Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Nanocarrier-based Systems for Co-delivery of Drugs in the Management of Skin Cancer: A Review

Author(s): Rabia Aqeel, Abdul Hafeez* and Shazia Afzal Usmani

Volume 13, Issue 3, 2023

Published on: 01 September, 2023

Page: [188 - 198] Pages: 11

DOI: 10.2174/2468187313666230825105753

Price: $65

Abstract

Background: Cancer of the skin is one of the most frequent kinds of cancer around the globe and has substantial consequences for both public health and the economy. Co-delivery of drugs using nanotechnology are attractive for the reason that they make it possible for the effective targeting of medications with minimal side effects. The aim of the review is to provide an overview on the management of skin cancer with co-delivery via nanocarriers.

Methods: Using a number of different search engines, search of the published literature was conducted using specific key terms such as co-delivery, skin cancer, nanoparticles, liposomes, and ethosomes. The articles were screened on the basis of target purpose and author’s expertise.

Results:Nanocarriers based co-delivery systems have been found to improve the pharmacokinetic profile of medications, which resulted in enhanced therapeutic effectiveness with reduction in dose and side effects. Lipid based systems and polymeric nanoparticles have been utilized to incorporate different drugs with different physicochemical characteristics for the management of skin cancer.

Conclusion: The management of skin cancer may be significantly manageable with co-drug delivery approach by integration of nanotechnology. Polymeric nanoparticles, liposomes, ethosomes, nanostructured lipid carriers and polymeric micelles have shown the potential for skin cancer treatment.

Graphical Abstract

[1]
Urban K, Mehrmal S, Uppal P, Giesey RL, Delost GR. The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990–2017. JAAD International 2021; 2: 98-108.
[http://dx.doi.org/10.1016/j.jdin.2020.10.013] [PMID: 34409358]
[2]
Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 2012; 166(5): 1069-80.
[http://dx.doi.org/10.1111/j.1365-2133.2012.10830.x] [PMID: 22251204]
[3]
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639): 115-8.
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[4]
Khan NH, Mir M, Qian L, et al. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36: 223-47.
[http://dx.doi.org/10.1016/j.jare.2021.06.014] [PMID: 35127174]
[5]
Barton V, Armeson K, Hampras S, et al. Nonmelanoma skin cancer and risk of all-cause and cancer-related mortality: A systematic review. Arch Dermatol Res 2017; 309(4): 243-51.
[http://dx.doi.org/10.1007/s00403-017-1724-5] [PMID: 28285366]
[6]
Al-Qarqaz F, Marji M, Bodoor K, et al. Clinical and demographic features of basal cell carcinoma in North Jordan. J Skin Cancer 2018; 2018: 1-5.
[http://dx.doi.org/10.1155/2018/2624054] [PMID: 30498602]
[7]
Simões MCF, Sousa JJS, Pais AACC. Skin cancer and new treatment perspectives: A review. Cancer Lett 2015; 357(1): 8-42.
[http://dx.doi.org/10.1016/j.canlet.2014.11.001] [PMID: 25444899]
[8]
Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther 2017; 7(S1): 5-19.
[http://dx.doi.org/10.1007/s13555-016-0165-y] [PMID: 28150105]
[9]
Gorzelanny C, Mess C, Schneider SW, Huck V, Brandner JM. Skin barriers in dermal drug delivery: Which barriers have to be overcome and how can we measure them? Pharmaceutics 2020; 12(7): 684.
[http://dx.doi.org/10.3390/pharmaceutics12070684] [PMID: 32698388]
[10]
Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol 2015; 151(10): 1081-6.
[http://dx.doi.org/10.1001/jamadermatol.2015.1187] [PMID: 25928283]
[11]
Muzic JG, Schmitt AR, Wright AC, et al. Incidence and trends of basal cell carcinoma and cutaneous squamous cell carcinoma: a population-based study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin Proc 2017; 92(6): 890-8.
[http://dx.doi.org/10.1016/j.mayocp.2017.02.015] [PMID: 28522111]
[12]
Kosmadaki MG, Gilchrest BA. The demographics of aging in the United States: implications for dermatology. Arch Dermatol 2002; 138(11): 1427-a-8.
[http://dx.doi.org/10.1001/archderm.138.11.1427-a] [PMID: 12437445]
[13]
Palmer B, DeLouise L. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 2016; 21(12): 1719.
[http://dx.doi.org/10.3390/molecules21121719] [PMID: 27983701]
[14]
Micali G, Lacarrubba F, Nasca MR, Ferraro S, Schwartz RA. Topical pharmacotherapy for skin cancer. J Am Acad Dermatol 2014; 70(6): 979.e1-979.e12.
[http://dx.doi.org/10.1016/j.jaad.2013.12.037] [PMID: 24831325]
[15]
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, et al. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153: 109-36.
[http://dx.doi.org/10.1016/j.addr.2020.02.005] [PMID: 32113956]
[16]
Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf B Biointerfaces 2015; 126: 631-48.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.041] [PMID: 25591851]
[17]
Feitosa RC, Geraldes DC, Beraldo-de-Araújo VL, Costa JSR, Oliveira-Nascimento L. Pharmacokinetic aspects of nanoparticle-in-matrix drug delivery systems for oral/buccal delivery. Front Pharmacol 2019; 10: 1057.
[http://dx.doi.org/10.3389/fphar.2019.01057] [PMID: 31607914]
[18]
Krishnan V, Mitragotri S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv Drug Deliv Rev 2020; 153: 87-108.
[http://dx.doi.org/10.1016/j.addr.2020.05.011] [PMID: 32497707]
[19]
Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 2013; 73(8): 2412-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4561] [PMID: 23423979]
[20]
Maeda H, Greish K, Fang J. The EPR effect and polymeric drugs: A paradigm shift for cancer chemotherapy in the 21st century. Adv Polym Sci 2005; 193: 103-21.
[http://dx.doi.org/10.1007/12_026]
[21]
Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA. Co-delivery nanosystems for cancer treatment: A review. Pharm Nanotechnol 2019; 7(2): 90-112.
[http://dx.doi.org/10.2174/2211738507666190321112237] [PMID: 30907329]
[22]
Guo S, Lin CM, Xu Z, Miao L, Wang Y, Huang L. Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS Nano 2014; 8(5): 4996-5009.
[http://dx.doi.org/10.1021/nn5010815] [PMID: 24720540]
[23]
Yi X, Lian X, Dong J, et al. Co-delivery of pirarubicin and paclitaxel by human serum albumin nanoparticles to enhance antitumor effect and reduce systemic toxicity in breast cancers. Mol Pharm 2015; 12(11): 4085-98.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00536] [PMID: 26422373]
[24]
Yin M, Tan S, Bao Y, Zhang Z. Enhanced tumor therapy via drug co-delivery and in situ vascular-promoting strategy. J Control Release 2017; 258: 108-20.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.016] [PMID: 28522191]
[25]
Teo PY, Cheng W, Hedrick JL, Yang YY. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev 2016; 98: 41-63.
[http://dx.doi.org/10.1016/j.addr.2015.10.014] [PMID: 26529199]
[26]
van Straten D, Mashayekhi V, de Bruijn H, Oliveira S, Robinson D. Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers 2017; 9(12): 19.
[http://dx.doi.org/10.3390/cancers9020019] [PMID: 28218708]
[27]
Soleymani T, Abrouk M, Kelly KM. An analysis of laser therapy for the treatment of nonmelanoma skin cancer. Dermatol Surg 2017; 43(5): 615-24.
[http://dx.doi.org/10.1097/DSS.0000000000001048] [PMID: 28195845]
[28]
Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[29]
Jin C, Wang K, Oppong-Gyebi A, Hu J. Application of nanotechnology in cancer diagnosis and therapy-a mini-review. Int J Med Sci 2020; 17(18): 2964-73.
[http://dx.doi.org/10.7150/ijms.49801] [PMID: 33173417]
[30]
Sun Y, Kang C, Zhang A, et al. Co-delivery of dual-drugs with nanoparticle to overcome multidrug resistance. Eur J Med Res 2016; 2(2): 12-8.
[http://dx.doi.org/10.18088/ejbmr.2.2.2016.pp12-18]
[31]
Jain R, Sarode I, Singhvi G, Dubey SK. Nanocarrier based topical drug delivery-A promising strategy for treatment of skin cancer. Curr Pharm Des 2020; 26(36): 4615-23.
[http://dx.doi.org/10.2174/1381612826666200826140448] [PMID: 32851954]
[32]
Akhter MH, Rizwanullah M, Ahmad J, Ahsan MJ, Mujtaba MA, Amin S. Nanocarriers in advanced drug targeting: setting novel paradigm in cancer therapeutics. Artif Cells Nanomed Biotechnol 2018; 46(5): 873-84.
[http://dx.doi.org/10.1080/21691401.2017.1366333] [PMID: 28830262]
[33]
Marchetti JM, de Souza MC, Marotta-Oliveira SS. Nanocarriers and cancer therapy: Approaches to topical and transdermal delivery. In: Nanocosmetics and Nanomedicines. Berlin: HeidelbergSpringer 2011; pp. 269-86.
[34]
Filipczak N, Jaromin A, Piwoni A, et al. A triple co-delivery liposomal carrier that enhances apoptosis via an intrinsic pathway in melanoma cells. Cancers 2019; 11(12): 1982.
[http://dx.doi.org/10.3390/cancers11121982] [PMID: 31835393]
[35]
Mei KC, Liao YP, Jiang J, et al. Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors. ACS Nano 2020; 14(10): 13343-66.
[http://dx.doi.org/10.1021/acsnano.0c05194] [PMID: 32940463]
[36]
Xiao W, Zhang W, Huang H, et al. Cancer targeted gene therapy for inhibition of melanoma lung metastasis with eiF3i shRNA loaded liposomes. Mol Pharm 2020; 17(1): 229-38.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00943] [PMID: 31765158]
[37]
Chamorro Rengifo AF, Stefanes N, Toigo J, et al. A new and efficient carboxymethyl-hexanoyl chitosan/dodecyl sulfate nanocarrier for a pyrazoline with antileukemic activity. Mater Sci Eng C 2019; 105: 110051.
[http://dx.doi.org/10.1016/j.msec.2019.110051] [PMID: 31546341]
[38]
Gote V, Sharma AD, Pal D. Hyaluronic acid-targeted stimuli-sensitive nanomicelles co-encapsulating paclitaxel and ritonavir to overcome multi-drug resistance in metastatic breast cancer and triple-negative breast cancer cells. Int J Mol Sci 2021; 22(3): 1257.
[http://dx.doi.org/10.3390/ijms22031257] [PMID: 33513992]
[39]
Hadjikirova M, Troyanova P, Simeonova M. Nanoparticles as drug carrier system of 5-fluorouracil in local treatment of patients with superficial basal cell carcinoma. J BUON 2005; 10(4): 517-21.
[PMID: 17357210]
[40]
Cornwell PA, Barry BW. The routes of penetration of ions and 5-fluorouracil across human skin and the mechanisms of action of terpene skin penetration enhancers. Int J Pharm 1993; 94(1-3): 189-94.
[http://dx.doi.org/10.1016/0378-5173(93)90023-9]
[41]
Safwat MA, Soliman GM, Sayed D, Attia MA. Fluorouracil-loaded gold nanoparticles for the treatment of skin cancer: development, in vitro characterization, and in vivo evaluation in a mouse skin cancer xenograft model. Mol Pharm 2018; 15(6): 2194-205.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00047] [PMID: 29701979]
[42]
Entezar-Almahdi E, Mohammadi-Samani S, Tayebi L, Farjadian F. Recent advances in designing 5-fluorouracil delivery systems: a stepping stone in the safe treatment of colorectal cancer. Int J Nanomedicine 2020; 15: 5445-58.
[http://dx.doi.org/10.2147/IJN.S257700] [PMID: 32801699]
[43]
Ahmad N, Ahmad R, Mohammed Buheazaha T, Salman AlHomoud H, Al-Nasif HA, Sarafroz M. A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin. Saudi J Biol Sci 2020; 27(4): 1024-40.
[http://dx.doi.org/10.1016/j.sjbs.2020.02.014] [PMID: 32256163]
[44]
Sahu P, Kashaw SK, Sau S, et al. pH responsive 5-fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma. Colloids Surf B Biointerfaces 2019; 174: 232-45.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.018] [PMID: 30465998]
[45]
Khallaf RA, Salem HF, Abdelbary A. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment. Drug Deliv 2016; 23(9): 3452-60.
[http://dx.doi.org/10.1080/10717544.2016.1194498] [PMID: 27240935]
[46]
Severino P, Fangueiro JF, Ferreira SV, et al. Nanoemulsions and nanoparticles for non-melanoma skin cancer: effects of lipid materials. Clin Transl Oncol 2013; 15(6): 417-24.
[http://dx.doi.org/10.1007/s12094-012-0982-0] [PMID: 23344664]
[47]
Jain S, Patel N, Shah MK, Khatri P, Vora N. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J Pharm Sci 2017; 106(2): 423-45.
[http://dx.doi.org/10.1016/j.xphs.2016.10.001] [PMID: 27865609]
[48]
Choi MJ, Maibach HI. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol 2005; 18(5): 209-19.
[http://dx.doi.org/10.1159/000086666] [PMID: 16015019]
[49]
Gupta M, Vaidya B, Mishra N, Vyas SP. Effect of surfactants on the characteristics of fluconazole niosomes for enhanced cutaneous delivery. Artif Cells Blood Substit Immobil Biotechnol 2011; 39(6): 376-84.
[http://dx.doi.org/10.3109/10731199.2011.611476] [PMID: 21951195]
[50]
Godin B, Touitou E. Ethosomes: New prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst 2003; 20(1): 63-102.
[51]
Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 2000; 65(3): 403-18.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[52]
Bhalaria MK, Naik S, Misra AN. Ethosomes: A novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J Exp Biol 2009; 47(5): 368-75.
[PMID: 19579803]
[53]
Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol 2015; 6: 219.
[http://dx.doi.org/10.3389/fphar.2015.00219] [PMID: 26483690]
[54]
Kirjavainen M, Urtti A, Jääskeläinen I, et al. Interaction of liposomes with human skin in vitro — The influence of lipid composition and structure. Biochim Biophys Acta Lipids Lipid Metab 1996; 1304(3): 179-89.
[http://dx.doi.org/10.1016/S0005-2760(96)00126-9] [PMID: 8982264]
[55]
Nounou M, El-Khordagui L, Khalafallah N, Khalil S. Liposomal formulation for dermal and transdermal drug delivery: Past, present and future. Recent Pat Drug Deliv Formul 2008; 2(1): 9-18.
[http://dx.doi.org/10.2174/187221108783331375] [PMID: 19075893]
[56]
Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta Biomembr 1992; 1104(1): 226-32.
[http://dx.doi.org/10.1016/0005-2736(92)90154-E] [PMID: 1550849]
[57]
Meng S, Zhang C, Shi W, et al. Preparation of osthole-loaded nano-vesicles for skin delivery: Characterization, in vitro skin permeation and preliminary in vivo pharmacokinetic studies. Eur J Pharm Sci 2016; 92: 49-54.
[http://dx.doi.org/10.1016/j.ejps.2016.04.033] [PMID: 27349691]
[58]
Jain S, Jain V, Mahajan SC. Lipid based vesicular drug delivery systems. Adv Pharm 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/574673]
[59]
Saeed M, Zalba S, Seynhaeve A, Debets R, ten Hagen TLM. Liposomes targeted to MHC-restricted antigen improve drug delivery and antimelanoma response. Int J Nanomedicine 2019; 14: 2069-89.
[http://dx.doi.org/10.2147/IJN.S190736] [PMID: 30988609]
[60]
Lamichhane N, Udayakumar T, D’Souza W, et al. Liposomes: Clinical applications and potential for image-guided drug delivery. Molecules 2018; 23(2): 288.
[http://dx.doi.org/10.3390/molecules23020288] [PMID: 29385755]
[61]
Rata DM, Cadinoiu AN, Atanase LI, et al. Topical formulations containing aptamer-functionalized nanocapsules loaded with 5-fluorouracil - An innovative concept for the skin cancer therapy. Mater Sci Eng C 2021; 119: 111591.
[http://dx.doi.org/10.1016/j.msec.2020.111591] [PMID: 33321636]
[62]
Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019; 11(2): 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[63]
Zhang S. Mini-review: Combination and co-delivery in cancer treatment efficacy. J Drug Deliv Ther 2018; 8(6): 261-4.
[http://dx.doi.org/10.22270/jddt.v8i6.2051]
[64]
Yang Z, Xie J, Zhu J, et al. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. J Control Release 2016; 243: 160-71.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.008] [PMID: 27742443]
[65]
Liu Z, Chu W, Sun Q, et al. Micelle-contained and PEGylated hybrid liposomes of combined gemcitabine and cisplatin delivery for enhancing antitumor activity. Int J Pharm 2021; 602: 120619.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120619] [PMID: 33887396]
[66]
Yin J, Li Q, Sun LD, et al. Research advancement in natural anti-cancer product Zhongguo Zhongyao Zazhi 2019; 44(1): 19-27.
[PMID: 30868807]
[67]
Wang J, Ma W, Tu P. Synergistically improved anti‐tumor efficacy by co‐delivery doxorubicin and curcumin polymeric micelles. Macromol Biosci 2015; 15(9): 1252-61.
[http://dx.doi.org/10.1002/mabi.201500043] [PMID: 25981672]
[68]
Sun Y, Ma X, Hu H. Marine polysaccharides as a versatile biomass for the construction of nano drug delivery systems. Mar Drugs 2021; 19(6): 345.
[http://dx.doi.org/10.3390/md19060345] [PMID: 34208540]
[69]
Afsharzadeh M, Hashemi M, Mokhtarzadeh A, Abnous K, Ramezani M. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif Cells Nanomed Biotechnol 2018; 46(6): 1095-110.
[http://dx.doi.org/10.1080/21691401.2017.1376675] [PMID: 28954547]
[70]
Conte C, Ungaro F, Maglio G, et al. Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by combination therapy for cancer. J Control Release 2013; 167(1): 40-52.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.026] [PMID: 23298613]
[71]
Preet S, Pandey SK, Kaur K, Chauhan S, Saini A. Gold nanoparticles assisted co-delivery of nisin and doxorubicin against murine skin cancer. J Drug Deliv Sci Technol 2019; 53: 101147.
[http://dx.doi.org/10.1016/j.jddst.2019.101147]
[72]
Li C, Han X. Co-delivery of dacarbazine and all-trans retinoic acid (ATRA) using lipid nanoformulations for synergistic antitumor efficacy against malignant melanoma. Nanoscale Res Lett 2020; 15(1): 113.
[http://dx.doi.org/10.1186/s11671-020-3293-3] [PMID: 32430641]
[73]
Song M, Xia W, Tao Z, et al. Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. Drug Deliv 2021; 28(1): 594-606.
[http://dx.doi.org/10.1080/10717544.2021.1898703] [PMID: 33729072]
[74]
Caddeo C, Nacher A, Vassallo A, et al. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int J Pharm 2016; 513(1-2): 153-63.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.014] [PMID: 27609664]
[75]
Singh S. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int J Nanomedicine 2018; 13(S1): 11-3.
[76]
Rauca VF, Patras L, Luput L, et al. Remodeling tumor microenvironment by liposomal codelivery of DMXAA and simvastatin inhibits malignant melanoma progression. Sci Rep 2021; 11(1): 22102.
[http://dx.doi.org/10.1038/s41598-021-01284-5] [PMID: 34764332]
[77]
Soni K, Mujtaba A, Akhter MH, Zafar A, Kohli K. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. J Microencapsul 2020; 37(2): 91-108.
[http://dx.doi.org/10.1080/02652048.2019.1701114] [PMID: 31810417]
[78]
Lin H, Lin L, Choi Y, Michniak-Kohn B. Development and in-vitro evaluation of co-loaded berberine chloride and evodiamine ethosomes for treatment of melanoma. Int J Pharm 2020; 581: 119278.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119278] [PMID: 32229284]
[79]
Imran M, Iqubal MK, Imtiyaz K, et al. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int J Pharm 2020; 587: 119705.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119705] [PMID: 32738456]
[80]
Tokarska K, Lamch Ł, Piechota B, et al. Co-delivery of IR-768 and daunorubicin using mPEG-b-PLGA micelles for synergistic enhancement of combination therapy of melanoma. J Photochem Photobiol B 2020; 211: 111981.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111981] [PMID: 32862088]
[81]
Amini S, Viera MH, Valins W, Berman B. Nonsurgical innovations in the treatment of nonmelanoma skin cancer. J Clin Aesthet Dermatol 2010; 3(6): 20-34.
[PMID: 20725548]
[82]
Goldenberg G, Perl M. Actinic keratosis: Update on field therapy. J Clin Aesthet Dermatol 2014; 7(10): 28-31.
[PMID: 25371768]
[83]
Bray FN, Simmons BJ, Wolfson AH, Nouri K. Acute and chronic cutaneous reactions to ionizing radiation therapy. Dermatol Ther 2016; 6(2): 185-206.
[http://dx.doi.org/10.1007/s13555-016-0120-y] [PMID: 27250839]
[84]
Dubina M, Goldenberg G. Viral-associated nonmelanoma skin cancers: A review. Am J Dermatopathol 2009; 31(6): 561-73.
[http://dx.doi.org/10.1097/DAD.0b013e3181a58234] [PMID: 19590418]
[85]
Bollag W, Ott F. Retinoic acid: Topical treatment of senile or actinic keratoses and basal cell carcinomas. Agents Actions 1970; 1(4): 172-5.
[http://dx.doi.org/10.1007/BF01965758] [PMID: 5520364]
[86]
Tarabadkar ES, Shinohara MM. Skin directed therapy in cutaneous T-cell lymphoma. Front Oncol 2019; 9: 260.
[http://dx.doi.org/10.3389/fonc.2019.00260] [PMID: 31032224]
[87]
Alam M, Ratner D. Cutaneous squamous-cell carcinoma. N Engl J Med 2001; 344(13): 975-83.
[http://dx.doi.org/10.1056/NEJM200103293441306] [PMID: 11274625]
[88]
Peng Q, Warloe T, Berg K, et al. 5-Aminolevulinic acid-based photodynamic therapy. Cancer 1997; 79(12): 2282-308.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970615)79:12<2282:AID-CNCR2>3.0.CO;2-O] [PMID: 9191516]
[89]
Ismail M, Khan S, Khan F, et al. Prevalence and significance of potential drug-drug interactions among cancer patients receiving chemotherapy. BMC Cancer 2020; 20(1): 335.
[http://dx.doi.org/10.1186/s12885-020-06855-9] [PMID: 32307008]
[90]
Chakrabarty A, Geisse JK. Medical therapies for non-melanoma skin cancer. Clin Dermatol 2004; 22(3): 183-8.
[http://dx.doi.org/10.1016/j.clindermatol.2003.12.005] [PMID: 15262303]
[91]
Chua B, Jackson JE, Lin C, Veness MJ. Radiotherapy for early non-melanoma skin cancer. Oral Oncol 2019; 98: 96-101.
[http://dx.doi.org/10.1016/j.oraloncology.2019.09.018] [PMID: 31574416]
[92]
Chen ELA, Srivastava D, Nijhawan RI. Mohs micrographic surgery: Development, technique, and applications in cutaneous malignancies. Semin Plast Surg 2018; 32(2): 60-8.
[http://dx.doi.org/10.1055/s-0038-1642057]
[93]
Wain RAJ, Tehrani H. Reconstructive outcomes of Mohs surgery compared with conventional excision: A 13-month prospective study. J Plast Reconstr Aesthet Surg 2015; 68(7): 946-52.
[http://dx.doi.org/10.1016/j.bjps.2015.03.012] [PMID: 25824196]
[94]
Krishnan V, Rajasekaran AK. Clinical nanomedicine: A solution to the chemotherapy conundrum in pediatric leukemia therapy. Clin Pharmacol Ther 2014; 95(2): 168-78.
[http://dx.doi.org/10.1038/clpt.2013.174] [PMID: 24013811]
[95]
Dhanyamraju PK, Patel TN. Melanoma therapeutics: A literature review. J Biomed Res 2022; 36(2): 77-97.
[http://dx.doi.org/10.7555/JBR.36.20210163] [PMID: 35260531]
[96]
Jiang G, Li RH, Sun C, Liu YQ, Zheng JN. Dacarbazine combined targeted therapy versus dacarbazine alone in patients with malignant melanoma: A meta-analysis. PLoS One 2014; 9(12): e111920.
[http://dx.doi.org/10.1371/journal.pone.0111920] [PMID: 25502446]
[97]
Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A. Follicular transport route – Research progress and future perspectives. Eur J Pharm Biopharm 2009; 71(2): 173-80.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.001] [PMID: 19041720]
[98]
Zhang N, Zhang N. How nanotechnology can enhance docetaxel therapy. Int J Nanomedicine 2013; 8: 2927-41.
[http://dx.doi.org/10.2147/IJN.S46921] [PMID: 23950643]
[99]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016; 1(1): 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[100]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med 2019; 4(3): e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[101]
Fang CL, Aljuffali IA, Li YC, Fang JY. Delivery and targeting of nanoparticles into hair follicles. Ther Deliv 2014; 5(9): 991-1006.
[http://dx.doi.org/10.4155/tde.14.61] [PMID: 25375342]
[102]
Zhong X, Sun Y, Kang C, Wan G. The theory of dielectrophoresis and its applications on medical and materials research. Eur J Med Res 2017; 2(4): 7-11.
[http://dx.doi.org/10.18088/ejbmr.2.4.2016.pp7-11]
[103]
Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Clin Pract Oncol 2007; 4(8): 462-9.
[http://dx.doi.org/10.1038/ncponc0883] [PMID: 17657251]
[104]
Domingues B, Lopes J, Soares P, Pópulo H. Melanoma treatment in review. ImmunoTargets Ther 2018; 7: 35-49.
[http://dx.doi.org/10.2147/ITT.S134842] [PMID: 29922629]
[105]
Rana K, Kumar Pandey S, Chauhan S, Preet S. Anticancer therapeutic potential of 5-fluorouracil and nisin co-loaded chitosan coated silver nanoparticles against murine skin cancer. Int J Pharm 2022; 620: 121744.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121744] [PMID: 35427747]
[106]
Matos CP, Albino M, Lopes J, et al. New iron(III) anti-cancer aminobisphenolate/phenanthroline complexes: Enhancing their therapeutic potential using nanoliposomes. Int J Pharm 2022; 623: 121925.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121925] [PMID: 35718249]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy