batchelor, T.T.; Cloughesy, T.; Galanis, E.; Gilbert, M.; Gondi, V.; Lovely, M.; Mehta, M.; Mumber, M.P.; Sloan, A.; Chang, S.M. Radiation therapy for glioblastoma: American society of clinical oncology clinical practice guideline endorsement of the american society for radiation oncology guideline. J. Clin. Oncol., 2017, 35(3), 361-369.
[http://dx.doi.org/10.1200/JCO.2016.70.7562] [PMID: 27893327]
[7]
Prasanna, P.G.S.; Stone, H.B.; Wong, R.S.; Capala, J.; Bernhard, E.J.; Vikram, B.; Coleman, C.N. Normal tissue protection for improving radiotherapy: Where are the Gaps? Transl. Cancer Res., 2012, 1(1), 35-48.
[PMID: 22866245]
[8]
Lauber, K.; Ernst, A.; Orth, M.; Herrmann, M.; Belka, C. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front. Oncol., 2012, 2, 116.
[http://dx.doi.org/10.3389/fonc.2012.00116] [PMID: 22973558]
[9]
Hellevik, T.; Martinez-Zubiaurre, I. Radiotherapy and the tumor stroma: The importance of dose and fractionation. Front. Oncol., 2014, 4, 1-12.
[http://dx.doi.org/10.3389/fonc.2014.00001] [PMID: 24478982]
[10]
Adjemian, S.; Oltean, T.; Martens, S.; Wiernicki, B.; Goossens, V.; Vanden Berghe, T.; Cappe, B.; Ladik, M.; Riquet, F.B.; Heyndrickx, L.; Bridelance, J.; Vuylsteke, M.; Vandecasteele, K.; Vandenabeele, P. Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death Dis., 2020, 11(11), 1003.
[http://dx.doi.org/10.1038/s41419-020-03209-y] [PMID: 33230108]
[11]
Shadyro, O.I.; Yurkova, I.L.; Kisel, M.A. Radiation-induced peroxidation and fragmentation of lipids in a model membrane. Int. J. Radiat. Biol., 2002, 78(3), 211-217.
[http://dx.doi.org/10.1080/09553000110104065] [PMID: 11869476]
[12]
Lang, X.; Green, M.D.; Wang, W.; Yu, J.; Choi, J.E.; Jiang, L.; Liao, P.; Zhou, J.; Zhang, Q.; Dow, A.; Saripalli, A.L.; Kryczek, I.; Wei, S.; Szeliga, W.; Vatan, L.; Stone, E.M.; Georgiou, G.; Cieslik, M.; Wahl, D.R.; Morgan, M.A.; Chinnaiyan, A.M.; Lawrence, T.S.; Zou, W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov., 2019, 9(12), 1673-1685.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0338] [PMID: 31554642]
[13]
Ye, L.F.; Chaudhary, K.R.; Zandkarimi, F.; Harken, A.D.; Kinslow, C.J.; Upadhyayula, P.S.; Dovas, A.; Higgins, D.M.; Tan, H.; Zhang, Y.; Buonanno, M.; Wang, T.J.C.; Hei, T.K.; Bruce, J.N.; Canoll, P.D.; Cheng, S.K.; Stockwell, B.R. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol., 2020, 15(2), 469-484.
[http://dx.doi.org/10.1021/acschembio.9b00939] [PMID: 31899616]
[14]
Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162.
[http://dx.doi.org/10.1038/s41422-019-0263-3] [PMID: 31949285]
[15]
Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3(3), 285-296.
[http://dx.doi.org/10.1016/S1535-6108(03)00050-3] [PMID: 12676586]
[16]
Yagoda, N.; von Rechenberg, M.; Zaganjor, E.; Bauer, A.J.; Yang, W.S.; Fridman, D.J.; Wolpaw, A.J.; Smukste, I.; Peltier, J.M.; Boniface, J.J.; Smith, R.; Lessnick, S.L.; Sahasrabudhe, S.; Stockwell, B.R. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 2007, 447(7146), 865-869.
[http://dx.doi.org/10.1038/nature05859] [PMID: 17568748]
[17]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[18]
Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA, 2016, 113(34), E4966-E4975.
[http://dx.doi.org/10.1073/pnas.1603244113] [PMID: 27506793]
[19]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[20]
Shen, Z.; Song, J.; Yung, B.C.; Zhou, Z.; Wu, A.; Chen, X. Emerging strategies of cancer therapy based on ferroptosis. Adv. Mater., 2018, 30(12), 1704007.
[http://dx.doi.org/10.1002/adma.201704007] [PMID: 29356212]
[21]
Gan, B. DUBbing ferroptosis in cancer cells. Cancer Res., 2019, 79(8), 1749-1750.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0487] [PMID: 30987975]
[22]
Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater., 2019, 31(51), 1904197.
[http://dx.doi.org/10.1002/adma.201904197] [PMID: 31595562]
[23]
Stockwell, B.R.; Jiang, X. A physiological function for ferroptosis in tumor suppression by the immune system. Cell Metab., 2019, 30(1), 14-15.
[http://dx.doi.org/10.1016/j.cmet.2019.06.012] [PMID: 31269423]
[24]
Junttila, M.R.; Evan, G.I. p53 — a Jack of all trades but master of none. Nat. Rev. Cancer, 2009, 9(11), 821-829.
[http://dx.doi.org/10.1038/nrc2728] [PMID: 19776747]
[25]
Liu, H.; Schreiber, S.L.; Stockwell, B.R. Targeting dependency on the GPX4 lipid peroxide repair pathway for cancer therapy. Biochem., 2018, 57(14), 2059-2060.
[http://dx.doi.org/10.1021/acs.biochem.8b00307] [PMID: 29584411]
[26]
Chen, L.; Li, X.; Liu, L.; Yu, B.; Xue, Y.; Liu, Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol. Rep., 2015, 33(3), 1465-1474.
[http://dx.doi.org/10.3892/or.2015.3712] [PMID: 25585997]
[27]
Sleire, L.; Skeie, B.S.; Netland, I.A.; Førde, H.E.; Dodoo, E.; Selheim, F.; Leiss, L.; Heggdal, J.I.; Pedersen, P-H.; Wang, J.; Enger, P.Ø. Drug repurposing: Sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc−, leading to glutathione depletion. Oncogene, 2015, 34(49), 5951-5959.
[http://dx.doi.org/10.1038/onc.2015.60] [PMID: 25798841]
[28]
Mitre, A.O.; Florian, A.I.; Buruiana, A.; Boer, A.; Moldovan, I.; Soritau, O.; Florian, S.I.; Susman, S. Ferroptosis involvement in glioblastoma treatment. Med., 2022, 58(2), 319.
[http://dx.doi.org/10.3390/medicina58020319] [PMID: 35208642]
[29]
Elgendy, S.M.; Alyammahi, S.K.; Alhamad, D.W.; Abdin, S.M.; Omar, H.A. Ferroptosis: An emerging approach for targeting cancer stem cells and drug resistance. Crit. Rev. Oncol. Hematol., 2020, 155, 103095.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103095] [PMID: 32927333]
[30]
Pinarbasi-Degirmenci, N.; Sur-Erdem, I.; Akcay, V.; Bolukbasi, Y.; Selek, U.; Solaroglu, I.; Bagci-Onder, T. Chronically radiation-exposed survivor glioblastoma cells display poor response to chk1 inhibition under hypoxia. Int. J. Mol. Sci., 2022, 23(13), 7051.
[http://dx.doi.org/10.3390/ijms23137051] [PMID: 35806055]
[31]
Sur Erdem, İ. Investigation of the effect of TRAIL-linked gold nanoparticles on TRAIL resistance in glioblastoma. Appl. Sci. J., 2022, 38(2), 416-425.
[32]
Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol., 2016, 26(3), 165-176.
[http://dx.doi.org/10.1016/j.tcb.2015.10.014] [PMID: 26653790]
[33]
Gomez-Roman, N.; Stevenson, K.; Gilmour, L.; Hamilton, G.; Chalmers, A.J. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro-oncol., 2017, 19(2), 229-241.
[PMID: 27576873]
[34]
Liu, H.; Hu, H.; Li, G.; Zhang, Y.; Wu, F.; Liu, X.; Wang, K.; Zhang, C.; Jiang, T. Ferroptosis-related gene signature predicts glioma cell death and glioma patient progression. Front. Cell Dev. Biol., 2020, 8, 538.
[http://dx.doi.org/10.3389/fcell.2020.00538] [PMID: 32733879]
[35]
Zhuo, S.; Chen, Z.; Yang, Y.; Zhang, J.; Tang, J.; Yang, K. Clinical and biological significances of a ferroptosis-related gene signature in glioma. Front. Oncol., 2020, 10, 590861.
[http://dx.doi.org/10.3389/fonc.2020.590861] [PMID: 33330074]
[36]
Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307.
[http://dx.doi.org/10.1038/cddis.2016.208] [PMID: 27441659]
[37]
Feng, L.; Zhao, K.; Sun, L.; Yin, X.; Zhang, J.; Liu, C.; Li, B. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J. Transl. Med., 2021, 19(1), 367.
[http://dx.doi.org/10.1186/s12967-021-03042-7] [PMID: 34446045]
[38]
Zhuo, S.; He, G.; Chen, T.; Li, X.; Liang, Y.; Wu, W.; Weng, L.; Feng, J.; Gao, Z.; Yang, K. Emerging role of ferroptosis in glioblastoma: Therapeutic opportunities and challenges. Front. Mol. Biosci., 2022, 9, 974156.
[http://dx.doi.org/10.3389/fmolb.2022.974156] [PMID: 36060242]
[39]
Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol., 2019, 12(1), 34.
[http://dx.doi.org/10.1186/s13045-019-0720-y] [PMID: 30925886]
[40]
Ferrada, L.; Barahona, M.J.; Salazar, K.; Godoy, A.S.; Vera, M.; Nualart, F. Pharmacological targets for the induction of ferroptosis: Focus on neuroblastoma and glioblastoma. Front. Oncol., 2022, 12, 858480.
[http://dx.doi.org/10.3389/fonc.2022.858480] [PMID: 35898880]
[41]
de Souza, I.; Monteiro, L.K.S.; Guedes, C.B.; Silva, M.M.; Andrade-Tomaz, M.; Contieri, B.; Latancia, M.T.; Mendes, D.; Porchia, B.F.M.M.; Lazarini, M.; Gomes, L.R.; Rocha, C.R.R. High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation. Cell Death Dis., 2022, 13(7), 591.
[http://dx.doi.org/10.1038/s41419-022-05044-9] [PMID: 35803910]
[42]
Li, S.; He, Y.; Chen, K.; Sun, J.; Zhang, L.; He, Y.; Yu, H.; Li, Q. RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma. Oxid. Med. Cell. Longev., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/2915019]
[43]
Wang, X.; Lu, S.; He, C.; Wang, C.; Wang, L.; Piao, M.; Chi, G.; Luo, Y.; Ge, P. RSL3 induced autophagic death in glioma cells via causing glycolysis dysfunction. Biochem. Biophys. Res. Commun., 2019, 518(3), 590-597.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.096] [PMID: 31445705]
[44]
Zhang, X.; Guo, Y.; Li, H.; Han, L. FIN56, a novel ferroptosis inducer, triggers lysosomal membrane permeabilization in a TFEB-dependent manner in glioblastoma. J. Cancer, 2021, 12(22), 6610-6619.
[http://dx.doi.org/10.7150/jca.58500] [PMID: 34659551]
[45]
Lei, G.; Mao, C.; Yan, Y.; Zhuang, L.; Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell, 2021, 12(11), 836-857.
[http://dx.doi.org/10.1007/s13238-021-00841-y] [PMID: 33891303]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy